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IMPLEMENTATION OF REGRESSION MODELS FOR 
LONGITUDINAL COUNT DATA THROUGH SAS 

Gül İNAN*                                Özlem İLK ** 

ABSTRACT 

In this study, we firstly consider the marginal model and generalized linear 
mixed model classes for longitudinal count data and review the Log-Log-
Gamma marginalized multilevel model, which combines the features of 
marginal models and generalized linear mixed models. Due to the special 
features of these models, implementation of them requires more special 
attention. As a consequence, this leads us to use SAS GENMOD procedure 
for the marginal model, SAS GLIMMIX procedure for the GLMM, and SAS 
NLMIXED procedure for the Log-Log-Gamma marginalized multilevel 
model. Since the latter model requires gamma distributed random effects, two 
different techniques, namely the probability integral transformation 
technique and likelihood reformulation technique , which are originally used 
for fitting Gamma Frailty models, are modified and adapted to fit Log-Log-
Gamma marginalized multilevel model within the framework of Proc 
NLMIXED. Finally, we conclude the study with the discussion of the results 
obtained from the implementation of the models through popular epileptic 
seizures data. 

Keywords: Epileptic seizure count, Gamma random effects, SAS GENMOD, SAS GLIMMIX, SAS 
NLMIXED. 

1. INTRODUCTION

In longitudinal studies, measurements from the same subjects over a sequence of time 
periods are taken so that changes in measurements over time periods can be observed. 
In longitudinal count data (LCD), the response variable of the longitudinal dataset 
represents the counts of a total number of a defined event occurring in a given time 
interval. Examples from physiological research may include the number of epileptic 
seizures of each patient per two-weeks over an eight-week treatment period and the 
number of panic attacks for each patient in a week over a one-month psychological 
intervention program. 

The analysis of longitudinal count data requires more special methods due to the 
longitudinal feature of measurements and counting process of responses. The most 
important feature of longitudinal data that motivates the statistical analysis is the 
association of measurements within a subject since the observations obtained from the 
same subject over several time periods are expected to be correlated. On the other hand, 
the statistical distribution of the counts is traditionally assumed to be Poisson 
distribution (Diggle et al., 2002) and it is well-known that the mean equals to the 
variance (equi-dispersion) for the Poisson distribution. However, when the variability of 
counts is greater than its expected value under the Poisson model, the phenomenon is 
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called overdispersion. More specifically, extra-Poisson variation occurs (Barron,1992). 
Although there are additional features that complicate the statistical analysis, these are 
the two that play a significant role in the estimation of regression parameters for the 
regression models developed for LCD. 

In this sense, this paper aims to summarize the characteristics of the most commonly 
used general regression model classes, namely marginal models, random-effects 
models, and marginalized multilevel modelsto analyzelongitudinal count data and to 
show how these regression models are implemented through SAS, which is not well-
documented in the literature, via the popular epileptic seizures example.On the other 
hand, the main contribution of this paper is that it provides the use of two different 
techniques to accommodate regression models with gamma distributed random effects 
for LCD, where non-gaussian random effects are not allowed within SAS framework. 

The development of subsequent sections of this paper is organized as follows: Section 2 
gives background information on regression model classes for LCD. Section 3 
introduces the popular epileptic seizures example. Section 4 is devoted to the 
implementation of these regression models through the epileptic seizure example within 
SAS procedures. Section 5 discusses the results and Section 6 concludes the paper. 

2. REGRESSION MODELS FOR LONGITUDINAL COUNT DATA

Diggle et al. (2002) classify the models for longitudinal data into three different 
regression model classes. These are: i) marginal models, ii) random-effects, and iii) 
transition models. In general, these three regression model classes view the association 
problem between the repeated measurements of a subject from different perspectives 
and this leads the models to differ in the interpretation of the regression parameters. In 
this paper, we restrict ourselves to the marginal and random-effects model classes and 
reintroduce the Log-Log-Gamma marginalized multilevel models (MMMs).  

2.1 Marginal Models 

Marginal models directly specify a regression model for the mean response, which 
depends only on covariates, using a log-link function. The mean responses,  µ��

� , for the 
��� subject and ��� time related to the covariates as follows:  

����µ��
� � � ���� ��� 

The within-subject association, the association between the repeated measurements of a 
subject, is modeled separately, possibly using additional association parameters. The 
regression parameters, �’s, in equation (1) describe the effects of covariates on the 
population averaged mean response, as in cross-sectional analysis. Their interpretation 
is independent of specification of within-subject association model (Fitzmaurice and 
Molenberghs, 2008), which makes them more robust compared to the regression models 
that will be discussed later.  
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2.2 Random-Effects Models 

The random-effects models assume that there is a natural heterogeneity between the 
subjects due to unmeasured covariates (Diggle et al., 2002). In this sense, regression 
parameters randomly varying from one subject to other subject are included into the 
regression modeling of the mean response. Contrary to the marginal models, GLMMs 
model the mean response and the within-subject association through a single equation 
and random effects are viewed as the potential source of within-subject association. 

Among the random-effects models, generalized linear mixed models (GLMMs) are the 
most frequently used one for discrete repeated measurements (Molenberghs and 
Verbeke, 2005). In GLMMs, the model for the mean response depends both on 
covariates and random effects, which enter linearly into the linear predictor via a known 
link function. The simplest case of GLMMs is naturally a model with just a random 
intercept coefficient.  

The formulation of a random-intercept model for LCD can be as follows: 

i) Conditional Mean Model:  ����µ��
� � � ���� � ����

ii) Random Intercept Distribution: ���� ������ ��
iii) Conditional Response Distribution: ���� � ���������� � ������� �µ��

� �

���’s are assumed to be conditionally independent given subject-specific random 
intercepts,��� � ������ ����� � � � ������′ and to have Poisson distribution with conditional 
mean, µ��

� , depending on both fixed and random effects. The subject-specific random 
intercepts, ��� � ������ ����� � � ������′ are assumed to have a multivariate normal 
distribution with zero mean and a common within-subject covariance matrix, C. 

One of the most important characteristics of GLMMs is that they have the ability to 
accommodate complex within-subject association structures for subject-specific random 
effects. Weiss (2005) lists a large number of covariance structures and detailed 
information on these covariance structure specifications, but among them, most 
commonly used ones are unstructured (UN), first order autoregressive (AR(1)), and 
compound symmetry (CS). 

In GLMMs, the aim is to make inference on individual subjects rather than the 
population average; for that reason the fixed effects regression parameters, �’s, in (i) 
describe the effects of covariates on an individual’s mean response by controlling for 
the random-effects. However, interpretations being dependent on random effects and 
being sensitive to within-subject association specifications and robustness of estimates 
being dependent on the distribution of the random effects reflect the disadvantages of 
GLMMs (Heagerty and Zeger, 2000). 

2.3 Log-Log-Gamma Marginalized Multilevel Model 

Marginalized multilevel models are proposed by Heagerty and Zeger (2000).  These 
models combine the features of marginal models and GLMMs with an aim to 
compensate the distinctions of these two models. While marginalized multilevel models 
take the interpretation and robustness of regression parameters from marginal models, 
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they take likelihood-based inference capabilities and flexible within-subject association 
specifications from GLMMs (Griswold and Zeger, 2004). Accordingly, Griswold and 
Zeger (2004) expand the marginalized multilevel model of Heagerty and Zeger (2000) 
for LCD and name this model as Log-Log-Gamma marginalized multilevel model 
(MMM).   

The formulation of the Log-Log-Gamma MMM which assumes only a subject-specific 
intercept coefficient,b��, in the linear predictor, in addition to fixed effects, is as 
follows: 

i) Marginal Mean Model:  ����µ��
�� � �����

ii) Association Model:  ����µ��
� � � ∆�� � ���

iii) Random Effects Distribution:��� � ������� ��⁄ � ��� where��� � ��������
iv) Conditional Response Distribution: ���� � ��������� � ������� �µ��

� ��

It defines a general linear model (GLM) for the marginal mean model in i) and a 
nonlinear mixed model (NLMM) for the within-subject association in ii).  

Griswold and Zeger (2004) follow the same logic and assume a gamma distribution for 
subject-specific random effects and a Poisson distribution for the conditional response 
distribution, so that the marginal distribution of responses becomes negative-binomial 
distribution, which accommodates overdispersion well (Greenwood and Yule, 1920; 
Barron, 1992; Cameron and Trivedi, 1998; Jowaheer and Sutradhar, 2002). Contrary to 
GLMMs, subject-specific random effects in Log-Log-Gamma MMM follow a non-
Gaussian distribution, that’s Gamma distribution, and are allowed to enter nonlinearly 
into the model. 

The log-link function and Poisson-gamma mixing distribution, together with the 
connection between marginal mean and conditional mean model, lead to ∆��� ����� �
��� �����where��� � ������ � � ��⁄ � ��(Griswold and Zeger, 2004). Hence, the 
conditional mean, µ��

� , can be written in terms of the marginal regression parameters, 
��, such that  

µ��
� � ����∆�� � ���� � ��������� � �������� � ����� ��� 

Since equation (2) includes the marginal regression parameters, ��, the estimation of 
�� can be performed by fitting the conditional model, µ��

� , via standard NLMM 
techniques. The regression parameters, ��, describe the effects of covariates on the 
population averaged mean response, over the random effects.  

3. EPILEPTIC SEIZURE COUNT DATA

The illustration of model fitting will be through an epileptic seizure count data, which is 
publicly availablein R package Mass (Venables and Ripley, 2002). We preferred this 
data set since it is the most commonly used one in the literature. This data comes from a 
randomized placebo-controlled clinical trial which was conducted by Leppik et al. 
(1985). 59 patients with simple or complex partial seizures were participated in the 
study and were randomized to receive either the antiepileptic drug progabide or a 
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placebo, as an adjuvant to the anti-epileptic standard chemotherapy. Before receiving 
treatment, the number of epileptic seizures of each patient over an eight-week period 
was recorded as baseline data. After treatment, the number of epileptic seizures of each 
patient per two-weeks over an eight-week treatment was also recorded at clinic visits. 
Apart from these, age information related to each patient was recorded as well. The 
question of interest is whether progabide has an effect in reducing the epileptic seizure 
counts or not. 

The summary statistics for the epileptic seizure count data are displayed in Table 1. It is 
obvious that counts show overdispersion across visits within placebo group, progabide 
group, and complete data. When we do not take visits into account, the same case still 
continues, and counts exhibit high overdispersion in placebo group, progabide group, 
and complete data as an overall. 

3.1 Covariates for Regression Models 

To relate the covariates to the seizure counts, the covariates those listed in Thailand Vail 
(1990) are used. These are: 

= logage=The natural logarithm of age in years, log (Age),  
= lgbsl=The natural logarithm of ¼ of the 8-week baseline counts, , 
= trt=Trt is a binary variable taking a value of 1 if progabide, 0 if placebo,  
= v4=Visit4 is a binary variable taking a value of 1 if visit number is 4, 0 otherwise, 
= int=Interaction of Trt and , 

Here, , which corresponds to the Trt variable, represent the parameter of interest for 
our research question. 

Table 1. Summary statistics for epileptic seizure count data 

4. FITTING THE REGRESSION MODELS IN SAS

For model fitting of the regression models, SAS (version 9.2) is used.  

4.1 Marginal Models 

When the responses are discrete, i.e., binary or count, it is hard to estimate regression 
parameters of the marginal models by likelihood-based methods (Fitzmaurice and 
Molenberghs, 2008). That is because the complete joint distribution of longitudinal 
responses requires the specification of two-way associations between the responses and 

Placebo Progabide Complete

Mean 
Variance

Mean
Mean 

Variance
Mean

Mean 
Variance

Mean

Visit 1 9.36 10.98 8.58 38.78 8.95 24.59 

Visit 2 8.29 8.04 8.42 16.71 8.36 12.42 

Visit 3 8.79 24.50 8.13 23.75 8.44 23.72 

Visit 4 7.96 7.31 6.71 18.92 7.31 12.75 

Overall 30.79 22.13 31.65 24.76 8.27 18.45 
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in turn, building models for these associations that are consistent with the model for the 
mean response in an interpretable manner is difficult in the framework of marginal 
models (Lipsitz and Fitzmaurice, 2008). 

When distributional assumption on repeated responses is avoided, an estimation method 
that is called generalized estimating equation (GEE) is considered. It is developed by 
Liang and Zeger (1986) by including additional parameters in the formulation of within-
subject covariance matrix of responses. GEE provides as efficient estimates as 
maximum likelihood estimation (MLE), as well as consistent and asymptotically normal 
estimates provided that the mean response model is correctly specified. One 
disadvantage of GEE is that avoiding defining the complete joint distributions deprive 
us of using likelihood-based methods. 

4.1.1  SAS GENMOD 

SAS procedure that gives the opportunity to fit the GEE to repeated measures data is 
Proc GENMOD.  

The marginal model equation for the epileptic seizure example can be given by 

µ � ��� ��� � �� � ���������� � �� � ����������� � � �� � ������ � �� � ��������������� ��
� �� � ���������� , 

and the code related to our data and to our research question is given as follows: 

procgenmoddata=seizure; 
class id; 
model count=logagelgbsltrtint v4 /dist=poissonlink=log scale=deviance; 
repeated subject=id / type=UN; 
run; 

The model statement defines the relation between the response variable, count and the 
covariates logagelgbsltrtint v4, listed in Section 3. While dist option defines the 
distribution of counts, link option refers to the link function used in the model. On the 
other hand, scale=deviance enables the scale parameter to be fixed at 1 during 
estimation. Subjectthrough repeated statement identifies the subjects in the model and 
the variable identifying subjects should also be listed through the class statement. 
Finally, type refers to working correlation structure used in the model. SAS GENMOD 
allows user different working correlation structure types, such as unstructured, 
exchangeable and autoregressive AR (1). 

4.2 Random-Intercept Model 

When the interest is on the fixed effects regression parameters, �’s, rather than random 
effects in the random-intercept model; the model fitting and inference on  �’s, requires 
the maximization of the likelihood of the data. This maximization is obtained by 
treating random intercepts,���’s, as if they were nuisance parameters and by integrating 
over their distribution (Diggle et al., 2002). In other words, if the ith subject’s 
contribution to the likelihood of the data is defined as  
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����|��, ��� � � ����������|�, ����
��

���
�����|���

��
���, 

and then, the expression in equation (3)is expected to be maximized 

���|�, �� ������|��, ���
�

���

��� ����������|�, ����
��

���
�����|���

��
���

�

���
��� 

where��  is the vector of parameters for the distribution of ��.  
In GLMMs, the distribution of random effects and high-dimensional integration of them 
together with a possibly nonlinear link function may cause computational difficulties in 
the evaluation of the likelihood and as consequence; closed-form solutions cannot be 
provided. In random-intercept models, being normal distribution not conjugate to 
Poisson distribution make the implementation of approximation harder. 

Molenberghs and Verbeke (2005)divide the approaches toward the evaluation of the 
likelihood into three categories according to the frequency of usage and to the 
availability in statistical software. These are the approaches based on the approximation 
of i) the integrand, ii) data, and iii) integral itself. While Laplace–type approximations 
fall in the first category, penalized quasi-likelihood (PQL) and marginal quasi-
likelihood (MQL) fall in the second category. The numerical integration methods such 
as adaptive and nonadaptive Gaussian quadrature fall in the latter category.  

In this sense, SAS GLIMMIX procedure has the ability to fit the approximation and 
methods mentioned above. 

4.2.1 SAS GLIMMIX 

SAS GLIMMIX procedure is a built-in SAS procedure and is an appropriate choice for 
generalized linear mixed models, in which random effects are restricted to appear 
linearly in linear predictor. This procedure is especially recommended for models when 
the number of random effects per subject is large (Flom et al., 2006). 

The random-intercept model equation for seizure data is given by 

µ � ��� ��� � �� � ���������� � �� � ����������� � � �� � ������ � �� � ��������������� ��
� �� � ��������� � �� , 

and�����������, �� and C is assumed to be an unstructured within-subject covariance 
matrix. 
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SAS GLIMMIX code related to our data and to our research question can be given as 
follows: 

procglimmix data=seizure MAXOPT=500 method=RSPL; 
class id; 
model count=logage lgbsl trt int v4 /dist=poisson link=log s; 
random intercept /subject=id type=UN; 
run; 

Within the framework of Proc GLIMMIX, the random-intercept model is fitted by using 
PQL, based on REML for the linear mixed models. The option for PQL in procglimmix 
statement is the “method=RSPL”, which is the default method. dist option through the 
model statement specifies the conditional distribution for the response variable given 
the random effects to come from any distribution in the exponential family. As in Proc 
GENMOD, link specifies the link function. interceptthrough random statement specifies 
a random intercept in the model. This procedure allows random effects to have only 
normal distribution and offer a straightforward fitting of a wide variety of within-
subject covariance structures such as AR (1), CS and UN through type option.  

4.3 The Log-Log-Gamma MMM 

4.3.1 SAS NLMIXED 

SAS NLMIXED procedure is a built-in SAS procedure and is preferred for the Log-
Log-Gamma MM as in Griswold and Zeger (2004). 

Proc NLMIXED is an appropriate choice for nonlinear mixed models, in which random 
effects are allowed to enter nonlinearly into the linear predictor of the model. It 
specifies the conditional distribution for the response variable given the random effects, 
either by standard distributions such as normal, binomial, and Poisson or by general 
distributions that can be coded using SAS statements. The only distribution available for 
random effects is normal distribution. The way of model specification in Proc 
NLMIXED has a high degree of flexibility, compared to other SAS procedures 
(Molenberghs and Verbeke, 2005). This advantage enables any non-normal distribution 
of interest for random effects to be implemented within the numerical integration 
techniques available in Proc NLMIXED via probability integral transformation(PIT) 
technique (Nelson et al., 2006) or likelihood reformulation (LR) technique (Liu and Yu, 
2008). When the random effects are normally distributed, SAS NLMIXED procedure 
does not offer a straightforward option for the specification of any within-subject 
covariance structure. But, by the help of its flexibility, it is possible to allow the within-
subject covariance matrix of the random effects to be, for instance, an AR(1), when 
specifying the mean and covariance components of the normal distribution 
(Molenberghs and Verbeke, 2005). Apart from these, Proc NLMIXED procedure 
requires the specification of initial values for all parameters in the model. Initial values 
for regression parameters can be obtained by the resulting parameter estimates after 
fitting a GLM in SAS.  

In this sense, two different techniques, which Nelson et al. (2006) and Liu and Yu 
(2008) originally used for fitting Gamma Frailty models, are modified and adapted to fit 
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Log-Log-Gamma MMM by accommodating gamma distributed random effects within 
the framework of Proc NLMIXED. 

1. PIT Technique by Nelson et al. (2006)

To accommodate gamma distributed random effects in Proc NLMIXED, we firstly use 
PIT technique proposed by Nelson et al. (2006). Similar to them, ia  is assumed to be a 
random effect from standard normal distribution, such that ��� ��0,1�, and then by the 
use of PIT, it can be shown that Ф���� � �� � �����0,1� where Ф�. � is of the standard 
normal distribution. Again by the help of PIT, it can also be shown that ������ �
�� � �����0,1� where ���. � is cumulative distribution function (CDF) of the gamma 
distribution of ��, with � � �1 ��⁄ , ���. For identifiably, �� will be taken as equal to 
��on the forthcoming parts of the paper. Then it turns out that �� � �������� �
�����Ф����� has the gamma distribution of interest, where �����. �is the inverse CDF of 
gamma distribution. Similarly, ith subject’s contribution to the likelihood of the data can 
be defined as in equation (4). 

 ����|��, ��� � � ��� �������|�, ����
��

���
� ����|���

��
���, ��� 

where �� � �������. 

The expression in equation (5), which is nowwritten in terms of random effects, ai, is 
expected to be maximized such that 

���|�, �� � �  ����|��, ���
�

���

� � � ��� ��� ����|�, �����Ф������
��

���
� ������

��
���

�

���
 , ��� 

where ��. � is the standard normal distribution density function. Nelson et al. (2006) 
suggest that the likelihood in equation (5) can be approximated well by the Gaussian 
quadrature numerical integration technique. The approximation with Gaussian 
quadrature to integrals in equation (4) is achieved such that ith subject’s likelihood is 
approximated by a weighted sum  

����|��, ��� � � ��� ��� ����|�, �����Ф������
��

���
� ������

��
��� 

����|��, ��� � � �� ��� ����|�, �����Ф������
��

���
� �������

�

���
, 
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and, thus, the likelihood in equation (5), which is expected to be maximized, turns out 
that 

���|�, �� ������� ����|�, �����Ф������
��

���
�������

�

���

�

���
, 

where zq is quadrature point and indexed by q = 1,...,Q, Q is the order of approximation, 
wq is the standard Gauss-Hermite weight. Since the approximations will be more 
accurate as Q increases, we use Gaussian quadrature with 30 points like Griswold and 
Zeger (2004) and Nelson et al. (2006). The values of zq and wq can be obtained from 
tables in Abramowitz and Stegun(1972) (Table 25.10). 

The Log-Log-Gamma MMM equation for seizure data is given by 

µ � ��� ��� � �� � ���������� � �� � ����������� � � �� � ������ � �� � ��������������� ��
� �� � ��������� � �� , 

and���� � �������������� � ������1,1��������� � ������������1,1�. 
SAS NLMIXED code by the help of PIT method that is related to our data and to our 
research question can be given as follows: 

procnlmixed data=seizure noad fd qpoints=30; 
PARMS theta1=1 beta0_m=-2.3492 beta1_m=0.7722 beta2_m=0.9582 beta3_m=-
1.3299 beta4_m=-0.1565 beta5_m=0.5397; 
eta_m=beta0_m + beta1_m*logage + beta2_m*lgbsl + beta3_m*trt + beta4_m*int + 
beta5_m*v4; 
ui=CDF('Normal',ai); 
if (ui >0.9999 ) then ui=0.9999; 
gi1=quantile('GAMMA',ui,1/theta1,theta1);  
v=1/theta1*theta1; 
delta=eta_m-log(v); 
eta_c=delta + log(gi1); 
mu_c=exp(eta_c); 
Model count ~ Poisson(mu_c); 
Random ai ~ Normal(0,1) subject=id;  
run; 

noad in procnlmixed step refers to nonadaptive Gaussian quadrature. Finite difference 
approximation with fd is required for the derivative of CDF of normal distribution, 
that’s CDF and the derivative of inverse CDF of gamma distribution, that’s quantile. 
For that reason fd is there to specify that all derivatives to be computed using finite 
difference approximations. fd is equivalent to 100 as default and high fd values 
indicates better approximation. qpointsrefers to the number of quadrature points to be 
used during evaluation of integrals.PARMS statement allows to set the initial values for 
all unknown parameters in the model. The next eight SAS statements are used for 
defining Log-Log-Gamma MMM by PIT method. Model statementdefines the response 
variable and the form of the distribution of the conditional likelihood. Random 
statement declares the distribution of subject-specific random-intercept terms. 
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2. LR Technique by Liu and Yu (2008)

Another approach for accommodating gamma distributed random effects within the 
framework of the Proc NLMIXED is proposed by Liu and Yu (2008). This method aims 
to transform the formulation of likelihood that is conditional on non-normal random 
effects to a likelihood that is conditional on normal random effects in the framework of 
Gaussian quadrature. In this sense, they multiply and divide the likelihood in equation 
(6) by a standard normal density function,��. �such that 
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and ���is the log of the standard normal distribution 

��� � ���������� � ��.����� �  ��������. 
SAS NLMIXED code by the help of LR technique that is related to our data and to our 
research question can be given as follows: 
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procnlmixed data=seizure qpoints=30; 
PARMS theta1=1 beta0_m=-2.3492 beta1_m=0.7722 beta2_m=0.9582 beta3_m=-
1.3299 beta4_m=-0.1565 beta5_m=0.5397; 
eta_m=beta0_m + beta1_m*logage + beta2_m*lgbsl + beta3_m*trt + beta4_m*int + 
beta5_m*v4; 
v=1/theta1*theta1; 
eta_c=eta_m-log(v)+ b; 
mu_c=exp(eta_c); 
expb=exp(b); 
fc=fact(count); 
loglik=-mu_c+count*eta_c-log(fc); 
if lastid=1 then do; 
lB=-((1/theta1)*log(theta1))-lgamma(1/theta1)+((1/theta1)*b)-((1/theta1)*expb); 
lC=-1/2*(b**2); 
loglik=loglik+lB-lC; 
end; 
Model count ~ general(loglik); 
Random b ~ Normal(0,1) subject=id;  
run; 

Contrary to nonadaptive Gaussian quadrature,theadaptive Gaussian quadrature 
considers the shape of the likelihood when placing quadrature points and this result in 
better approximations (Liu and Yu,2008). For that reason, this technique prefers 
adaptive Gaussian quadrature contrary to PIT method which is the default option in 
procnlmixed. The next four SAS statements after the PARMS statement are there to 
specify the Log-Log-Gamma MMM. Similarly, Model statementshows the response 
variable and the form of the distribution of the conditional likelihood but this time 
through a general log-likelihood. 

Contrary to PIT technique which requires the inverse CDF to have a closed form or to 
be available in SAS, LR technique requires that distribution function of the non-normal 
random effect to have a closed form or to be available in SAS. Further information on 
the description of the SAS NLMIXED and SAS GLIMMIX procedures and their 
options can be obtained from SAS (2000). 

5. FINDINGS

Table 2 displays the regression parameter estimates and corresponding standard errors 
produced from the models and estimation methods mentioned above through the 
epileptic seizure data. 

We find that results from four methods are similar except the estimates of regression 
parameter, .  Large differences are observed in this parameter between the regression 
models.  It is found that the treatment effect has a statistically significant effect on the 
number of seizures count. As the negative sign on indicates, the treatment reduces the 
seizure numbers. 
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Table 2. Results from the Marginal Model (ProcGenmod), Random-Intercept Model (Proc 
GLIMMIX), Log-Log-Gamma MMM by PIT (Proc NLMIXED) and Log-Log-Gamma MMM by 
LR (Proc NLMIXED) 

When we compare, the Log-Log-Gamma MMM by PIT and that by the LR method in 
terms of computational time, it is observed that LR method with adaptive Gaussian 
quadrature with 30 points option reduces the computational time considerably compared 
to PIT method with non-adaptive Gaussian quadrature 30 points option. While the 
estimation time takes approximately 2 seconds in LR technique, it takes about 22 
seconds in PIT technique. This is due to that the LR technique does not need any finite 
difference approximation; hence it reduces implementation duration considerably. 

6. CONCLUSION

This paper summarizes the marginal and random-effects model classes dealing with 
longitudinal count data in the literature and the implementation of longitudinal count 
data within SAS. One regression model class that is not mentioned in this paper is the 
transition models, but interested reader is kindly invited to read the Diggle et al. (2002). 
Diggle et al. (2002) reviews three different models and discusses the models with their 
pluses and minuses. 

We especially focus on the Log-Log-Gamma marginalized multilevel model, which was 
developed by Griswold and Zeger (2004).  This model is a likelihood-based model and 
offers a GLM for the mean response model, and a nonlinear mixed model for the 
within-subject association model. Separation of the model for mean response from that 
for within-subject association eases the interpretation of regression parameters of 
interest. Moreover, the Log-Log-Gamma MMM specifies a gamma distribution for the 
random effects which is conjugate to the Poisson distribution of conditional mean 
model. This is a great advantage over normally distributed random effects model since 
the Poisson-gamma mixture is able to remedy the overdispersion problem. As Nelson et 
al. (2006) stresses, non-normal random effects are taking progressive attention not only 
from longitudinal data analysis field, but also from different areas in statistics, and are 
more realistic than normally distributed random effects. However, non-normal random 
effects within the nonlinear mixed models suffer from the lack of computational 
implementation in the literature. In this sense, the main contribution of this paper is to 
show how a regression model with gamma distributed random effects, contrary to 
normally distributed random effects, can be handled within SAS, where non-Gaussian 
random effects are not allowed. We hope that the proposed algorithm would be helpful 

Parameter Marginal Model Random-Intercept 
Model 

Log-Log-Gamma 
MMM by PIT 

Log-Log-Gamma 
MMM by LR 

β  -2.5426 (0.9051) -0.8776 (1.1217) -1.1020 ( 0.5663) -0.7594 (1.0863) 
β  0.8417 (0.2608) 0.3558 (0.3259) 0.3556  (0.1680) 0.3378 (0.3195) 

β  0.9455 (0.0931) 0.8780 (0.1369) 1.0774  (0.0823) 0.8926 (0.1273) 

β  -1.4867 (0.4425) -0.8671 (0.4139) -1.4672 (0.2920) -0.8173 (0.3826) 

β  0.6019 (0.1789) 0.2984 (0.2096) 0.7044  (0.1013) 0.2971 (0.1914) 

β  -0.1520 (0.0822) -0.1565 (0.0544) -0.1565 (0.0545) -0.1565 (0.0545) 
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for statisticians who work on models with non-Gaussian random effects and who would 
like to implement those models through user-specified algorithms within a standard 
software, i.e. SAS. 
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UZUNLAMASINA KESİKLİ VERİLER İÇİN REGRESYON 
MODELLERİNİN SAS İLE UYGULANMASI 

ÖZET 

Bu çalşmada, öncelikle, uzunlamasna kesikli veri için marjinal model ve 
genelleştirilmiş lineer karma model snflarn ele alacağz ve sonra marjinal 
ve genelleştirilmiş lineer karma modellerinin özelliklerini birleştiren, Log-
Log-Gamma marjinalleştirilmiş çok seviyeli modellerini yeniden gözden 
geçireceğiz. Bu modellerin bilgisayar ortamna aktarlmas onlarn sahip 
olduğu birtakm özelliklerden dolay, dikkat gerektirmektedir. Bu nedenden 
dolay, bu durum marjinal modeller için SAS GENMOD, GLMM için SAS 
GLIMMIX ve Log-Log-Gamma marjinalleştirilmiş çok seviyeli modelleriiçin 
de SAS NLMIXED prosedürünü kullanmamza öncülük etmektedir. Son 
model, gamma dağlml rassal etkiler içerdiğinden, ilk olarak Gamma 
Frailty modelleri için kullanlmş olan iki farkl yöntem, isim vermek 
gerekirse, olaslk integral dönüşümü ve olabilirlik yeniden formülasyonu 
yöntemleri değiştirilerek, Log-Log-Gamma marjinalleştirilmiş çok seviyeli 
modelleri için PROC NLMIXED prosedürü çerçevesinde uyarlanmştr. Son 
olarak, çalşmamz bu modellerin popüler epilepsi nöbet says verisine 
uygulanmasndan elde edilen sonuçlar tartşarak bitirmekteyiz. 

Anahtar Kelimeler: Epilepsi nöbet says, Gamma dağlml rassal etkiler, SAS GENMOD, SAS 
GLIMMIX, SAS NLMIXED. 




