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Abstract: Due to its high computational complexity, fractional order (FO) derivative operators have been
widely implemented by using rational transfer function approximation methods. Since these methods
commonly utilize frequency domain approximation technigues, their time responses may not be prominent
for time-domain solutions. Therefore, time response improvements for the approximate FO derivative
models can contribute to real-world performance of FO applications. Recent works address the hybrid use
of popular frequency-domain approximation methods and time-domain approximation methods to deal with
time response performance problems. In this context, this study presents a hybrid approach that implements
Continued Fraction Expansion (CFE) method as frequency domain approximation and applies the gradient
descent optimization (GDO) for step response improvement of the CFE-based approximate model of FO
derivative operators. It was observed that GDO can fine-tune coefficients of CFE-based rational transfer
function models, and this hybrid use can significantly improve step and impulse responses of CFE-based
approximate models of derivative operators. Besides, we demonstrate analog circuit realization of this
optimized transfer function model of the FO derivative element according to the sum of low pass active
filters in Multisim and Matlab simulation environments. Performance improvements of hybrid CFE-GDO
approximation method were demonstrated in comparison with the stand-alone CFE method.

Keywords: CFE approximation method, FO realization, Optimization, Time response improvement

Gradyan inis Algoritmasi Kullanarak CFE Tabanh Yaklasik Kesirli Dereceli Tiirev Modellerinin
Zaman Cevabinn lyilestirilmesi I¢in Hibrit Yaklasim Yontemi

Oz: Yiiksek hesaplama karmagikligi nedeniyle, kesirli dereceli (KD) tiirev operatorleri, yaygin olarak
rasyonel transfer fonksiyonu yaklagim yontemleri kullanilarak gerceklestirilmektedir. Bu yontemler
genelde frekans alan1 yaklagim tekniklerini kullandigindan, zaman cevaplar1 zaman bolgesi ¢oziimleri igin
yeterince iyi olmayabilir. Bu nedenle, yaklasik KD tiirev modellerinin zaman cevaplarinin iyilestirilmesi,
KD uygulamalarin gergek hayattaki kullanim performanslarina katkida bulunabilir. Son zamanlardaki
caligmalar, zaman cevabi performans problemlerinin iistesinden gelebilmek igin popiiler frekans alani
yaklagimi yontemlerinin ve zaman alani yaklagim yontemlerinin hibrit kullanimini ele almaktadir. Bu
baglamda, bu ¢aligma, frekans alani yaklagimi olarak Siirekli Kesir A¢gilimi (SKA) yontemini uygulayan ve
KD tiirev operatdrlerinin SKA tabanli yaklagik modelinin basamak cevabi iyilestirmesi i¢in gradyan inis
optimizasyonunu (GIO) uygulayan hibrit bir yaklagim sunmaktadir. GIO'nun SK A tabanli rasyonel transfer
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fonksiyonu modelinin katsayilarini hassas sekilde degistirebildigi ve bu hibrit kullanimin, SKA tabanl
yaklagik tiirev operator modellerinin birim basamak ve impuls cevaplarini 6nemli 6lgiide iyilestirebildigi
gozlemlenmistir. Ayrica, KD tiirevin optimize edilmis transfer fonksiyonu, Multisim ve Matlab simiilasyon
ortamlarinda algak gegiren aktif filtrelerin toplami seklinde analog devre olarak gerceklestirilmesini
gostermekteyiz. Hibrit SKA-GIO yaklasimmin performans iyilestirmesi klasik SKA yontemi ile
karsilagtirmali olarak gdsterilmistir.

Anahtar Kelimeler: SKA yaklagim yontemi, KD ger¢eklestirme, Optimizasyon, Zaman cevabi iyilestirme

1. INTRODUCTION

Fractional calculus is widely preferred in different fields for modeling real-world systems
since it can more accurately express or represent some real-world phenomenon in daily life
(Caponetto et al., 2010; Elwakil, 2010; Radwan et al., 2021; Sun et al., 2018; Tepljakov, 2017).
It is often used for the system modeling in control engineering, energy systems, electronics,
mechanics, etc (Chen et al., 2009; Delghavi et al., 2016; Homaeinezhad & Shahhosseini, 2020;
Sidhardh et al., 2020; Silva-Juarez et al., 2020; Tapadar et al., 2022; Tepljakov et al., 2021;
Tzounas et al., 2020; Vigya et al., 2021; Yang et al., 2020). However, the practical realization of
FO systems is not an easy problem because ideal realization of FO elements is computationally
expansive because of the long-memory effect (Tepljakov et al., 2021). Some approximate
realization methods have been utilized to partially overcome this problem. The transfer function
for a FO system model includes FO elements, and these elements are generally written in the form
of approximate integer order transfer functions in a finite operating frequency ranges by using
many integer order approximation methods; for instance Carlson, Oustaloup, Continued Fraction
Expansion (CFE), Matsuda and modified stability boundary locus (MSBL) (Bingi et al., 2019;
Colin-Cervantes et al., 2021; Deniz et al., 2016, 2020; Krishna, 2011; Tepljakov et al., 2021).
There are numerous works in literature, and many of them present applications of the
aforementioned integer order approximation methods(Monije et al., 2010; Tepljakov et al., 2021;
Tufenkci et al., 2020).

The CFE approach, which is a well-known integer order approximation method to implement
FO elements, is basically a series expansion technique and widely used in simulation and
realization of the approximate FO elements. In this method, continued fractions are used to
express the FO operator in the form of rational function (Deniz et al., 2020; Krishna, 2011,
Vinagre et al., 2000). Many studies have been made to realize the FO circuits according to the
CFE method. However, some drawbacks were encountered in the application of this method. It
was expressed in previous studies: The time response approximation performance may not be
satisfactory, and the operating frequency range is not configurable by users, and it can work in
the low-frequency region (Colin-Cervantes et al., 2021; Deniz et al., 2020).

For discrete time domain approximation of fractional order elements, a unified method based
on delta domain has been suggested, and the CFE was used for expansion of fractional power of
discrete derivative elements that were expressed by using discrete-time frequency variables
(Dolai et al., 2022; Swarnakar et al., 2019). Detailed surveys of fractional order elements and their
application potential have been presented in several recent works, and these works reveal growing
importance of approximation methods in practical realization of fractional order elements (Colin-
Cervantes et al., 2021; Deniz et al., 2020; Shah et al., 2019; Tepljakov et al., 2021). Recently,
employment of optimization methods has been shown to improve synthesis and approximate
implementation of fractional order elements and functions. For instance, a genetic algorithm was
employed in the synthesis of fractional order elements (Kartci et al., 2019). The GDO algorithm
is applied to improve time-domain approximation performance of MSBL method (Koseoglu,
2022). Koseoglu’s work was a useful contribution that can enhance practical performance of
frequency-domain based approximate fractional order element realizations by improving time
responses of results of other frequency domain approximation methods.

404



Uludag University Journal of The Faculty of Engineering, Vol. 28, No. 2, 2023

In the current study, the time response of the CFE approximation method has been improved
with cooperation of the GDO algorithm. Here, similar to Koseoglu’s work, where the time
response of MSBL transfer function was enhanced by GDO (Koseoglu, 2022), the GDO algorithm
is used to improve the time-response of the CFE method by optimizing the coefficients of the
CFE based approximate transfer functions. This hybrid algorithm has been used to improve the
step response of the CFE approximation method because the step response is very substantial in
many system design applications such as control system design. We also observed that the
algorithm can contribute to the frequency domain approximation performance of the CFE method
to some extent. To realize the obtained approximate derivative model as an analog circuit
implementation, the transfer functions is decomposed into the sum of the low pass filters form
according to partial fraction expansion (PFE) and analog realization circuit is designed by using
active first order filters in the Multisim environment (Bertsias et al., 2019; Koseoglu, Deniz,
Alagoz, & Alisoy, 2021; Koseoglu, Deniz, Alagoz, Yuce, et al., 2021; Yiice & Tan, 2020).

2. METHODOLOGY

This section briefly introduces the cooperation of CFE method and GDO algorithm.
Previously, Koseoglu (2022) demonstrated hybrid utilization of the MSBL method and the GDO
algorithm in order to improve step response of the approximate FO derivative models for MSBL
method (Koseoglu, 2022). The current study aims to use this hybrid method to integrate the CFE
method and GDO algorithm and thus improves step response of the CFE-based approximate FO
derivative models. The mathematical foundations of the CFE method can be found in (Colin-
Cervantes et al., 2021; Deniz et al., 2020; Krishna, 2011; Vinagre et al., 2000).

To realize the FO element, firstly, the FO derivative function is expressed as an approximate
rational transfer function by using the CFE method as follows (Deniz et al., 2020; Koseoglu,
Deniz, Alagoz, & Alisoy, 2021; Koseoglu, Deniz, Alagoz, Yuce, et al., 2021):
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where, the parameter n is the integer order of the approximation method and the parameter a €
[0,1] is the FO of the derivative function s%. The ry - 1, and p, - p,, are the coefficients of
numerator and denominator polynomials, respectively. To realize (1), it is decomposed by
employing PFE and expressed in the form of the sum of the first order filters as follows (Koseoglu,
Deniz, Alagoz, & Alisoy, 2021; Koseoglu, Deniz, Alagoz, Yuce, et al., 2021):

Terg(s) = 2+ i i 2nslp Iy @)
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where by --- by, a4 -+ a, and k represent residues, poles and the direct gain, respectively. To obtain
the approximate step response in the time domain, firstly, the step response is obtained in s domain
as follows (Koseoglu, 2022):

y(5)=TCF_E(S>=l.(A+ by +...+£+b_n+k) 3)
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Then, the time domain approximate step response is written by using the inverse Laplace
transform as (Koseoglu, 2022):
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The exact (analytical expression) step response for FO derivative operator s* can be expressed
as follows:

Yro(t) = m , ®)

where I'(.) represents the Gamma function. Using the expressions (4) and (5), the cost function
that depends on the difference between the analytical and the approximate step responses is
defined as

J = =3 (yeo(t) — y(t)) (6)

where the parameter m is the total sampling point number for time ti. For more accurate results,
the step response was sampled in the interval of 0.001 s to 100 s with a time increment of 0.001
s. This cost function is minimized by the GDO algorithm that was expressed as follows (Koseoglu,
2022):

aj _ bj+ajbjtea1't—bjea1't aJ _ ea]'t—l . 9]

v s Y e s =1 o _ _ 7
aaj aj2 €rs 6bj a; €r s J n, ok €r ()

By using these partial derivatives (sensitivity derivatives), the coefficient updates by using GDO
can be written as (Koseoglu, 2022):

q .q
ajq+1 = ajq _UM ;qu+1 = b]q _ULD-’)’ ]: 1---n ;kq+1 — kq _nm (8)
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Figure 1:
A flowchart of the CFE-GDO approximation method
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A flowchart of hybrid CFE-GDO approximation method is shown in Figure 1. In summary,
the GDO method performs fine-tuning of both denominator and numerator coefficients of the
CFE based approximate transfer function. The initial values for the transfer function coefficients
are calculated by using the classical CFE approximation method, and GDO method is used to
optimize these coefficients (Figure 1) to improve the step response obtained by the approximate
model. To illustrate application of the proposed algorithm, the derivative operator s*° is
approximated by using CFE-GDO method in the following section.

3. NUMERICAL RESULTS AND DISCUSSIONS

This section is composed of two subsections. The first subsection shows the use of the
proposed CFE-GDO approximation method to obtain an approximate rational transfer function
model for FO derivative operator s*°. Results of the CFE-GDO method are compared with results
of the classical CFE method, and contributions of the proposed CFE-GDO algorithm are
demonstrated. In the second subsection, analog circuit realization results of this CFE-GDO based
approximate model are demonstrated in the Matlab Simulink environment and Multisim analog
circuit simulation environment (Matlab-R2020b, 2020; NI-Multisim-14.1, 2017).

3.1. Approximate Modeling Results for FO Derivative s°

In this section, we present an illustrative example to approximate the FO derivative s°°. In
the first step, the 5™ order approximate transfer function was obtained for s*° by classical CFE
method (Krishna, 2011) as follows:

11-55+165-5*+462-53+330-52+55-s+1
Ter(s) = $5455-5%+330-53+462-52+165-5+11 ©)
Then, the CFE-GDO algorithm was performed to improve the step response of the model given
in (9). For the GDO algorithm, n=0.004 was taken as the learning coefficient, and the number of
iterations was taken as it = 2 - 10°. For these initial configurations, the cost function decreased
and converged as shown in Figure 2, and the optimized 5" order approximate transfer function of
the CFE-GDO method, T,, was obtained as:

T,(s) = 10.95-s5+161.5-s*+436.8-s3+286.4-s% +32.59-5+0.2453 (10)
O T $5454.95:544325.8:53+432.4-52+126.7-5+4.442

%107

5.5

5

4.5

Cost Function

2.5F
2 .
10° 10! 102 108 104 10°%
Number of Iterations
Figure 2:

The change in the cost function as the number of iterations increases
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When (9) and (10) are considered, one can observe that the coefficients of numerator and
denominator have changed slightly during the GDO optimization. This fine-tuning on the
coefficients has enabled the optimized transfer function to yield more accurate impulse and step
responses in comparison with those obtained by classical CFE method as seen in Figures 3 and 4,
respectively.

Log|10 (Vo) (Volt)

1 06 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

TIME (s)
Figure 3:
The comparison of analytical (exact) impulse responses with approximate impulse responses
based on CFE and CFE-GDO methods

Root Mean Squared Error (RMSE = \/l m (Yo (8) —y(ti))2 ) and Mean Absolute

m

Percentage Error (MAPE = e . M| ) performances were calculated for the impulse
m =t yro(ti)

response. The RMSE is a measure of accuracy that is more sensitive to larger errors. MAPE is a
measure used to evaluate the performance of regression or forecasting models. RMSE values for
both CFE and CFE-GDO methods were about 125.526, and RMSE performances are very close
to each other for impulse responses. Slight difference between results of the models can be better
evaluated by considering the MAPE performance. MAPE value for the CFE-GDO method was
calculated as 19.297 while this value is 57.123 for the classical CFE method. Considering the
exact impulse response, Figure 3 clearly shows the improvement of the derivative s** due to the
CFE-GDO method and supports the improvement in MAPE values.

Figure 4 also clearly shows a considerable improvement in the step response of the classical
CFE method by using the CFE-GDO method. In figure, the CFE diverges from the exact
(analytical calculation) step response for the FO derivative s®°. The RMSE values were calculated
as 5.540-107 for the CFE-GDO algorithm and 5.854-10 for the CFE method. When the MAPE
values were considered, the degree of the improvement was revealed better. The calculated MAPE
values were 2.147 for the CFE-GDO and 21.848 for the CFE. Such improvement in time response
of the approximate model is very important for more accurate modeling and realization of the FO
systems and this can significantly contribute to the FO system practice.

Furthermore, to investigate frequency domain approximation performance, Figure 5
compares the frequency responses of the CFE and the CFE-GDO methods. The magnitude and
phase responses in the figure indicate that the CFE-GDO can provide frequency domain
approximation in a wider frequency range, particularly by expanding the lower frequency part of
the CFE approximation.
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Figure 4:
The comparison of step responses with CFE and CFE-GDO based models of FO derivative s*°

Table 1. Comparative Magnitude and Phase Response error values for CFE and CFE-
GDO methods

Frequency Magnitude Response Phase Response
Response CFE CFE-GDO CFE CFE-GDO
RMSE 3.128-10* 2.950-10! 7.222 5.193
MAPE 3.910 4.078 8.018 5.542
30 T
a=05

- N
o o
T T

Magnitude (dB)
: o

——Analytical 1
20k ——CFE-GDO |
—CFE
.30 L L L L L
107 102 10" 10° 10’ 102 10°
w (rad/s)
T
°
Q
z
Q
7]
]
K=
o
‘
10°
w (rad/s)

Figure 5:
The comparison of exact magnitude and phase responses with approximate magnitude and
phase responses based on CFE and CFE-GDO methods
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For better evaluation of frequency domain approximation performances, the RMSE and
MAPE values for both CFE and CFE-GDO methods were calculated within the frequency interval
w € [0.01100] rad/s. Table 1 shows RMSE and MAPE values, and these values also indicate
considerable improvements in frequency responses arising from the CFE-GDO method.

R 52

R12 —ANA—————
A B I

-Vs -Vs

R 11 ( Rs1
R22
—AAM———
+
C1 LF347N LF347N

LF347N

+Vs

+Vs évi
Figure 6:

The Multisim circuit schematic that realizes T, (s) function in the sum of the filter form
(Koseoglu, 2022)

3.2. Analog Circuit Realization Results

To demonstrate an analog circuit implementation of CFE-GDO based approximation of the
FO derivative s*® by using the analog circuit in Figure 6, we used PFE of the T, (s) and performed
analog circuit design according to the sum of the low-pass filter realization techniques (Bertsias
et al., 2019; Koseoglu, 2022; Koseoglu, Deniz, Alagoz, & Alisoy, 2021; Koseoglu, Deniz,
Alagoz, Yuce, et al., 2021; Yiice & Tan, 2020). The PFE of T,(s) is obtained as

_ —434259 | -50257 , —-0.50697 , —0.11549 —0.006782
To-pre(s) =
S+48.4029 s+4.8166 s+1.3398 s+0.35138  s5+0.04047

+10.9450  (11)

This equation shows partial fraction terms that include the residues, poles and the constant
value. Each partial fraction term, which is shown in Table 2, is realized by using low pass filters
with operational amplifiers that were shown in Figure 6. The constant value is realized as a
constant gain element by using a basic inverting amplifier. A comprehensive explanation on the
realization method was also presented in (Koseoglu, 2022; Koseoglu, Deniz, Alagoz, & Alisoy,
2021; Yiice & Tan, 2020).
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Table 2. PFE terms and corresponding component values for analog realization

Term Component Values PFE Terms
1 C, =1075F, Ry; = 230.277 Q, Ry, = 2.066 kQ —434.259
s + 48.4029
2 C; = 1075F, Ry; = 19.898 kQ, R,, = 20.762 kQ —5.0257
s +4.8166
3 C, = 1075F,R3; = 197.251 kQ, R3, = 74.636 kQ —0.50697
s +1.3398
4 C, = 1075F, Ryy = 865.905 kQ, Ry, = 284.592 kQ —0.11549
s +0.35138
5 C, = 1075 F, Rg; = 14.7455 MQ, Rs, = 2.47079 MQ —0.006782
s +0.04047
6 Ri1 = 1 kKQ, Ry, = 10.945 kQ 10.9450
= = Analytical
ot CFE ]
10 t ——CFE-GDO (Numerical)
CFE-GDO (Simulink)
E CFE-GDO (Multisim)

Log,, (V) (Volt)
3

\%
S
iy
102 ~Iio- .
’QQ"'"'"'H =
B ¥ Ne—
L L L L Il e
0 10 20 30 40 50 60 70 80 90 100
Time (s)
Figure 7:

The comparison of analytical step responses with approximate step responses based on the CFE
method, the CFE-GDO method and its realizations

When a 0.1 V step input is applied to the designed circuit for 100 s simulation time, the step
responses of the analog circuit from Multisim simulation and Simulink simulation are shown in
Figure 7 in comparison with the exact step response, the numerical step responses of the CFE
approximate model (T¢rg (s)) and the CFE-GDO based approximate model (T, (s)). The Simulink
simulation environment uses ideal component models. Therefore, Simulink simulation results are
very similar to the step response of T, (s) transfer function model. The Multisim simulations allow
the use of the non-ideal component models, and its simulation results are more realistic.

In Figure 8, the response of the designed circuit is shown for a square input wave with a
frequency of 1 rad/s. As expected for an FO derivative circuit, sharp rises of falls at the circuit
output were observed at edges of the square wave, and this validates the derivative operation of
the circuit for the square waveform.

When the overall results are considered, it is observed that the proposed method can
contribute to time responses (the step and impulse responses) of the CFE method, and this
contribution can be useful for practical system applications such as control engineering
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applications. Itis also seen that the configuration of the learning coefficient in the GDO algorithm
is difficult, and it needs trial and error for proper setting of these parameters in order to obtain
effective results from the CFE-GDO method.

T T T T T T
Wi (10 mV 1 radis)
CFE

0.2 |
{
- = “CFE-GDO Analytical 1
1
1
1
1
1
1

S

0145 CFE-GDO Multisim

04

0.05 [

e

I S —

v, (Voly

-0.05

04

045

02 i 8

1;!3 1:;4 1;5 1;8 1;? 1;3
Time (s)
Figure 8:
The comparison of square wave responses of CFE method and the CFE-GDO based methods

4. CONCLUSIONS

In this study, time domain performance of the CFE approximation method is further

improved by adopting the GDO algorithm. The CFE-GDO method is used for fine-tuning of
transfer function coefficients of the CFE method, and this hybrid method is implemented to
compute more accurate step responses from approximate transfer function models of the FO
derivative elements (s%). We demonstrated analog circuit implementation for the CFE-GDO
based approximate model of FO derivative function s®°. Simulation results clearly indicated
improvement in step and impulse responses by using CFE-GDO method for analog system
applications.
As a future work, the improvements of the proposed hybrid approximation method on the other
approximation methods can be investigated for realization of both integral and derivative
operators. On the other hand, some other optimization methods may be tested for more accurate
realization. Rounding errors (Round-off errors) of circuit element values can negatively affect
approximation performance, and it can reduce performance of analog circuit realization in
experimental studies. This problem can also be addressed in application works.
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