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 ─ Abstract ─ 
Great majority of the studies on Istanbul Stock Exchange market (ISE100) have 
focused on various type of discrete modeling such as AR/MA, ARIMA, GARCH, 
Vector AR and extensions of GARCH modeling. The importance of finding a 
suitable model for a stock exchange market and having an efficient forecast 
results from the model is undisputable.  In this study we will model ISE100 with 
simple AR(1) model and taking a step further in analysis to continuous modeling. 
Recent challenge in financial time series modeling is to find an appropriate 
continuous model for the data used. In our case continuous AR(1) (CAR(1)) 
model will be applied to ISE100 and the results of the financial modeling will be 
evaluated. 
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1. INTRODUCTION 
Modelling Istanbul Stock Exchange Market (ISE100) is a long and non-ending 
effort. The reasons behind it are obvıous. Most researches have tried to model  
ISE100 using discrete modelling. Whereas this study focuses on building up a 
continuous model for ISE100. Recent studies have shown that modeling returns in 
discrete time are just not enough to have a close relationship with the real time. 
Brockwell and Klüpperg has shown that continuous time modelling gets us closer 
to the real world. 
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We take a simple AR(1) model for ISE100. The coefficients of the discrete model 
are converted to continuous time. For the conversion process the autocavariances 
of discrete and continuous processes are considered. Eventually, we carry out 
simulations in contiuous time.  
 
2. DATA 
The data that has been used in this study is between 03/01/1994 and 23/06/2010. 
The summary statsitics of the log return of ISE100 is as follows: 
 
Table1: summary statistics of log return of ISE100 
min 1Q median 3Q max 
-0.1998 -0.01318 0.001559 0.01593 0.1777 
mean std skewness kurtosis Observations 
0.001351 0.02808 -0.07164 7.101 4106 
 
3. METHODOLOGY 
3.1 Discrete modelling 
3.1.1 Unitroot and statıonary tests 

Any trending in the data should be removed before carrying out a unit root test. 
This can be explored by looking at the time series plot of the data. From the 
graph, one might obtain that whether there is a trend, cycle or seasonal pattern in 
the data. If any of these appear they should be removed accordingly.  
The most popular unit root test is called Augmented Dickey Fuller (ADF) test. 

ADF Test 

 
ADF test’s hypothesis is: 
 
H0: there is a unit root (data needs to be differenced to make it stationary) 
H1: there is not a unit root (data is stationary) 
 
When ADF is used, the choice of the correct lag requires particular attention, 
falling to do so will result in errors biasing the test. According to Ng and Perron 
(1995); first an upper limit for lag should be set, and then; if the absolute value of 
the t-statistic, to test the significance of the last lagged difference is less than 1.6 
then, it is required to  reduce the lag length and then repeat the process. The 
starting point for the lag length is suggested by Schwert(1989) to be:  
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pmax = 12 *(T/100)1/4 

KPSS Test 
The null hypothesis of KPSS test is that an observable series is stationary around a 
deterministic trend. The series is expressed as the sum of deterministic trend, 
random walk, and stationary error, 
The KPSS test statistic is given by 

 
3.1.2 AR(1) model 
 
The notation AR(p) refers to the autoregressive model of order p. The AR(p) 
model is written as: 

 
where are the parameters of the model, c is a constant and is white 
noise. The constant term is omitted by many authors for simplicity. 
 
An autoregressive model is essentially an all-pole infinite impulse response filter 
with some additional interpretation placed on it. 
 
Some constraints are necessary on values of the parameters of AR(p) model in 
order that the model remains stationary. For example, processes in the AR(1) 
model with |φ1| ≥ 1 will not be stationary. 

 
Taking the expectation 

 
 

 from the properties of Wiener process and under stationarity condition  
 

 ,  ,  

 
Xt can be rewritten as 

 
                 (1) 

 
To find the variance, take the square of (1) and then take the expectation 
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Under stationarity condition   and  
 

 
The sufficient and necessary conditions for AR(1) process to be weakly stationary 
are ,  
 
To get the autocovariance funciton of (1), multiply (1) by  and then 
take the expectation 

 
 

As  
 

 
For h=1, autocorrelation for AR(1) process 

 
 
3.2 Continuous Modelling 
The study of continuous time models has recieved great attention from the very 
successful use of continuous time models in theoritical finance, particularly with 
the work of Black-Scholes and Medon on the pricing of options. The luxury of 
using the formula and the derivative pricing tools become available when 
modelling is done in countinuous time. The analysis of timeseries data observed at 
irregularly spaced times can be handled very convieniently via continuous time 
models as pointed out by Jones (1981, 1985). 
 
The discrete ARMA model is explained in detail by Box and Jenkins (1970). 
Drawback of DARMA compared to CARMA is the issue of temporal aggregation.  
The aggregation of a DARMA process results in a model that depends on the 
observation frequency, Weiss(1984). When the data is modelled in continuous 
time, the problem of temporal aggragation is not an issue anymore. 
 
The CARMA (Continuous Autıregrresive Moving Average) model is a 
continuous time model for the instantaneous short rate with p autoregressive terms 
and q moving average terms with p>q, CARMA(p,q). The Vasicek model is a 
CARMA(1,0).  
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The Ornstein-Uhlenbeck process is; 

 
 

 

 

 
 

Let  
  

Hence  
Integration from “0” to “t” gives 

 
 

 

 
Remark 1:    
 
Let  
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Remark 2:   
 
Autocovariance of CAR(1) is 

 
Let s=t-h 

 
 
The autocorrelation for CAR(1) 

 
The autocorrelation for AR(1) 

 
 
Setting autocorrelation of CAR(1) equal to AR(1)’s autocorrelation, we end up 
with 

 ,  
 
4. RESULTS 
From figure 1, it is straight forward to see that the log return of ISE100 is a 
stationary process. This can also be tested via untiroot and stationarity tests. 
 
 
 
 
 
 
Figure 1: The timeseries plot of ISE100 and the log return plot of ISE100 
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Timeseries Plot of ISE100
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Source: own study 
 
The results below indicate that log return of ISE100 has no unit root with the 
ADF’s  p-value of zero. KPSS test supports the stationarity of the return data by 
the test statsitcs 0.2691 which is greater than 0.05.   
 
Table2: Unitroot and Stationarity Tests Results 
Augmented DF Test; Null Hypothesis: there is a unit root Test Statistic: -11.25 

P-value: 5.203e-23 
KPSS Test;Null Hypothesis: stationary around a constant Test Statistics: 0.2691 
 
Next step is to consider whether AR(1) model is a satsifactory model for ISE100. 
With the t-values of that are greater than 1.65 states that the coeffcients are 
statistically significant at 95% confidence level. Hence AR(1) can be accepted as 
a good candidate model. 
 
Table3: Coefficients of AR(1) model 
 Estimate Std. Error t value Pr(>|t|) 
ar1 0.0621878 0.0155770 3.992 6.54e-05 *** 
intercept 0.0012632 0.0004379     2.885   0.00392 ** 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
The following figures show the QQ-plot of the residuals of AR(1) model. The 
usual expectation for stock exchange index values is that they have heavy tailed 
distributions. The summary statsitics for ISE100 sugeested a heavy tail 
distribution with kurtosis 7.101. The best fitted distribution function for the 
residuals is double exponential distribution. 
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Figure2: QQ-Plot of AR(1) Residuals 

 
Source: own study 
 
After specifiying a candidate discrete model and distirbutional properties of 
residuals, continuous modelling can be applied taking the coefficients of AR(1) 
model into account. 
 
The general CAR(1) stochastic model, Xt  

 
The numerical solution for Xt is 

 
Let’s get CAR(1) parameters from AR(1) parameters; 

 ,  ,  ,  ,  

 
 

 
Figure 3 shows that continuous simulation gives the same outcomes as the log 
return data when the residuals from AR(1) model is used as Wt process in CAR(1) 
process. From figure 4 and 5 it can be concluded the simulations of CAR(1) 
model is quite close to the real data. Figure 6 and 7 proves that the distribution of 
the simulations stays consistent, which is expected from a good and well fitted 
model. 
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Figure3: AR(1) simulation, CAR(1) simulation, plot of log return of ISE100 using AR(1) 
residuals
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 Source: own study 
Figure4: Density plot of CAR(1) simulations and Cross-Cuts of CAR(1) simulations 
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Source: own study 
Figure5: Fast Fourier Transform (FFT) of log return data and CAR(1) simulations 
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Source: own study 
Figure6: QQ-Plot of CAR(1) Simulations 
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Source: own study 
Figure7: QQ-Plot of Cross-Cut CAR(1) Simulations 

  
Source: own study 
 
CONCLUSION 
This study focused on estimation of parameters for Istanbul Stock Exchange 
Market in continuous time. This is achieved by considering the properties of 
discrete and continuous modelling. Once the parameter conversion is done 
successfully, then the simulations in continuous time was carried out. The results 
and diagnostics checks have showed that using simple Ornstein-Uhlenbeck 
process as Continuous AR(1) model gives satisfactory outcomes. The simulations 
in continuous time is very close to the real log return data considering 
distributional properties and frequency domain. 
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