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Abstract 
 
H2O2 and NO are the key molecules of plant signaling and perception. In this study, 
we aimed at the antioxidant capacity of foliar-applied eggplant genotypes which 
shows different responses to salinity (Artvin: salt-sensitive; Mardin: salt-tolerant). For 
this purpose, H2O2 and NO donor (SNP) were sprayed on the leaves of the seedlings 
for 2 days and then exposed to 100 mM NaCl for 10 days. The amount of 
Malondialdehyde (MDA), which increased with salt application and is the most 
important indicator of lipid peroxidation, decreased significantly with individual or 
combined pretreatments of H2O2 and NO donors. SOD and CAT enzyme activities are 
affected by foliar spraying of donors. While CAT enzyme activity increased 
significantly with salt application in both genotypes, it showed a significant increase 
again with individual or combined application of donors. SOD enzyme activity, on the 
other hand, showed a minor increase in both genotypes with the application of salt 
stress, while it was significantly increased with the application of donors individually 
or together.  

 

Introduction 
 

H2O2 and NO are biologically active molecules 
involved in the signaling pathways in plants (Uchida et 
al., 2002; Azevedo-Neto et al., 2005; Hung et al., 2005; 
Li et al., 2011; Wahid et al., 2022). Both molecules 
show a dose-dependent manner, at the high 
concentrations they have deleterious effects on the 
plant body, and at the low concentrations play an 
important role as “signaling molecules” (Gechev & 
Hille, 2005; Quan et al., 2008). Especially under stress 
conditions, these molecules play important roles in 
inducing acclimation (Hayat et al., 2013).  

Among the environmental stresses, salt stress is 
one of the most important factor that limits yield 
productivity and food security.  High salt 
concentrations cause osmotic, ionic, and oxidative 
stresses that affect plant metabolism negatively 

(Munns & Tester, 2008). Plants have developed 
different mechanisms to cope with these multiple 
stress factors, the most important of which is activating 
the plant's antioxidant systems. Possible mechanisms 
of the positive effects of externally applied H2O2 and 
NO to plants on salt tolerance have been investigated 
in several studies (Uchida et al., 2002; Tanou et al., 
2009a; Tanou et al., 2009b, Qiao et al., 2009; Gohari et 
al., 2020; Hasanuzzaman et al., 2018; Niu & Liao, 2016; 
Hajihashemi & Pavla, 2020). Thus, the negative effects 
of salt stress were eliminated and the salt tolerance 
was increased. 

Under normal respiratory conditions, the 
production of ROS takes place due to the leakage of 
electrons to oxygen. Under stress conditions, this 
process intensifies and excess ROS production takes 
place. Plants possess various antioxidant systems 
keeping ROS at low levels but if ROS production 
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exceeds the capacity of antioxidant systems, then ROS 
becomes deleterious, causing damage to proteins, 
lipids, and nucleic acids (Gupta & Igamberdiev, 2015).  

In this study, under salt stress conditions, the 
effects of pretreatment of H2O2 and NO on the 
antioxidant metabolism of eggplant were investigated. 

 
Materials and Methods 

 
Plant material  

The eggplant (Solanum melongena L.) seeds of the 
Artvin (susceptible) and Mardin (tolerant) genotypes 
(Yaşar, 2003) were obtained and grown in a climate 
chamber under controlled conditions until 4-5 leaf 
stage. All studies covering the germination and growth 
cycle were carried out under controlled conditions in 
the “Digi-Tech Growth Chamber PG34-3” climate 
chamber. The temperature was set to 25 °C and the 
humidity was 60-70%.  

 
Pretreatments  

After the plants reached a 4-5 leave-stage, 50 
days after seed sowing, their leaves were sprayed with 
chemicals (H2O2 and NO) every 6 hours for 48 hours. 
Accordingly, a total of 5 applications were composed. 
These; are Control, Salt, H2O2 (Hydrogen peroxide, 
Sigma-Aldrich, 1.08600) SNP (Sodium nitroprusside 
dihydrate, Sigma-Aldrich, puriss. p.a., ACS reagent, 
reag. Ph. Eur., ≥99%), H2O2 +SNP. The leaves of the 
seedlings were harvested, submerged in liquid 
nitrogen, and stored in a refrigerator at -80ºC for 
analysis. The independent sampling process was made 
with 3 repetitions. 

 
MDA Analysis 

The amount of Malondialdehyde (MDA) in leaf 
tissues was measured based on the work done by 
(Lutts et al., 1996). According to this method; a fresh 
leaf sample, trichloroacetic acid (TCA) was added and 
homogenized by crushing in a mortar. The homogenate 
was centrifuged and thiobarbituric acid (TBA) was 
added. The mixture, which was kept in a water bath, 
was read at 532 and 600 nm in the spectrophotometer, 
and the results were obtained. 

 
CAT Analysis  

Catalase activity (CAT) was measured (Cakmak & 
Marschner, 1992) based on the degradation rate of 
H2O2 at 240 nm (E=39.4 mM cm-1). 

 
SOD Analysis.  

Superoxide dismutase (SOD) activity was 
measured by the method of reduction of NBT (nitro 
blue tetrazolium chloride) by O2

- under light 
(Giannopolis & Ries, 1977).  

 
Statistical Analysis 

The experiment was set up according to a random 
plot design and was carried out in 3 replications. The 

obtained numerical data were evaluated with the 
GraphPad Prism 8. program. First of all, the data 
belonging to both genotypes were evaluated 
separately and whether the changes within each 
genotype were significant or not was examined by 
analysis of variance (One-way-ANOVA), and the 
significance of the differences between the 
applications was checked with the Duncan test (p< 
0.05). Then, the mean values of all replications were 
also evaluated with the t-test, so the importance of the 
difference between genotypes was checked.   

 
Results 
 
Effects of H2O2 and SNP pre-treatments on 
Malondialdehyde (MDA) Amount  

100mM NaCl treatment significantly increased the 
lipid peroxidation in both genotypes (p< 0.05). H2O2 
pretreatment slightly reduced the MDA amount in the 
Artvin genotype, but had no change in Mardin 
genotype, SNP-pretreatment did not affect the MDA 
amount in Artvin genotype compared to the salt-
stressed group but reduced the MDA amount in Mardin 
genotype. The combined H2O2+NO application group 
significantly reduced the MDA amount in both 
genotypes compared to the salt-stressed group (Figure 
1). 
 

 

 
Figure 1. MDA amount in eggplant genotypes. 
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Effects of H2O2 and NO applications on CAT Enzyme 
Activity  

Salt stress significantly increased CAT activity in 
both genotypes (p< 0.05). The H2O2 application 
significantly increased the CAT Activity (p< 0.05). SNP 
pre-treatment increased the CAT activity compared to 
the salt-stressed group. H2O2+SNP pretreated seedlings 
were significantly increased in both genotypes 
compared to the salt-stressed group (Figure 2).  

 

 

 
Figure 2. CAT enzyme activity in eggplant genotypes 
 

 
Effects of H2O2 and NO applications on SOD Enzyme 
Activity 

In the Artvin genotype, there was no significant 
alteration in SOD activity in the H2O2 pretreatment 
group, but SNP pre-treatment markedly increased the 
SOD activity (p< 0.05). H2O2+SNP group had the highest 
value of SOD-enzyme activity in the Artvin genotype. 
 

In Mardin genotype, salt stress increased the SOD 
activity (p< 0.05). While H2O2 pretreatment significantly 
increased the SOD activity, SNP pretreatment 
significantly decreased the SOD activity compared to 
the salt-stressed group (p< 0.05). H2O2 combined with 
the SNP application group significantly increased the 
SOD activity (Figure 3). 
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Figure 3. SOD enzyme activity in eggplant genotype 
 
 
Discussion 
 

Ion toxicity and osmotic stress resulting from 
salinity inhibit the plant photosystem, leading to 
excessive ROS production (Hasanuzzaman et al., 2017; 
Hajihashemi & Pavla, 2020; Wahid et al., 2022). It is 
known that the increased amount of ROS in the cell 
increases the amount of MDA by causing lipid 
peroxidation (Mishra & Choudhuri, 1999). In our study, 
salt treatment significantly increased the MDA amount 
in both genotypes. Alone or together both 
pretreatments decreased the MDA amount but these 
applications had never as few as the Control group 
(Figure 1).  

Similar to our results, externally applied H2O2 in 
corn (Chen & Li, 2002),  mung bean (Saleh, 2007), 
wheat (Li et al., 2008), barley (Kim et al., 2013), and 
Panax ginseng (Sathiyaraj et al., 2014) has been 
reported to prevent the increase in MDA amount by 
reducing electrolyte leakage, which increases with 
stress. In cucumber (Hasanuzzaman et al., 2017), 
soybean (Güler & Pehlivan, 2016), and canola (Gao et 
al., 2010), H2O2 application did not cause any change in 
the amount of MDA.  

It was observed that MDA amounts remained 
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close to the control group in plants where H2O2 and 
SNP were applied together. Thus, it can be said that 
H2O2 and SNP act in the direction of reducing the lipid 
peroxidation occurring in the cells by controlling the 
sudden increases in MDA that occurred in the salt-
treated group. Similar to our results, in rice (Uchida et 
al., 2002) and citrus fruits (Tanou et al., 2009a), 
externally applied H2O2+SNP decreased the amount of 
MDA and this was achieved by reducing the amount of 
ROS in the cell by stimulating the antioxidant enzyme 
activity has been reported. 

In various studies, it has been reported that CAT 
activity either increases (Baysal Furtana & Tıpırdamaz, 
2010) or does not change (Nohar et al., 2015) or 
decreases (Hasanuzzaman & Fujita, 2012) in plants 
grown under salt stress conditions. In our study, it was 
determined that CAT activity increased in plants 
treated with H2O2 alone compared to the only salt-
applied group. This increase was found higher and 
more significant in Mardin genotype. Similar to our 
study, it has been reported by de (Azevedo Neto et al., 
2005) and (Gechev et al., 2002) that H2O2 applied 
through leaf increased CAT activity in corn and tobacco. 
In a different study, it has been reported that the 
increase in CAT enzyme activity in corn plants treated 
with H2O2 occurs by a complex mechanism including 
CAT gene regulation (Gondim et al., 2012). In addition, 
unlike other enzymes that sweep H2O2, it has been 
reported by (Mhamdi et al., 2010) that CAT has more 
affinity for H2O2. In addition, CAT transcripts have been 
reported by researchers to increase in plants treated 
with H2O2 (Gondim et al., 2012; Mhamdi et al., 2010). 
In our study, salt stress significantly increased CAT 
activity in both genotypes. The pretreatments applied 
alone or together increased the enzyme activity in both 
genotypes compared to the salt-stressed group (Figure 
2).  In plants treated with H2O2 +SNP, CAT activity 
reached the highest value among all groups in both 
genotypes. 

In plants treated with NO donor SNP, SOD activity 
increased in Artvin genotype compared to Control and 
salt-stressed groups, while it increased compared to 
the control group in Mardin genotype and decreased 
compared to the salt-stressed group. NO is thought to 
be a molecule that regulates ROS metabolism through 
stimulation of the cellular antioxidant system in stress 
tolerance. Similar to our results, externally applied NO 
donor SNP has been reported to increase CAT and SOD 
activity (Fan et al., 2007). The SOD enzyme is a 
powerful antioxidant enzyme whose primary activity 
causes the change of O2

•- reagent to H2O2 and O2 
(Fridovich, 1986). In our study, under the salt-stressed 
conditions, SOD enzyme activity did not show a 
significant increase in the susceptible Artvin genotype, 
however, increased significantly in the tolerant Mardin 
genotype. In plants treated with H2O2, SOD activity 
increased in both genotypes compared to Control and 
only-salt applied groups. H2O2+SNP application group 
significantly increased the SOD activity. 

In recent studies, it has been shown that the 
increase in antioxidant enzyme activity in plants with 
H2O2 and NO pre-treatment is due to the increase in 
the expression of the genes encoding these enzymes by 
H2O2 and NO (Beligni & Lamattina, 2001; Neill et al., 
2002; de Pinto et al., 2006; Zhang et al., 2007). 
 
Conclusion 
 

In this study, the possible effects of H2O2and NO 
pretreatment under salt stress on two genotypes of 
eggplant were studied. 100mM NaCl-stress significantly 
increased MDA content and CAT activity in both 
genotypes. H2O2 pretreatment slightly reduced the lipid 
peroxidation in the Artvin genotype and significantly 
increased the CAT Activity in two genotypes.  

H2O2 combined with the NO application group 
significantly reduced the MDA amount in both 
genotypes compared to the salt-stressed group, this 
pretreatment also increased the CAT and SOD activity 
in both genotypes compared the salt-stressed group. 
H2O2 combined with the SNP application group 
significantly increased the SOD activity in two 
genotypes. 
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