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Abstract

Zipper fractal interpolation function (ZFIF) is a generalization of fractal interpolation function through an
improved version of iterated function system by using a binary parameter called a signature. The signature
allows the horizontal scalings to be negative. ZFIFs have a complex geometric structure, and they can
be non-differentiable on a dense subset of an interval I. In this paper, we construct k-times continuously
differentiable ZFIFs with variable scaling functions on I. Some properties like the positivity, monotonicity,
and convexity of a zipper fractal function and the one-sided approximation for a continuous function by a
zipper fractal function are studied. The existence of Schauder basis of zipper fractal functions for the space
of k-times continuously differentiable functions and the space of p-integrable functions for p ∈ [1,∞) are
studied. We introduce the zipper versions of full Müntz theorem for continuous function and p-integrable
functions on I for p ∈ [1,∞).

Keywords: Fractals zipper smooth fractal function topological isomorphism Schauder basis linear
operator.
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1. Introduction

To describe irregular and sophisticated objects in nature and various scientific experiments, Mandelbrot
[15] coined the word fractals due to presence of self-similar patterns in these objects. The fractal geometry
tools are supplement to all existing tools in Euclidean geometry. Fractals have been used to describe most
of natural objects mountains, clouds, trees, lightening, etc, apart from their applications in bio-enginnering,
financial series, image compression, pattern recognition, computer graphics, physics, chemistry, antennas,
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and architecture. A common way to construct fractals by using the theory of iterated function system (IFS)
was introduced by Hutchinson [13]. Then, Barnsley [3] introduced the concept of recursive interpolants
or fractal interpolation functions (FIFs) using construction of suiatble IFS from a given interpolation data
set. Fractal interpolation addresses roughness on different scales or some degree of self-similarity of a data
generating function, whereas traditional interpolants are generally smooth or peicewise smooth in nature.
Since fractal function are not differentiable in general, Barnsley and Harrington [4] introduced the concept of
fractal splines by studying the calculus of fractal functions. They showed the fact that the indefinite integral
of a continuous FIF is also a FIF with different IFS. Using this, they constructed Ck FIFs with the property
that the k-th derivative of the fractal interpolation function can be nowhere differentiable. Therefore, fractal
interpolation techniques can produce smooth and non-smooth interpolants. The theoritical developement of
FIFs with constant scaling can be seen in the references [8, 17–21]. The constant scaling in fractal functions
gives a strict self-referentail structures to its graph. In [34], Wang and Yu proposed fractal interpolation
functions with variable scaling that are suitable to approximate data egenrating function with lesser self-
similarity. In [22], Navascués et al. constructed a k-times continuously differentiable fractal interpolation
function with variable scaling and showed the existence of a fractal basis for the space of k-times continuously
differentiable functions on the domain of interpolation.

In [2], Aseev et al. constructed various types of fractals using the concept of zipper in graph theoritical
setting. In [30–32], Tetenov and his group examined many attractive topological and structural properties of
zippers related to dendrites and self-similar continua. Recently, Chand et al. in [9], developed a univariate
interpolation theory using the zipper. They constructed affine zipper fractal interpolation functions using
a suitable affine zipper. They also approximated the solution of the Volterra integral equation using the
affine ZFIFs. In the construction of fractal functions, a zipper IFS presented more flexibility than an IFS.
This article will extend the concept of the fractal functions using zipper IFS, which relates its theory to
functional analysis, approximation theory, operator theory, etc.

This paper is organized as follows: We define zipper IFS and construct zipper fractal interpolation
functions with variable scaling functions in Section 2. In Section 3, we construct k-times continuously
differentiable ZFIF with variable scaling functions for a given data and for a prescribed k-times continuously
differentiable function f . In Section 4, we find sufficient conditions on the scaling functions and base
function so that the zipper α-fractal functions become copositive, comonotone, or coconvex corresponding
to continuous function f . Similarly, we find sufficient conditions on the scaling functions and base function
so that the zipper α-fractal function corresponding to f lies above or below f . We provide some numerical
examples of zipper α-fractal functions to feature these properties. We also approximate a continuous function
with zipper fractal polynomial on I. In Section 5, we define the zipper fractal operator from Ck(I) to itself,
where Ck(I), k ∈ N ∪ {0}, is the Banach space of real-valued functions having k continuous derivatives
defined on a real compact interval I. That operator forms an isomorphism for some prescribed conditions
on scaling functions. Then, we demonstrate that the space Ck(I) has Schauder basis of k-times continuously
differentiable zipper fractal functions on I. In Section 6, using the density of Ck(I) in Lp(I) for p ∈ [1,∞),
where Lp(I) is the Banach space of all measurable functions Ψ : I → R such that

�
I |Ψ|pdx < ∞, we extend

the zipper fractal operator from Lp(I) to itself and using some conditions on scaling functions, this extension
forms an isomorphism. Then, we demonstrate that the space Lp(I) for p ∈ [1,∞) has Schauder basis of
zipper fractal functions. In Section 7, we define the zipper fractal Müntz space and prove zipper fractal
versions of the full Müntz theorem for C([0, 1]) and Lp([0, 1]) (1 ≤ p < ∞).

2. Zipper Fractal Interpolation Function (ZFIF)

In this section, first we define zipper IFS, then we construct a zipper IFS for a given interpolation
data, which has a unique attractor. That attractor is a graph of a continuous function, and we call that
continuous function a zipper fractal interpolation function. In the end, we find a recurrence relation for the
zipper fractal interpolation function.
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Definition 2.1. For a binary vector ϵ := (ϵ1, ϵ2, . . . , ϵN−1) ∈ {0, 1}N−1 called signature, let Wi, i ∈ NN−1 :=
{1, 2, . . . , N − 1}, be non-surjective maps on a complete metric space {X, d}. Then the system Υ :=
{X;Wi, i ∈ NN−1} is called a zipper IFS with vertices {v1, v2, . . . , vN}, if Wi satisfies Wi(v1) = vi+ϵi and
Wi(vN ) = vi+1−ϵi , for all i = 1, 2, . . . , N − 1. Any compact set A ⊂ X satisfying the self-referential equation

A =
N−1
∪
i=1

Wi(A),

is called the attractor, self-referential set, or fractal corresponding to the zipper IFS Υ.

The definition of a zipper IFS meets with the definition of an IFS with vertices {v1, v2, . . . , vN}, if we
choose signature vector ϵ such that ϵi = 0 for all i ∈ NN−1. Now, we review the construction of zipper
fractal interpolation functions based on the zipper as a suitable IFS. The details can be seen in [1, 3, 9].

Let a set of interpolation points {(xi, yi) ∈ I × R : i ∈ NN (N > 2)} be given, where x1 < x2 < · · · < xN
is a partition of closed interval I := [x1, xN ], yi ∈ [c, d] ⊂ R,∀i ∈ NN . Set Ii := [xi, xi+1] and K := I × [c, d].
Let Li : I → Ii, i = 1, 2, . . . , N − 1 be contractive homeomorphisms such that

Li(x1) = xi+ϵi , Li(xN ) = xi+1−ϵi . (1)

If Li(x) = aix+ bi and ϵi = 1, then the horizontal scaling ai can be negative. Furthermore, let for i ∈ NN−1,
Fi : K → R is a function of the form

Fi(x, y) = αi(x)y + qi(x),

where αi’s and qi’s are continuous functions on I such that ∥αi∥∞ := {|αi(x)| : x ∈ I} < 1 and following
holds:

Fi(x1, y1) = yi+ϵi , Fi(xN , yN ) = yi+1−ϵi , i ∈ NN−1. (2)

These Fi’s for i ∈ NN−1, contracted either the graph of a function or its flipped version from I to Ii.
Now define mappings Wi : K → Ii × R, i = 1, 2, . . . , N − 1 by

Wi(x, y) = (Li(x), Fi(x, y)), ∀(x, y) ∈ K.

Then the system Υ = {K;Wi, i = 1, 2, . . . , N − 1} is a zipper IFS with vertices {(xi, yi) : i ∈ NN}, and
signature ϵ = {ϵ1, ϵ2, . . . , ϵN−1}. The existence of ZFIF has been proved recently in [1] :

Theorem 2.2. For zipper IFS Υ = {K;Wi, i = 1, 2, . . . , N − 1}, where Wi’s are as defined above, the
following holds.

(i) There exists a unique compact set G ⊂ K such that G =
N−1
∪
i=1

Wi(G).

(ii) G is the graph of a continuous function fα
ϵ : I → R which interpolates the data {(xi, yi) : i = 1, 2, . . . , N},

i.e., G = {(x, fα
ϵ (x) : x ∈ I} and for i = 1, 2, . . . , N , fα

ϵ (xi) = yi.

Since the existence and uniqueness of zipper fractal interpolation function fα
ϵ are given by Theorem 2.2,

now we obtain a recursive formula for fα
ϵ .

Let ϵ ∈ {0, 1}N−1 be fixed. Suppose C̃(I) := {g ∈ C(I) | g(x1) = y1, g(xN ) = yN}. Then C̃(I) is closed
subspace of C(I) and C̃(I) is complete with respect to uniform norm. Now define the Read-Bajraktarević
operator T : C̃(I) → C̃(I) as

(Tg∗)(x) = αi(L
−1
i (x))g∗(L−1

i (x)) + qi(L
−1
i (x)), x ∈ I.

Note that T is contraction on (C̃(I), ∥.∥∞). By Banach fixed point theorem, T has a unique fixed point fα
ϵ

that satisfies
fα
ϵ (Li(x)) = αi(x)f

α
ϵ (x) + qi(x), i ∈ NN−1.
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We call this interpolating function fα
ϵ as a zipper fractal interpolation function (ZFIF) corresponding to

the given data {(xi, yi) : i = 1, 2, . . . , N}, α := (α1, α2, . . . , αN−1) and the signature ϵ = (ϵ1, ϵ2, . . . , ϵN−1) ∈
{0, 1}N−1. For a prescribed function f ∈ C(I), if we choose qi(x) := f(Li(x))− αi(x)b(x) for i ∈ NN−1 and
yi = f(xi) for i ∈ NN , where b is called a base function which satisfies f(x1) = b(x1) and f(xN ) = b(xN ),
then the corresponding ZFIF f ϵ

α is called a zipper α-fractal function. It satisfies

fα
ϵ (Li(x)) = f(Li(x)) + αi(x)(f

α
ϵ (x)− b(x)), i ∈ NN−1.

3. Smooth and Shape Preserving ZFIFs

In this section, we will try to find a k-times continuously differentiable ZFIF with variable scaling
functions for a given data. After that, we can easily find a k-times continuously differentiable zipper α-
fractal function with variable scaling functions corresponding to a given function f ∈ Ck(I), where the norm
on Ck(I) is defined as ∥f∥k := max

{
∥f∥∞, ∥f (1)∥∞, . . . , ∥f (k)∥∞

}
. Then, we will give some conditions

on scaling functions or base function so that the proposed zipper α-fractal function satisfies positivity,
monotonicity, or convexity, whenever the original has the same characteristic, and also we will give a one-
sided approximation of a given function by a zipper α-fractal function or zipper fractal polynomial.

Theorem 3.1. For x1 < x2 < · · · < xN , let {(xi, yi) : i ∈ NN} be a given set of interpolation data. Apart
from y1,0 = y1 and yN,0 = yN , Suppose y1,p and yN,p, p ∈ N0

k := {0, 1, 2, . . . , k}, are arbitrarily chosen real
numbers. For i ∈ NN−1, let Li(x) = aix+ bi and Fi(x, y) = αi(x)y + qi(x) satisfy (1) and (2) respectively.
Let ϵ = {ϵ1, ϵ2, . . . , ϵN−1} ∈ {0, 1}N−1 and for i ∈ NN−1, assume that there exist k-times continuously
differentiable functions αi and qi on I such that ∥αi∥k < |ai2 |

k and for p ∈ Nk,

Bi+q
(p)
i (xN )

api
=

Ai+1+q
(p)
i+1(x1)

api+1
if ϵi = 0, ϵi+1 = 0,

Bi+q
(p)
i (xN )

api
=

Bi+1+q
(p)
i+1(xN )

api+1
if ϵi = 0, ϵi+1 = 1,

Ai+q
(p)
i (x1)

api
=

Ai+1+q
(p)
i+1(x1)

api+1
if ϵi = 1, ϵi+1 = 0,

Ai+q
(p)
i (x1)

api
=

Bi+1+q
(p)
i+1(xN )

api+1
if ϵi = 1, ϵi+1 = 1, i = 1, 2, . . . , N − 1,

(3)

y1,p =


q
(p)
1 (x1)+

∑p
j=0 (

p
j)y1,jα

(p−j)
1 (x1)

ap1
if ϵ1 = 0,

q
(p)
1 (xN )+

∑p
j=0 (

p
j)yN,jα

(p−j)
1 (xN )

ap1
if ϵ1 = 1,

yN,p =


q
(p)
N−1(xN )+

∑p
j=0 (

p
j)yN,jα

(p−j)
N−1 (xN )

apN−1
if ϵN−1 = 0,

q
(p)
N−1(x1)+

∑p
j=0 (

p
j)y1,jα

(p−j)
N−1 (x1)

apN−1
if ϵN−1 = 1,

(4)

where Ai :=
∑p

j=0

(
p
j

)
y1,jα

(p−j)
i (x1) and Bi :=

∑p
j=0

(
p
j

)
yN,jα

(p−j)
i (xN ) for i ∈ NN−1. Then {(Li(x), Fi(x, y)) :

i ∈ NN−1} clinch a k-times continuously differentiable ZFIF fα
ϵ and, for p ∈ Nk, it satisfies

fα
ϵ
(p)(Li(x)) = a−p

i

[ p∑
j=0

(
p

j

)
fα
ϵ
(j)(x)α

(p−j)
i (x) + q

(p)
i (x)

]
, x ∈ I, i ∈ NN−1.

Proof. Let Dk(I) := {g ∈ Ck(I) : g(p)(x1) = y1,p, g
(p)(xN ) = yN,p, p ∈ N0

k}. Since Dk(I) is a closed subset of
the complete metric space (Ck(I), ∥.∥k), the space (Dk(I), ∥.∥k) is also a complete metric space. Now define
T : Dk(I) → Dk(I) by

(Tg)(x) = αi(L
−1
i (x))g(L−1

i (x)) + qi(L
−1
i (x)), x ∈ Ii, i ∈ NN−1. (5)
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Now Tg is k-times continuously differentiable on each open subinterval (xi, xi+1), i ∈ NN−1, as the functions
g, αi and qi are in Ck(I). Since Li : I → [xi, xi+1] for i ∈ NN−1 satisfying Li(x1) = xi+ϵi and Li(xN ) =
xi+1−ϵi , therefore

xi+1 =

{
Li(xN ), if ϵi = 0,
Li(x1), if ϵi = 1.

Similarly,

xi+1 =

{
Li+1(x1), if ϵi+1 = 0,
Li+1(xN ), if ϵi+1 = 1.

This implies,

(Tg)(p)(x−i+1)a
p
i =

{ ∑p
j=0

(
p
j

)
g(j)(xN )α

(p−j)
i (xN ) + q

(p)
i (xN ), if ϵi = 0,∑p

j=0

(
p
j

)
g(j)(x1)α

(p−j)
i (x1) + q

(p)
i (x1), if ϵi = 1,

(Tg)(p)(x+i+1)a
p
i+1 =

{ ∑p
j=0

(
p
j

)
g(j)(x1)α

(p−j)
i+1 (x1) + q

(p)
i+1(x1), if ϵi+1 = 0,∑p

j=0

(
p
j

)
g(j)(xN )α

(p−j)
i+1 (xN ) + q

(p)
i+1(xN ), if ϵi+1 = 1.

Utilising the conditions prescribed in (3) and (4), we can easily obtain that

(Tg)(p)(x+i+1) = (Tg)(p)(x−i+1), i = 1, 2, . . . , N − 2, p ∈ N0
k,

(Tg)(p)(x1) = y1,p, (Tg)(p)(xN ) = yN,p, p ∈ N0
k.

Thus, T is well defined and Tg ∈ Dk(I). For g, g∗ in Dk(I), p ∈ N0
k and for all x ∈ Ii, we have

|(Tg)(p)(x)− (Tg∗)(p)(x)| = |ai|−p
[∣∣∣ p∑

j=0

(
p

j

)
α
(p−j)
i (L−1

i (x))(g − g∗)(j)(L−1
i (x))

∣∣∣],
therefore,

|(Tg)(p)(x)− (Tg∗)(p)(x)| ≤ |ai|−p∥αi∥p∥g − g∗∥p
p∑

j=0

(
p

j

)
. (6)

For p ∈ N0
k, easily we can get, |ai|−p∥αi∥p ≤ |ai|−k∥αi∥k, for all i ∈ NN−1. So (6) produces

∥(Tg)(p) − (Tg∗)(p)∥∞ ≤ max{(2/|ai|)k∥αi∥k : i ∈ NN−1}∥g − g∗∥k < s∥g − g∗∥k,

where s := max{(2/|ai|)k∥αi∥k : i ∈ NN−1} < 1.

=⇒ ∥Tg − Tg∗∥k < s∥g − g∗∥k.

i.e., T is a contraction map on Dk(I). Hence by Banach fixed point theorem, T has a unique fixed point,
say f ϵ

α ∈ Dk(I) ⊂ Ck(I). Further, for p ∈ Nk, by successive differentiating equation (5) p-times, our ZFIF
fα
ϵ satisfies

fα
ϵ
(p)(Li(x)) = a−p

i

[ p∑
j=0

(
p

j

)
fα
ϵ
(j)(x)α

(p−j)
i (x) + q

(p)
i (x)

]
, x ∈ I, i ∈ NN−1.

This completes our proof.

Remark 3.1.1. (i) Theorem 3.2 in [22] is a particular case of Theorem 3.1 (take all ϵi = 0 ).
(ii) For all i ∈ NN−1, if we choose αi(x) = αi for all x ∈ I with |αi| < aki and ϵi = 0, then Theorem 3.1
includes the Barnsley-Harrington theorem in [4] as a special case.

By choosing qi(x) = f(Li(x))− αi(x)b(x) in Theorem 3.1, we can easily get the following result:
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Corollary 3.2. For a given function f ∈ Ck(I) and a signature ϵ ∈ {0, 1}N−1, if k-times continuously
differentiable scaling functions αi (i ∈ NN−1) and b are chosen such that ∥αi∥k < |ai2 |

k and

b(p)(x1) = f (p)(x1), b(p)(xN ) = f (p)(xN ), p ∈ N0
k,

then the corresponding zipper α-fractal function fα
ϵ belongs to Ck(I). Also, for p ∈ N0

k and i ∈ Nk, (f
α
ϵ )

(p)

satisfies (fα
ϵ )

(p)(xi) = f (p)(xi) and

(fα
ϵ )

(p)(Li(x)) = f (p)(Li(x)) + a−p
i

[ p∑
j=0

(
p

j

)
α
(p−j)
i (x)(fα

ϵ − b)(j)(x)
]
. (7)

Remark 3.2.1. (i) Theorem 3.2 in [33] is a particular case of Corollary 3.2 (take all ϵi = 0).
(ii) If we fix the non-zero variable scaling functions αi for i ∈ NN−1 and base function b satisfy conditions
given in Corollary 3.2, then we have 2N−1 k-times continuously differentiable zipper α-fractal functions based
on the signature ϵ for a prescribed function f ∈ Ck(I) such that fα

ϵ
(p)(xi) = f (p)(xi), for p ∈ N0

k and i ∈ Nk.

From Corollary 3.2, we can observe that zipper α-fractal function fα
ϵ corresponding to f ∈ Ck(I) depends

on the choice of variable scaling functions and the base function b. In this next theorem for f ∈ C(I) such that
f(x) ≥ 0 on I, we give constraints on scaling functions such that the corresponding zipper α-fractal function
fα
ϵ is non-negative for any choice of base function b except b ∈ C(I), b(x1) = f(x1) and b(xN ) = f(xN ).

Theorem 3.3. Let f ∈ C(I) such that f(x) ≥ 0 for all x ∈ I, ∆ := {x1, x2, . . . , xN} be a partition
of I and ϵ = {ϵ1, ϵ2, . . . , ϵN−1} ∈ {0, 1}N−1. Let Li(x) = aix + bi and Fi(x, y) = αi(x)y + qi(x) are
satisfying (1) and (2) respectively, where qi(x) = f(Li(x))− αi(x)b(x), b(x1) = f(x1), b(xN ) = f(xN ), and
∥αi∥∞ = max{|αi(x)| : x ∈ I} < 1. So if ∀i ∈ NN−1 and ∀x ∈ I, variable scaling functions αi ∈ C(I) are
chosen such that 0 ≤ αi(x) ≤ mi

M∗ , where mi = min{f(x) : x ∈ Ii} and M∗ = max{b(x) : x ∈ I}, then zipper
α-fractal function fα

ϵ (x) corresponding to f satisfies fα
ϵ (x) ≥ 0 for all x ∈ I.

Proof. For k = 0, (7) implies that zipper α-fractal function fα
ϵ corresponding to f satisfies the functional

equation
fα
ϵ (Li(x)) = f(Li(x)) + αi(x)(f

α
ϵ (x)− b(x)) x ∈ I, i ∈ NN−1 (8)

and fα
ϵ (xi) = f(xi) , i.e., f

α
ϵ (xi) ≥ 0 for all i = 1, 2, . . . , N . Now I is the attractor of the zipper {I;Li, i =

1, 2, . . . , N − 1} and fα
ϵ is constructed using an iterative scheme, so it is easy to see that proving fα

ϵ (x) ≥ 0
for all x ∈ I enough to prove that fα

ϵ ≥ 0 holds on I obtained at n + 1-th iteration whenever fα
ϵ ≥ 0 is

satisfied for the points on I at n-th iteration, i.e., enough to prove fα
ϵ (Li(x)) ≥ 0 for all i ∈ NN−1 whenever

fα
ϵ (x) ≥ 0. Now let fα

ϵ (x) ≥ 0. Then the equation (8) can be rewritten as,

fα
ϵ (Li(x)) = f(Li(x)) + αi(x)f

α
ϵ (x)− αi(x)b(x).

Now for all x ∈ I and i ∈ NN−1, if αi(x) ≥ 0, then αi(x)f
α
ϵ (x) ≥ 0. Therefore,

fα
ϵ (Li(x)) ≥ f(Li(x))− αi(x)b(x),

and f(Li(x))− αi(x)b(x) ≥ 0, when αi(x) ≤ mi
M∗ . This completes the proof.

Remark 3.3.1. Similarly we can also prove that if f(x) ≤ 0 for all x ∈ I, then corresponding zipper α-

fractal function fα
ϵ is also non-positive on I, by choosing variable scaling functions such that 0 ≤ αi(x) ≤

m∗
i

M∗
,

∥αi∥∞ < 1 for all i ∈ NN−1, where m∗
i = max{f(x) : x ∈ Ii} and M∗ = min{b(x) : x ∈ I}.

Now we will show that for the non-negative variable scaling functions if base function b satisfies some
prescribed constraints, then zipper α-fractal function fα

ϵ corresponding to f satisfies fα
ϵ (x) ≥ f(x) for all

x ∈ I. Consequently, if f(x) ≥ 0 on I, then fα
ϵ also satisfies fα

ϵ (x) ≥ 0, ∀x ∈ I .
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Theorem 3.4. Let f be a continuous function on I, ∆ = {x1, x2, . . . , xN} be a partition of I and ϵ =
{ϵ1, ϵ2, . . . , ϵN−1} ∈ {0, 1}N−1. Let Li(x) = aix + bi and Fi(x, y) = αi(x)y + f(Li(x)) − αi(x)b(x) be
satisfying (1) and (2) respectively, where the base function b is any continuous function on I satisfying
b(x1) = f(x1) and b(xN ) = f(xN ). So, if scaling functions αi ∈ C(I), i ∈ NN−1 are chosen such that
αi(x) ≥ 0 and ∥αi∥∞ := max{|αi(x)| : x ∈ I} < 1 and the base function is elected as b(x) ≤ f(x) for all
x ∈ I, then zipper α-fractal function fα

ϵ corresponding to f satisfies fα
ϵ (x) ≥ f(x), ∀x ∈ I.

Proof. Using the same argument as in Theorem 3.3, for proving fα
ϵ (x) ≥ f(x) for all x ∈ I, enough to prove

(fα
ϵ − f)(Li(x)) ≥ 0 for all i ∈ NN−1 whenever (fα

ϵ − f)(x) ≥ 0. We can reshape (8) as

(fα
ϵ − f)(Li(x)) = αi(x)(f

α
ϵ − b)(x)

= αi(x)(f
α
ϵ − f)(x) + αi(x)(f − b)(x).

(9)

So, if αi(x) ≥ 0 and f(x) ≥ b(x) for all x ∈ I, then (fα
ϵ − f)(x) ≥ 0 implies (fα

ϵ − f)(Li(x)) ≥ 0, which
completes the proof.

Remark 3.4.1. (i) Similarly one can also prove that for variable scaling functions satisfying αi(x) ≥ 0
and ∥αi∥∞ := max{|αi(x)| : x ∈ I} < 1 and for base function satisfying b(x) ≥ f(x) for all x ∈ I, zipper
α-fractal function fα

ϵ corresponding to f satisfies fα
ϵ (x) ≤ f(x) for all x ∈ I.

(ii) If we fix the non-zero variable scaling functions αi for i ∈ NN−1 and base function b satisfying conditions
given in Theorem 3.4, then we have 2N−1 different zipper α-fractal functions corresponding to f ∈ C(I) based
on the signature ϵ such that fα

ϵ (x) ≥ f(x) for all x ∈ I.

In the next theorem, we will show a one-sided approximation of a continuous function by a zipper fractal
polynomial on I.

Theorem 3.5. For a continuous function g on I and arbitrary δ > 0, there exists a zipper fractal polynomial
Pα
ϵ satisfying Pα

ϵ (x) ≥ g(x) for all x ∈ I and ∥Pα
ϵ − g∥∞ < δ.

Proof. It is known from Weierstrass theorem that for a continuous function g on I, there exists a polynomial
P̃ such that ∥g − P̃∥∞ < δ

4 . Therefore, we have

P̃ (x)− δ

4
≤ g(x) ≤ P̃ (x) +

δ

4
, ∀x ∈ I.

Now let P (x) = P̃ (x) + δ
4 . So the last inequality changes into

P (x)− δ

2
≤ g(x) ≤ P (x) ≤ P (x) +

δ

2
, ∀x ∈ I.

Therefore, for g ∈ C(I), we have a polynomial P such that P (x) ≥ g(x) for all x ∈ I and ∥g − P∥∞ < δ
2 .

Now, for ∆ = {x1, x2, . . . , xN} ⊂ I and ϵ = (ϵ1, ϵ2, . . . , ϵN−1) ∈ {0, 1}N−1, choose a base function b such that
b(x1) = P (x1), b(xN ) = P (xN ), and b(x) ≤ P (x), ∀x ∈ I. Then select non-negative variable scaling functions
such that for all i ∈ NN−1, αi ∈ C(I) and ∥α∥∞ < δ

δ+2∥P−b∥∞ , where ∥α∥∞ := max{∥αi∥∞ : i ∈ NN−1}.
Utilizing Theorem 3.4, zipper fractal polynomial Pα

ϵ corresponding to P satisfies Pα
ϵ (x) ≥ P (x) ≥ g(x) for

all x ∈ I. Now consider for i ∈ NN−1 and x ∈ I,

(Pα
ϵ − P )(Li(x)) = αi(x)(P

α
ϵ − b)(x) = αi(x)(P

α
ϵ − P + P − b)(x).

Taking modulus and using a triangle inequality, we obtain

∥Pα
ϵ − P∥∞ ≤ ∥α∥∞

1− ∥α∥∞
∥P − b∥∞ <

δ

2
.

Then, it is concluded that

∥Pα
ϵ − g∥∞ ≤ ∥Pα

ϵ − P∥∞ + ∥P − g∥∞ <
δ

2
+

δ

2
= δ.
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Now, we will find conditions on variable scaling functions so that the first derivative of zipper α-fractal
function fα

ϵ corresponding to f satisfies r ≤ (fα
ϵ )

(1) ≤ R whenever r ≤ f (1) ≤ R. Then, it helps to construct
monotonicity preserving zipper α-fractal function fα

ϵ whenever germ function f is monotone (take r = 0).
For this, let us define some notation first:
zk := minx∈I{b(k)(x) : i ∈ NN−1}; Zk := maxx∈I{b(k)(x) : i ∈ NN−1}; ri := minx∈Ii f

(1)(x), Ri :=
maxx∈Ii f

(1)(x); m := minx∈I f
α
ϵ (x); M := maxx∈I f

α
ϵ (x).

By putting k = 1 in Corollary 3.2, our zipper α-fractal function fα
ϵ corresponding to f satisfies

(fα
ϵ )

(1)(Li(x)) = f (1)(Li(x)) +
α′
i(x)

ai
(fα

ϵ − b)(x) +
αi(x)

ai
(fα

ϵ − b)(1)(x). (10)

Let r ≤ f (1) ≤ R. To prove r ≤ (fα
ϵ )

(1) ≤ R, it is enough to verify r ≤ (fα
ϵ )

(1)(Li(x)) ≤ R for all i ∈ NN−1

and x ∈ I. For this, we will choose monotonic scaling functions αi ∈ C1(I) satisfying ∥αi∥1 < |ai|
2 , where

∥αi∥1 = max{∥αi∥∞, ∥α′
i∥∞}. Then, we need to verify

r ≤ f (1)(Li(x)) +
α′
i(x)

ai
(fα

ϵ − b)(x) +
αi(x)

ai
(fα

ϵ − b)(1)(x) ≤ R. (11)

Case 1: Let 0 ≤ (−1)ϵiαi(x) ≤ (−1)ϵi ai2 and (−1)ϵiα′
i(x) ≥ 0 for all x ∈ I. Hence αi(x)

ai
≥ 0 and

α′
i(x)
ai

≥ 0.
Therefore, (11) is true whenever

r

(
1− αi(x)

ai

)
≤ f (1)(Li(x)) +

α′
i(x)

ai
(fα

ϵ − b)(x)− αi(x)

ai
b(1)(x) ≤ R

(
1− αi(x)

ai

)
. (12)

It is easy to observe that

f (1)(Li(x)) +
α′
i(x)

ai
(fα

ϵ − b)(x)− αi(x)

ai
b(1)(x) ≥ ri +

α′
i(x)

ai
(m− Z0)−

αi(x)

ai
Z1. (13)

In view of (13), for the validity of the first inequality of (12), we need a condition for which

ri +
α′
i(x)

ai
(m− Z0)−

αi(x)

ai
Z1 ≥ r

(
1− αi(x)

ai

)
,

i.e., ri +
α′
i(x)

ai
(m− Z0) +

αi(x)

ai
(r − Z1) ≥ r,

i.e.,
α′
i(x)

ai
(Z0 −m) +

αi(x)

ai
(Z1 − r) ≤ (ri − r),

i.e.,
(−1)ϵiα′

i(x)

(−1)ϵiai
(Z0 −m) +

(−1)ϵiαi(x)

(−1)ϵiai
(Z1 − r) ≤ (ri − r).

We know ∥αi∥1 = max{∥αi∥∞, ∥α′
i∥∞}. The above inequality is true if

∥αi∥1(Z0 −m+ Z1 − r) ≤ (−1)ϵiai(ri − r).

Therefore, we choose

∥αi∥1 ≤
(−1)ϵiai(ri − r)

Z0 −m+ Z1 − r
,

for validity of the left inequality of (12). Similarly, if we choose

∥αi∥1 ≤
(−1)ϵiai(R−Ri)

M − z0 +R− z1
,
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then the right inequality of (12) is true.

Case 2: Let (−1)ϵi −ai
2 ≤ (−1)ϵiαi ≤ 0 and (−1)ϵiα′

i(x) ≥ 0 for all x ∈ I. Then we have αi(x)
ai

≤ 0 and
α′
i(x)
ai

≥ 0 for all x ∈ I as (−1)ϵi = ±1. Then, the first inequality of (11) satisfies when

r −R
αi(x)

ai
≤ f (1)(Li(x)) +

α′
i(x)

ai
(fα

ϵ − b)(x)− αi(x)

ai
b(1)(x),

i.e., r ≤ f (1)(Li(x)) +
α′
i(x)

ai
(fα

ϵ − b)(x) +
αi(x)

ai
(R− b(1)(x)) ∀x ∈ I.

The sufficient condition for validity of the above inequality is

r ≤ ri +
α′
i(x)

ai
(m− Z0) +

αi(x)

ai
(R− z1),

i.e., r − ri ≤
α′
i(x)

ai
(m− Z0) +

αi(x)

ai
(R− z1),

i.e., ri − r ≥ α′
i(x)

ai
(Z0 −m)− αi(x)

ai
(R− z1),

i.e., ri − r ≥ (−1)ϵiα′
i(x)

(−1)ϵiai
(Z0 −m)− (−1)ϵiαi(x)

(−1)ϵiai
(R− z1),

i.e., ri − r ≥ ∥αi∥1
(−1)ϵiai

(Z0 −m) +
∥αi∥1

(−1)ϵiai
(R− z1),

i.e., (−1)ϵiai(r − ri) ≥ ∥αi∥1(Z0 −m+R− z1).

Therefore, if we choose

∥αi∥1 ≤
(−1)ϵiai(ri − r)

Z0 −m+R− z1
,

then the left inequality of (11) is true in this case. Similarly, other inequality of (11) is true when

∥αi∥1 ≤
(−1)ϵiai(R−Ri)

M − z0 + Z1 − r
.

In a similarly analysis, for Case 3: 0 ≤ (−1)ϵiαi(x) ≤ (−1)ϵi ai2 and (−1)ϵiα′
i(x) ≤ 0, (11) is true when

∥αi∥1 ≤ min

{
(−1)ϵiai(ri − r)

M − z0 + Z1 − r
,
(−1)ϵiai(R−Ri)

Z0 −m+R− z1

}
,

and for case 4: (−1)ϵi −ai
2 ≤ (−1)ϵiαi(x) ≤ 0 and (−1)ϵiα′

i(x) ≤ 0, (11) is true when

∥αi∥1 ≤ min

{
(−1)ϵiai(ri − r)

M − z0 +R− z1
,
(−1)ϵiai(R−Ri)

Z0 −m+ Z1 − r

}
.

Now we will summarize these above discussions in the following theorem.

Theorem 3.6. Let f ∈ C1(I) satisfying r ≤ f (1)(x) ≤ R for all x ∈ I. For a partition ∆ = {x1, x2, . . . , xN}
of I with increasing abscissae, let ϵ ∈ {0, 1}N−1 and the base function b ∈ C1(I) satisfying the conditions
b(p)(x1) = f (p)(x1) and b(p)(xN ) = f (p)(xN ) for i ∈ NN−1, p = 0, 1. Then the corresponding zipper α-fractal
function fα

ϵ obeys r ≤ (fα
ϵ )

(1)(x) ≤ R for all x ∈ I, if the variable scaling functions αi ∈ C1(I) are monotone
and satisfy ∥αi∥1 < ai

2 , and

∥αi∥1 ≤ min

{
ei
0i1

,
ei
0i2

,
ei
0i3

,
ei
0i4

,
Ei

0i1
,
Ei

0i2
,
Ei

0i3
,
Ei

0i4

}
, (14)

where ei = (−1)ϵiai(ri − r), Ei = (−1)ϵiai(R−Ri),
0i1 = Z0 −m+ Z1 − r, 0i2 = Z0 −m+R− z1,
0i3 = M − z0 + Z1 − r, 0i4 = M − z0 +R− z1.
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Remark 3.6.1. (i) Theorem 3.6 includes the Theorem 5 of [14] as a special case by taking all ϵi = 0 for
i ∈ NN−1.
(ii) If r = 0, then we can construct a class of 2N−1 monotonically increasing zipper α-fractal functions
corresponding to monotonically increasing function f .

Similarly, for a given convex function f , we can restrict the variable scaling functions so that the proposed
class of zipper α-fractal functions corresponding to f becomes convex. Substituting ∥αi∥2 in place of ∥αi∥C2

for any ϵ ∈ {0, 1}N−1, the restrictions on variable scaling functions are the same as given in Theorem 7 of
[14]. But our advantage is that we can find 2N−1 different convex zipper α-fractal functions including the
convex α-fractal function given in [14], based on ϵ for a fixed set of scaling functions.

4. Examples of Shape Preserving ZFIFs

In this section, we present some numerical examples to support the theory in Section 3. If we do not
restrict the scaling functions or the base function as prescribed in the last section, then the proposed zipper
α-fractal functions may not preserve the desired property. The sufficient conditions are verified through
suitable examples. We also plot graphs with different signatures to show that for the same set of scaling
functions, we get the different zipper α-fractal functions.

Example 4.1. In this example, we want to check the positivity preserving property and one-sided ap-
proximation property of the proposed zipper α-fractal function. Consider a non-negative germ function
f(x) = sin(2πx)+1.1 on I = [−1, 1] with partition ∆ = {−1,−1/2, 0, 1/2, 1}. The following parameters are
used to plot the graphs for Figs. 1(a)-(f):

Fig. 1 b(x) α ϵ

(a) 1.1 ( (x
2)

1
5

2 , (x
2)

1
8

2 , x5 ,
2
5) (0, 1, 1, 0)

(b) 1.1 ( (x
2)

1
5

2 , x
2

2 ,
2
5 ,

ex

30) (0, 1, 1, 0)

(c) 1.1 ( (x
2)

1
5

2 , x
2

2 ,
2
5 ,

ex

30) (1, 1, 1, 0)

(d) 5x2 − 3.9 ( (x
2)

1
5

2 , (x
2)

1
8

2 , (x
2)

1
7

3 , 12) (0, 1, 1, 0)

(e) 6.1− 5x2 ( (x
2)

1
5

2 , (x
2)

1
8

2 , (x
2)

1
7

3 , 12) (1, 1, 0, 1)

(f) 6.1− 5x2 ( (x
2)

1
5

2 , (x
2)

1
8

2 , (x
2)

1
7

3 , 12) (0, 0, 0, 0)

In Fig. 1(a), we do not restrict scaling functions or a base function as given in Theorem 3.3 or Theorem
3.4 and we can see that the corresponding zipper α-fractal function is neither positive nor lying completely
above or below f . But when we restrict the scaling functions as prescribed in Theorem 3.3, the corresponding
zipper α-fractal functions become positive see Figs. 1(b)-(c). We have used ϵ1 = 1 for Fig. 1(b) and ϵ1 = 0
for Fig. 1(c), whereas all other parameters are the same for both the figures. Notice between Figs. 1(b) and
(c) over I1 as they are almost the flipped versions of each other. In this way, for the fixed non-zero scalings,
we can get 2N−1 different zipper α-fractal functions based on different signatures.
In Fig. 1(d), we have used the base function b(x) = 5x2 − 3.9 which satisfies b(x) ≤ f(x) for all x ∈ I. All
the scaling functions are non-negative, so by Theorem 3.4, the corresponding zipper α-fractal function lies
completely above f on I. Similarly, for Figs. 1(e)-(f), we have used non-negative scaling functions and the
base function b(x) = 6.1− 5x2 that satisfies b(x) ≥ f(x) for all x ∈ I to get the zipper fractal approximants
from below for f . For Fig. 1(f), we have chosen ϵi = 0 for each i ∈ N4, so the proposed zipper α-fractal
function reduces to classical α-fractal function approximant from below.

Example 4.2. In this example, we want to check the range restriction by the first derivative of the pro-
posed zipper α-fractal functions. Let us consider f(x) = x

10 + sin(πx) on I = [−1
2 , 12 ] with partition
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Figure 1: Verification of positivity and one-sided approximation by zipper α-fractal functions.

∆ = {−1
2 , −1

4 , 0, 14 ,
1
2}. For the fixed base function

b(x) =

{
x
10 − 1 if x ∈ [−1

2 , 0],

−31x3 + 24x2 + 0.1x− 1 if x ∈ [0, 12 ],

scaling function and signature vectors {( 3
25 ,

ex

16 ,
x
9 ,

(x+1
2

)
1
10

10 ), (1, 0, 1, 0)}, {(−x3

300 ,
ex

75 ,
e−x

80 , x
400), (1,

0, 1, 0)}, and {(−x3

300 ,
ex

75 ,
e−x

80 , x
400), (1, 1, 0, 0)} are used for plotting Figs. 2(a)-(c) respectively. Figs 2(d)-(f)

are the graphs of the derivative of zipper α-fractal functions plotted in Figs 2(a)-(c) respectively. Note that
the given function f satisfies r = 0 ≤ f (1)(x) ≤ R = 4 for all x ∈ I. If we restrict the scaling functions as
prescribed in Theorem 3.6, then zipper α-fractal function fα

ϵ corresponding to f satisfies 0 ≤ (fα
ϵ )

(1) ≤ 4,
and consequently, we get monotonically increasing zipper α-fractal function corresponding to monotonically
increasing function f . For Fig. 2(a) we do not restrict the scaling functions as prescribed in Theorem 3.6
and we can see in Fig. 2(d) that corresponding zipper α-fractal function fα

ϵ does not satisfy the condition
0 ≤ (fα

ϵ )
(1)(x) ≤ 4 on I and hence fα

ϵ is not a monotone function on I. When the scaling functions are
elected as per the prescription of 3.6, the corresponding zipper α-fractal functions in Figs. 2(e)-(f) satisfy
0 ≤ (fα

ϵ )
(1)(x) ≤ 4 for all x ∈ I. We have used different signatures, but all other parameters are the same

for Figs. 2(b)-(c) to show the effect of signature. We may not have seen the differences in Figs. 2(b) and
2(c) as the magnitude of scaling functions are nearly close to zero, but the difference in shape can be seen
from their derivatives in Figs. 2(e)-(f).

5. Schauder basis consists of zipper fractal functions for Ck(I)

First let us recall the definition of Schauder basis:
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Figure 2: Verification of monotonicity by zipper α-fractal functions.

Definition 5.1. A sequence {un} in an infinite dimensional Banach space X is said be a Schauder basis of
X if for every ζ ∈ X, there exists a unique sequence {βn(ζ)} of scalars such that

ζ =
∞∑
n=1

βn(ζ)un,

where βn is a linear functional on X, n ∈ N. βn is called the nth coefficient functional corresponding to the
Schauder basis {u1, u2, . . . }.

Our aim in this section is to show that space Ck(I) has a Schauder basis consisting of zipper fractal
functions. Corollary 3.2 stated that for a given function f ∈ Ck(I), we can choose scaling functions and
base function in such a way that the corresponding zipper fractal function is also a member of the space
Ck(I) and satisfies (7). From here, we assume that b = Lf , where L is a bounded linear operator on Ck(I)
such that for p ∈ N0

k, Lf
(p)(x1) = f (p)(x1) and Lf (p)(xN ) = f (p)(xN ). Therefore, (7) changes into

(fα
ϵ )

(p)(Li(x)) = f (p)(Li(x)) + a−p
i

 p∑
j=0

(
p

j

)
α
(p−j)
i (x)

(
(fα

ϵ )
(p) − Lf (p))(x)

) . (15)

So the corresponding zipper fractal function fα
ϵ now depends on the partition of I, scaling functions, signa-

ture, and L. So for the fixed parameters ∆, α, ϵ, and L, let us define an operator

ΩL,α
∆,ϵ : C

k(I) → Ck(I), ΩL,α
∆,ϵ(f) = fα

ϵ ,

where ∆ = {x1, x2, . . . , xN} ⊂ I, α(x) = (αi(x), α2(x), . . . , αN−1(x)), ϵ = (ϵ1, ϵ2, . . . , ϵN−1), and the linear
operator L are satisfying the conditions prescribed in Corollary 3.2. For f ∈ Ck(I), ΩL,α

∆,ϵ(f) ∈ Ck(I) i.e.,
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the operator ΩL,α
∆,ϵ is well defined and ΩL,α

∆,ϵ(f) is a zipper fractal function corresponding to f . We call this

operator ΩL,α
∆,ϵ as a zipper fractal operator. For fixed L and ∆, we denote ΩL,α

∆,ϵ = Ωα
ϵ . The operator norm

for a bounded linear operator S : (X1, ∥.∥X1) → (X2, ∥.∥X2) is defined as

∥S∥ := sup{∥Sv∥X2 : v ∈ X1, ∥v∥X1 ≤ 1}.

If un = vn|[0,1], then {u0, u1, u2, . . . } is a Schauder basis for C([0, 1]), where

v0(t) = t, v1(t) = 1− t, t ∈ R,

v2(t) =


2t, if 0 ≤ t < 1/2
2− 2t, if 1/2 < t ≤ 1
0, otherwise,

and v2n+j(t) = v2(2
nt − j + 1) for n = 1, 2, . . . and j = 1, 2, . . . , 2n. Each un is a non-negative piecewise

linear continuous function, known as a saw-tooth function.
Cheney in [10] provided Schauder basis of polygonal functions for the space C(I) endowed with supremum
norm. Schonefeld in [25] constructed Schauder basis for Ck(I) corresponding to any Schauder basis of C(I).
Therefore, Schauder basis for Ck(I) exists. If we prove that the operator Ωα

ϵ is an isomorphism from Ck(I)
to Ck(I), then our aim for this section is completed. Thus, we will show that for some prescribed conditions,
the zipper fractal operator is an isomorphism from Ck(I) to Ck(I). For the main theorem of this section,
we will prove some related results first.

Proposition 5.1. Zipper fractal operator Ωα
ϵ : Ck(I) → Ck(I) is linear and bounded .

Proof. Let f, g ∈ Ck(I) and a, b ∈ R. Then linearty of L implies

(af + bg)αϵ (Li(x)) = (af + bg)(Li(x)) + αi(x)
(
(af + bg)αϵ (x)− (aLf + bLg)(x)

)
,

for all i ∈ NN−1. From the above equation we find that afα
ϵ + bgαϵ is the fixed point of Read-Bajraktarević

operator Tα
ϵ : Ck(I) → Ck(I), where

(Tα
ϵ h)(Li(x)) := (af + bg)(Li(x)) + αi(x)

(
h(x)− (aLf + bLg)(x)

)
.

The uniqueness of the fixed point shows that (af + bg)αϵ = afα
ϵ + bgαϵ . That is, for any a, b ∈ R and any

f, g ∈ Ck(I),
Ωα
ϵ (af + bg) = aΩα

ϵ (f) + bΩα
ϵ (g).

Thus Ωα
ϵ is linear. From (15), we obtain

∥fα
ϵ − f∥k ≤ max{(2/|ai|)k∥αi∥k : i ∈ NN−1}∥fα

ϵ − Lf∥k
≤ s

1− s
∥f − Lf∥k,

(16)

where s = max{(2/|ai|)k∥αi∥k : i ∈ NN−1}. Hence,

∥fα
ϵ ∥k − ∥f∥k ≤ s

1− s
∥Id − L∥∥f∥k,

and we have

∥Ωα
ϵ (f)∥k = ∥fα

ϵ ∥k ≤
(
1 +

s∥Id − L∥
1− s

)
∥f∥k. (17)

Clearly, ∥Ωα
ϵ ∥ ≤

(
1 + s∥Id−L∥

1−s

)
and Ωα

ϵ is bounded.
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Proposition 5.2. Zipper fractal operator Ωα
ϵ is injective and bounded below, when ∥αi∥k <

( |ai|
2

)k∥L∥−1

for all i ∈ NN−1. In particular, the range of Ωα
ϵ denoted by R(Ωα

ϵ ) is a closed subspace of Ck(I).

Proof. For any f ∈ Ck(I), let Ωα
ϵ (f) = fα

ϵ = 0. Then from (16) we get,

∥f∥k ≤ s∥L∥∥f∥k, (18)

where s = max{(2/|ai|)k∥αi∥k : i ∈ NN−1} < ∥L∥−1. Since s∥L∥ < 1, this gives f = 0, hence Ωα
ϵ is injective.

Also from (16) we get

∥f∥k − ∥fα
ϵ ∥k ≤ ∥f − fα

ϵ ∥k ≤ s∥fα
ϵ − Lf∥k ≤ s(∥fα

ϵ ∥k + ∥L∥∥f∥k),

and this implies

∥f∥k ≤ 1 + s

1− s∥L∥
∥fα

ϵ ∥k, (19)

i.e.,
1− s∥L∥
1 + s

∥f∥k ≤ ∥Ωα
ϵ (f)∥k, ∀f ∈ Ck(I). (20)

Hence, the operator Ωα
ϵ is bounded below.

Now let g ∈ R(Ωα
ϵ ), where R(Ωα

ϵ ) := {q ∈ Ck(I) : q = Ωα
ϵ (h) for some h ∈ Ck(I)}. Then, there exist a

sequence {fα
ϵ,n} in R(Ωα

ϵ ) ⊂ Ck(I) such that fα
ϵ,n

∥.∥k−−→ g as n → ∞. Since for each n ∈ N, fα
ϵ,n ∈ R(Ωα

ϵ ),

there exist fn ∈ Ck(I) such that Ωα
ϵ (fn) = fα

ϵ,n, n ∈ N. From (20) we get,

∥fn − fm∥k ≤ 1 + s

1− s∥L∥
∥fα

ϵ,n − fα
ϵ,m∥k.

Since {fα
ϵ,n} is a Cauchy sequence, the sequence {fn} is also a Cauchy sequence in the Banach space Ck(I)

and hence convergent, say, fn
∥.∥k−−→ f in Ck(I). Boundedness of the map Ωα

ϵ implies that Ωα
ϵ (fn)

∥.∥k−−→ Ωα
ϵ (f)

and hence g = Ωα
ϵ (f). Thus, g ∈ R(Ωα

ϵ ), i.e., R(Ωα
ϵ ) is closed in Ck(I). This completes our proof.

Remark 5.1.1. Using (17) and (20), we get

1− s∥L∥
1 + s

∥f∥k ≤ ∥Ωα
ϵ (f)∥ ≤

(
1 +

s∥Id − L∥
1− s

)
∥f∥k, ∀f ∈ Ck(I). (21)

Now let us recall a result on bounded linear operators, which help us to proceed further.

Lemma 5.2. ([35]) If S is a bounded linear operator from a Banach space into itself such that ∥S∥ < 1,
then I−S has a bounded inverse and the Neumann series

∑∞
j=0 S

j converges in operator norm to (I−S)−1.

Now we will prove the main theorem of this section.

Theorem 5.3. Let ∥αi∥k <
( |ai|

2

)k
(1 + ∥Id − L∥)−1 for all i ∈ NN−1, where Id is the identity operator on

Ck(I). Then, Ωα
ϵ is an isomorphism (linear, bijective and bicontinuous map). In particular, the space Ck

admits a Schauder basis, consisting of Ck-continuous zipper fractal functions.

Proof. Consider,
∥L∥ − ∥Id − L∥ ≤ ∥Id − L+ L∥ = ∥Id∥ = 1,

i.e.,
∥L∥ ≤ 1 + ∥Id − L∥.

Hence,

∥αi∥k <

(
|ai|
2

)k

(1 + ∥Id − L∥)−1 ≤
(
|ai|
2

)k

∥L∥−1.
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From Proposition 5.1 and Proposition 5.2, we know that Ωα
ϵ is a bounded, linear and injective operator.

Now from (16),

∥fα
ϵ − f∥k ≤ s

1− s
∥f − Lf∥k,

where s < (1+∥Id−L∥)−1 by given condition on the scaling functions. Now the inequality s < (1+∥Id−L∥)−1

=⇒ s(1 + ∥Id − L∥) < 1,

=⇒ s+ s∥Id − L∥) < 1,

=⇒ ∥Id − L∥ <
1− s

s
,

=⇒ s

1− s
∥Id − L∥ < 1.

Thus,

∥Ωα
ϵ − Id∥ ≤ s

1− s
∥Id − L∥ < 1.

From Lemma 5.2, Ωα
ϵ has a bounded inverse, therefore Ωα

ϵ : Ck(I) → Ck(I) is an isomorphism. Thus, Ωα
ϵ

preserves the basis, equivalently if {gn} is Schauder basis for Ck(I), then the set of zipper fractal functions
{gαϵ,n} is also Schauder basis for Ck(I), where gαϵ,n = Ωα

ϵ (gn).

Theorem 5.4. Let ∥αi∥k <
( |ai|

2

)k
(1+ ∥Id −L∥)−1 for all i ∈ NN−1. If {gn} be a Schauder basis for Ck(I)

with associated coefficient functionals {βn}, then {gαϵ,n} is the corresponding Schauder basis of zipper fractal
functions with associated coefficient functionals {βn ◦ (Ωα

ϵ )
−1}, where gαϵ,n = Ωα

ϵ (gn).

Proof. From Theorem 5.3, we know that given assumptions on variable scaling functions implies Ωα
ϵ is an

isomorphism on Ck(I). So if {gn} is Schauder basis for Ck(I), then, {gαϵ,n} is the corresponding Schauder

basis of zipper fractal functions for Ck(I).
For g ∈ Ck(I), we can write

g =
∞∑
n=1

βn(g)gn.

Also, for g ∈ Ck(I), we know (Ωα
ϵ )

−1(g) ∈ Ck(I). Thus,

(Ωα
ϵ )

−1(g) =
∞∑
n=1

βn((Ω
α
ϵ )

−1(g))gn.

By continuity of Ωα
ϵ ,

g =

∞∑
n=1

βn((Ω
α
ϵ )

−1(g))gαϵ,n.

This completes our proof.

6. Schauder basis consists of zipper fractal functions for Lp(I)

It can happen that a space X with some norm may not be a Banach space, but it is a subspace of
a Banach space. We know that Ck(I) with respect to norm ∥.∥p

(
for g ∈ Lp(I), ∥g∥p := (

�
I |g|

pdx)1/p
)
,

1 ≤ p < ∞ is not a Banach space, but it is a dense subspace of the Banach space Lp(I). So for the extension
of a linear and bounded operator, we have the following result:

Lemma 6.1. If X2 is Banach and X1 is dense in X ′, then a linear and bounded operator S : X1 → X2 can
be extended to X ′ preserving the norm of S.
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From functional analysis we know that Schauder basis for Lp(I) for p ∈ [1,∞) exists. It is known that
Haar system {u1, u2, u3, . . . } with

u1(t) = 1

u2(t) =

{
1, if 0 ≤ t ≤ 1/2
−1, if 1/2 < t ≤ 1,

and for n = 1, 2, . . . , j = 1, 2, . . . , 2n,

u2n+j(t) =


2n/p, if (2j − 2)/2n+1 ≤ t ≤ (2j − 1)/2n+1,

−2n/p, if (2j − 1)/2n+1 < t ≤ 2j/2n+1,
0, otherwise,

is a Schauder basis for Lp([0, 1]) for 1 ≤ p < ∞. The set of Legendre polynomials forms an orthonormal
basis for L2(I). For p ∈ (1,∞), the sequence of trigonometric functions {1, cos(nx), sin(nx) : n ∈ N} is a
basis for Lp([0, 2π]).
So in this section, we will extend the operator Ωα

ϵ : Ck(I) → Lp(I) from Ck(I) to Lp(I) for p ∈ [1,∞) and
we will show that for some prescribed conditions, the extension of Ωα

ϵ is an isomorphism from the space
Lp(I) to itself. In particular, we will show that for p ∈ [1,∞), the space Lp(I) admits a Schauder basis of
zipper fractal functions. Aiming to this task, first we will prove some auxiliary results.
By Lemma 6.1, the density of Ck(I) in Lp(I) for p ∈ [1,∞) allows us to extend the operators Ωα

ϵ : Ck(I) →
Lp(I) and L : Ck(I) → Lp(I) from Ck(I) to Lp(I), preserving the operator norm. Due to density of Ck(I)
in Lp(I), if g ∈ Lp(I), then there exist a sequence {gn} ⊂ Ck(I) such that limn→∞ gn = g (with respect to
Lp-norm). Therefore, the extensions Ωα

ϵ : Lp(I) → Lp(I) and L : Lp(I) → Lp(I) are defined as if g ∈ Lp(I),
then Ωα

ϵ (g) = limn→∞Ωα
ϵ (gn) = limn→∞ gαϵ,n i.e., gαϵ = Ωα

ϵ (g) is the limit of a sequence of zipper fractal

functions {gαϵ,n} ⊂ Ck(I), and similarly L(g) = limn→∞ L(gn). The function gαϵ will be the zipper α-fractal

function of g ∈ Lp(I). These extensions preserve the norm, so we have ∥Ωα
ϵ ∥ = ∥Ωα

ϵ ∥ and ∥L∥ = ∥L∥.

Proposition 6.1. For f ∈ Ck(I), p ∈ [1,∞),

∥fα
ϵ − f∥p ≤

∥α∥∞
1− ∥α∥∞

∥f − Lf∥p.

Proof. Zipper α-fractal function Ωα
ϵ (f) = fα

ϵ satisfies

fα
ϵ (x) = f(x) + αi(L

−1
i (x))(fα

ϵ (L
−1
i (x))− Lf(L−1

i (x))) x ∈ Ii, i ∈ NN−1.

So, we have

∥fα
ϵ − f∥pp =

N−1∑
i=1

�
Ii

|αi(L
−1
i (x))|p|(fα

ϵ − Lf)(L−1
i (x))|pdx.

By putting t = L−1
i (x), we get

∥fα
ϵ − f∥pp =

N−1∑
i=1

�
I
(−1)ϵiai|αi(t)|p|(fα

ϵ − Lf)(t)|pdt

≤
N−1∑
i=1

(−1)ϵiai∥α∥p∞∥fα
ϵ − Lf∥pp.

Since
∑N−1

i=1 (−1)ϵiai =
∑N−1

i=1 (−1)ϵi
xi+1−ϵi

−xi+ϵi
xN−x1

= 1, we have

∥fα
ϵ − f∥pp ≤

N−1∑
i=1

(−1)ϵiai∥α∥p∞∥fα
ϵ − Lf∥pp = ∥α∥p∞∥fα

ϵ − Lf∥pp,
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which implies
∥fα

ϵ − f∥p ≤ ∥α∥∞∥fα
ϵ − Lf∥p. (22)

Using ∥fα
ϵ − Lf∥p ≤ ∥fα

ϵ − f∥p + ∥f − Lf∥p, we have the desired result:

∥fα
ϵ − f∥p ≤

∥α∥∞
1− ∥α∥∞

∥f − Lf∥p. (23)

Remark 6.1.1. Using Proposition 6.1, we get

∥Ωα
ϵ ∥ = ∥Ωα

ϵ ∥ ≤ 1 +
∥α∥∞∥Id − L∥

1− ∥α∥∞
. (24)

Proposition 6.2. For any f ∈ Lp(I), p ∈ [1,∞),

∥Ωα
ϵ (f)− f∥p ≤

∥α∥∞
1− ∥α∥∞

∥f − L(f)∥p. (25)

Proof. Let f ∈ Lp(I). Then Ωα
ϵ (f) = limn→∞Ωα

ϵ (fn) and L(f) = limn→∞ L(fn), where {fn} ⊂ Ck(I)
is a sequence such that f = limn→∞ fn with respect to Lp-norm. Since fn ∈ Ck(I), we have Ωα

ϵ (fn) =
Ωα
ϵ (fn), L(fn) = L(fn). The continuity of the norm gives

∥Ωα
ϵ (f)− f∥p = lim

n→∞
∥Ωα

ϵ (fn)− fn∥p.

Using (22),

∥Ωα
ϵ (f)− f∥p = lim

n→∞
∥Ωα

ϵ (fn)− fn∥p,

≤ ∥α∥∞ lim
n→∞

∥Ωα
ϵ (fn)− L(fn)∥p,

= ∥α∥∞ lim
n→∞

∥Ωα
ϵ (fn)− L(fn)∥p,

= ∥α∥∞∥Ωα
ϵ (f)− L(f)∥p,

≤ ∥α∥∞∥Ωα
ϵ (f)− f + f − L(f)∥p,

≤ ∥α∥∞∥Ωα
ϵ (f)− f∥p + ∥α∥∞∥f − L(f)∥p.

From above we easily get the inequality (25).

Proposition 6.3. If ∥α∥∞ < ∥L∥−1, then Ωα
ϵ is injective and bounded below. In particular, the range of

Ωα
ϵ is closed in Lp(I).

Proof of the above proposition is similar to the proof of Proposition 5.2. We know that ∥L∥ = ∥L∥, so
similar to (20), we can easily obtain

∥f∥p ≤
1 + ∥α∥∞

1− ∥L∥∥α∥∞
∥Ωα

ϵ (f)∥p, ∀f ∈ Lp(I). (26)

Now we will prove the main theorem of this section.

Theorem 6.2. Let ∥α∥∞ < (1 + ∥Id − L∥)−1. For p ∈ [1,∞), if {gn} is a Schauder basis of Lp(I), then
{Ωα

ϵ (gn)} is a Schauder basis of Lp(I).
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Proof. Since L is extension of operator L, the extension of Id − L (here, Id : Ck(I) → Lp(I) such that
Id(f) = f for all f ∈ Ck(I)) agrees with Id − L (here, Id : Lp(I) → Lp(I) such that Id(f) = f for all
f ∈ Lp(I)) and ∥Id − L∥ = ∥Id − L∥. Now the inequality ∥α∥∞ < (1 + ∥Id − L∥)−1 gives that

∥α∥∞(1 + ∥Id − L∥) < 1,

=⇒ ∥α∥∞ + ∥α∥∞∥Id − L∥ < 1,

=⇒ ∥Id − L∥ <
1− ∥α∥∞
∥α∥∞

,

=⇒ ∥α∥∞
1− ∥α∥∞

∥Id − L∥ < 1,

=⇒ ∥α∥∞
1− ∥α∥∞

∥Id − L∥ < 1.

Using (25) and previous inequality, we obtain the Lp operator norm

∥Id − Ωα
ϵ ∥ < 1.

Therefore, Lemma 5.2 implies that Ωα
ϵ : Lp → Lp is an isomorphism and hence preserves the basis. This

completes our proof.

7. Zipper fractal versions of full Müntz theorems

In this section, we introduce zipper fractal Müntz space and some of its properties using the fixed interval
I = [0, 1] and zipper fractal operator Ωα

ϵ : C(I) → C(I) ⊂ Lp(I) for p ∈ [1,∞).
Let Λ := {λk}∞k=1 be a sequence of distinct real numbers with 0 = λ1 < λ2 < . . . . Bernstein [5] conjectured
that

∞∑
k=2

1

λk
= ∞,

it is a necessary and sufficient condition for the linear space Π(Λ) := span{xλk : k = 1, 2, . . . } to become
dense in C([0, 1]). This beautiful conjecture that connects the density of a particular subset of a functional
space to the divergence of a particular harmonic series was proved by Müntz in [16] and the linear space
Π(Λ) over R is called the Müntz space associated with Λ. Since then, many generalizations of this theorem
have been presented.

Theorem 7.1. (Full Müntz Theorem for C([0, 1])) Let Λ be such that λk > 0 for all k, except λ1 = 0.
Then Π(Λ) is dense in C([0, 1]) if and only if

∞∑
k=1

λk

λ2
k + 1

= ∞.

The above theorem was proved by Siegel in [27] and also proved differently by Borwein and Erdélyi
[6, 7] using techniques given by Szász [28]. Researchers then changed the space from C(I) to Lp(I) and
provided the necessary and sufficient condition for the density of Müntz space associated with Λ in Lp(I).
The following theorem was proved for p = 1 by Borwein and Erdélyi and for 1 < p < ∞ by Operstein [23].

Theorem 7.2. (Full Müntz Theorem for Lp([0, 1])) Let p ∈ [1,∞) and Λ be such that λk > −1/p for
all k. Then Π(Λ) is dense in Lp([0, 1]) if and only if

∞∑
k=1

λk +
1
p

(λk +
1
p)

2 + 1
= ∞.
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With x1 = 0 and xN = 1, let ∆ = {x1, x2, . . . , xN} be a partition of I = [0, 1] and L : C(I) → C(I)
is a linear and bounded operator satisfying Lf(x1) = f(x1) and Lf(xN ) = f(xN ). If −1

p < λk < 0, then

xλk ∈ Lp(I). Define

(xλk)αϵ =

{
Ωα
ϵ (x

λk) if λk ≥ 0,

Ωα
ϵ (x

λk) if −1
p < λk < 0,

(27)

where α(x) = (α1(x), α2(x), . . . , αN−1(x)) is a continuous function such that ∥α∥∞ := max{∥αi∥∞ : i ∈
NN−1} < 1, and ϵ = (ϵ1, ϵ2, . . . , ϵN−1) ∈ Γ := {0, 1}N−1.
For the sequence of continuous functions αj(x) = (αj

1(x), α
j
2(x), . . . , α

j
N−1(x)) (not zero on all I) such that

∥αj∥∞ → 0 as j → ∞, let ξ = {(xλk)α
j

ϵ : k, j ∈ N, ϵ ∈ Γ}, then the zipper fractal Müntz space associated
with Λ is defined as Πα

ϵ (Λ) := span(ξ).

Theorem 7.3. Let ∆ be a partition of I = [0, 1], L be a linear and bounded operator on C(I) with respect
to the uniform norm, and {αj} be a sequence of non-zero variable scaling functions such that ∥αj∥∞ → 0
as j → ∞. If the set span{gk : k ∈ N} is dense in C(I) , then the set span{(gk)α

j

ϵ : k, j ∈ N, ϵ ∈ Γ} is also
dense in C(I).

Proof. Let g ∈ C(I) and δ > 0 be given. Since the set span{gk : k ∈ N} is dense in C(I), there exists
f ∈ span{gk : k ∈ N} such that

∥f − g∥∞ <
δ

2
. (28)

Since ∥αj∥∞ → 0 as j → 0, we can find αj∗ (j∗ ∈ N) such that

(1 + ∥L∥)∥αj∗∥∞
1− ∥αj∗∥∞

∥f∥∞ <
δ

2
. (29)

Now we have fαj∗
ϵ ∈ span{(gk)α

j

ϵ : k, j ∈ N, ϵ ∈ Γ}, and it satisfies

fαj∗
ϵ (Li(x)) = f(Li(x)) + αj∗

i (x)(fαj∗
ϵ (x)− Lf(x)).

Therefore,

∥fαj∗
ϵ − f∥∞ ≤ ∥αj∗∥∞

1− ∥αj∗∥∞
∥f − Lf∥∞ ≤ (1 + ∥L∥)∥αj∗∥∞

1− ∥αj∗∥∞
∥f∥∞. (30)

Then, using (28)-(30), we have

∥fαj∗
ϵ − g∥∞ ≤ ∥f − g∥∞ + ∥fαj∗

ϵ − f∥∞ <
δ

2
+

δ

2
< δ. (31)

Hence, span{(gk)α
j

ϵ : k, j ∈ N, ϵ ∈ Γ} is dense in C(I).

In the similar way we can easily proved the following theorem.

Theorem 7.4. Let ∆ be a partition of I = [0, 1], L be a linear and bounded operator with respect to the Lp

norm, and {αj} be a sequence of non-zero variable scaling functions such that ∥αj∥∞ → 0 as j → ∞. If the
set span{gk : k ∈ N} is dense in Lp(I) for p ∈ [1,∞) , then the set span{(gk)α

j

ϵ : k, j ∈ N, ϵ ∈ Γ} is also
dense in Lp(I).

Using Theorems 7.1 and 7.3, we have following result.

Theorem 7.5. (Zipper Fractal version of Full Müntz Theorem for C([0, 1])) Let Λ be such that
λk > 0 for all k, except λ1 = 0. Further let ∆ be a partition of I = [0, 1], L be a linear and bounded operator
on C(I) with respect to the uniform norm, and {αj} be a sequence of non-zero variable scaling functions
such that ∥αj∥∞ → 0 as j → ∞. Then the zipper fractal Müntz space Πα

ϵ (Λ) = span(ξ) associated with Λ is
dense in C(I), if

∞∑
k=1

λk

λ2
k + 1

= ∞.
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Similarly, using Theorems 7.2 and 7.4 we have following result:

Theorem 7.6. (Zipper Fractal version of Full Müntz Theorem for Lp([0, 1])) Let p ∈ [1,∞) and
Λ be such that λk > −1/p for all k. Further, let ∆ be a partition of I = [0, 1], L be a linear and bounded
operator with respect to the Lp norm, and {αj} be a sequence of non-zero variable scaling functions such
that ∥αj∥∞ → 0 as j → ∞. Then, the zipper fractal Müntz space Πα

ϵ (Λ) = span(ξ) is dense in Lp([0, 1]), if

∞∑
k=1

λk +
1
p

(λk +
1
p)

2 + 1
= ∞.

8. Conclusions

In the present work, we have developed the theory of zipper fractal interpolation functions with variable
scaling. We have constructed the differentiable zipper fractal interpolation functions and zipper α-fractal
functions with variable scaling. Using some constraints on scaling functions or a base function, we have
constructed positive or monotone zipper α-fractal functions for given positive or monotone function respec-
tively. We have found sufficient conditions on zipper IFS parameters for a one-sided approximation of a
given continuous function by zipper α-fractal functions. We have shown the existence of Schauder basis
consists of zipper fractal functions for the spaces Ck(I) and Lp(I), where p ∈ [1,∞). In the end, we have
introduced zipper fractal Müntz space and proved zipper fractal versions of the full Müntz theorem for
C([0, 1]) and Lp([0, 1]) where p ∈ [1,∞).
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