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A NEW METHOD OF V ARIANCE REDUCTION IN MONTE 
CARLO INTEGRATION 

Fatin SEZGİN' 

MJSTRACF 

The Mont~ Carlo ~chnique can be ıısed as a I'Mthod of statistical trials to 
calcuJaıe ,"rjace areas or object volumu by employing random nımıbers. It 
is especially he/pjul for complicaıed functions or irreg.Zor ,hope, in higher 
dimensionoJ spaces. In this work, relying on a rmdtinomial distribution. Wl! 

give a freslı new look on Hit-or-Mias integration and present a techniq"t! 
calkd Ertended Monte Carlo lnugraıion (EMCI) by expre"ing the integral 
a:rea of univariau functiOlU in difforent jvrms. By taking tM average of 
eanmarea from theıe forms it is possibk to inereast! efficiency while 
maintaming a rea.sonable caleularian speed. The application of this 
technique is demonsırated by wing single-variable fu.nctiom in the un;t 
square. The method can ~ geMra1ized to higher ~1ISi01U. There are very 
common cases in physics, chemistry, medicine, genetie! and biology where 
there is no uplicit junetian defining the region OT the volume to be estimated. 
In these cases, wtt!ad oj various fimction upressio'NJ, diffennt rotations and 
reflections of the figu,re or object can be wed. A distinet advantage of o"r 
method is its applicability to these problems. Inl1estigating the sıntability of 
the method to mıdti-core processors abo seems promising. 

Keywordıı: cnıde Moate Corlo, EllldeDcy, H1t-or-MiIıı integralioD, Moııte Carlo, Moote Carlo 
integration, Random number generator, Variance reduction. 

1. INTRODUCTION 

The use of simulation techniques extends to all fields of scieııce. Simulations using 
random numbers are called Monte Carlo methods. Many mathematical or applied 
problems can be solved by Monte Carlo techniques, wbich rely on the repetition of 
random trials. This approach is a widely used numerical method employing random 
numbers produced by computers. 

The Monte Carlo method is not restrieted to the generation of random processes. in sonıe 
cases the estimation of certain constants such as the mean of a random variable, areas of 
surfaces or volumes of objects can be calculated by using random numbers. The 
integrations of complicated functions in two- or bigher-dimensional spaces are other 
possible scenarios where Monte Carlo methods can be used. There are several methods 
of Monte Carlo integration, for cxaınple: Evans and Swartz (1999), Fishınan (1996), 
Gentle (2005), and Lemieux (2009). The Crude Monte Carlo inserts the random number 
into the function and calculates the average of the values obtained. This popular method 
is preferred in practice since it is fast and efficienl. on the other hand, Hit-or-Miss 
Monte Carlo casts n points into the space of function and fmds the ratios of points by 
using an indicator function on the integration regions. in this approach the outeome of 
each point generation is either success (witbin the integration region) or failure (outside 
of the integration region). Therefore the oulcome of an experiment with n random points 
will have a binoınial distribution. 
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Here we present a new Hit-or-Miss integration technique, called the Extended Monte 
Carlo Integration (EMCI) by defining several integration regions in a two-dimensional 
space. The resulting distribution will rely on a multinomial distribution and will increase 
the efficiency of the estimation. The generalization of the technique to higher 
dimensions is possible and is worth further investigation. 

This paper is organized as follows: Section 1 is the introduction. In Section 2, we 
summarize the usage of Monte Carlo integration method and present the general 
principles of our technique. In Section 3, we calculate expected variance reductions on 
six different functions, namely sin(x), e-x, √x, x2, x3, and (27/4)x(1-x)2. Section 4 presents 
simulation results for these functions, which serve as demonstrations supporting our 
theoretical arguments. Section 5 compares the speed of our method with the conventional 
single-area usage. In Section 6, our method is compared with the Crude Monte Carlo 
technique. Application of EMCI to higher dimensions is discussed in Section 7. The last 
section presents general conclusions. 

2. THE NEW METHOD FOR HIT-OR-MISS MONTE CARLO 

In two-dimensional applications of Hit-or-Miss Monte Carlo with n random trials, if x 
points fall within the region A, the area of this sub-region can be estimated by  

S
n
xSA =ˆ .                                                                                                                        (1)  

Here, S is the area of the regular-shaped region enveloping surface A. This approach is 
also used for the integration problems. Consider a single-variable function f to be 
integrated within the unit interval: 

∫=
1

0

.)( dxxfI                                                                                                     (2)  

This integral can be estimated by considering the region between the x axis and the 
curve f(x). The estimator must be unbiased and must have a small variance. Several 
variance reduction techniques have been developed to increase efficiency of the 
estimators. These are well documented in simulation literature: McGeoch (1992; 
L’Ecuyer (1994); Fishman (1996); Evans and Swartz (1999); Law and Kelton (2000); 
Gentle (2005); Ross (2006); Lemieux (2009). Here, we will introduce a new variance 
reduction method suitable for the Hit-or-Miss technique, on which there is not adequate 
work.  

2.1 Usage of Several Curves Simultaneously 

The integral region may occupy only a small portion of the rectangle and there is no 
reason to restrict it to its present position. We can define several curves leading to the 
same estimation value. Let f be a function within the unit square. We define a set with 
eight elements using a binary operation ◦ based on the following motions of the curve 
f(x): 

a) The curve f (x) is not moved. This is the identity operation: Curve f(x). 
b) It is rotated 90°clockwise around the center of the square: Curve f(1-y). 
c) It is rotated 180°clockwise around the center of the square: Curve 1- f(1-x). 
d) It is rotated 270°clockwise around the center of the square: Curve 1- f(y). 
e) It is reflected in the vertical line x = 1/2. Curve f(1-x). 
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f) It is reflected in the horizontal line y = 1/2. Curve 1- f(x). 
g) The curve (c) is reflected in the line y = 1-x. Curve 1- f (1-y). 
h) The curve (d) is reflected in the line y = x. Curve f(y). 

These eight positions under the binary operation form a closed group and the area under 
the curve f(x) can be calculated by using the corresponding region in anyone of these 
eight elements of this set. Table 1 is the multiplication table for the group defined by ◦. 

Table 1. The multiplication table for the group defined by ◦
  a b c d e f g h 

a a b c d e f g h
b b c d a g h f e 
c c d a b f e h g
d d a b c h g e f
e e h f g a c d b
f f g e h c a b d
g g e h f b d a c
h h f g e d b c a 

Example: The corresponding graphs are depicted in Figure 1 for the special case Beta 
curve f(x) = 6.75x(1-x)2. In a, c, e, and f, the curve will be compared by the value of the 
random number obtained from the y generator. In other curves, the function value is 
obtained from y variable and comparison is made with x generator. 
   
  

Figure 1. Eight possible representations for the f(x) = 6.75x(1-x)2

When the point falls within the area under the curve the value of an indicator function is 
increased by 1 as shown below: 

if (y ≤ f(x)) na=na+1. 
if(x ≤ f(1-y)) nb=nb+1  
if (y ≥ 1- f(1-x)) nc=nc+1 
if (x ≥ 1- f(y)) nd=nd+1   
if (y ≤ f(1-x)) ne=ne+1  
if (y ≥ 1- f(x)) nf=nf+1   

o.
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if (x ≥ 1-f(1-y)) ng=ng+1 
if (x ≤ f(y)) nh=nh+1. 

If a total of n points are cast within the unit square, one  can  use any  of  the counts na, 
nb, …, nh for estimating the area. But here it may be recommendable to use more than 
one indicator and then take the mean of the areas as the final estimator. We investigated 
the following possibilities: 

1. Use only a single curve 
2. Use the mean of the eight curves 
3. Use the reflections of the curves using x as the range, a, c, e, and f. 
4. Use the mean of the four rotations, a, b, c, and d.

The cases (2), (3), and (4) are depicted in Figure 2. 

We simulated the above cases for determining the variance reductions and execution 
times. The data are summarized in Table 2. The variances are obtained from 1000 runs 
of the simulation each having 10000 point pairs. In order to determine the speeds, 
simulation is run for 100,000,000 points. As a measure of efficiency the ratio of variance 
reduction to the execution time can be used. By combining several curves the execution 
time increased, but considering the variance reduction this is a reasonable price for the 
efficiency obtained. According to the last column of Table 2, usage of  a  single  curve  is  

               Figure 2. Some possible combinations for the f(x) = 6.75x(1-x)2 curve 

very inefficient. Case 2 gives highest efficiency followed by cases 4 and 3, but these last 
two have rather close values. Below we describe our method in detail for the reflections 
case. 

Table 2. The variances and execution times of different applications in Beta function 

  Variance Variance Reduction (%) Execution Time (Sec.) 

Single Curve 2.44x10-5 1.00 10.11 
Eight Curves 4.32 x10-6 5.66 20.65 
Four Rotations 5.80 x10-6 4.21 15.83 
Four Reflections 7.27 x10-6 3.36 14.89 

  

2.2 Reflections of f(x) 

Reflections method is presented by Sezgin (2010) as an initial version of this study. The 
reflections with respect to x = 1/2 and y = 1/2 lines use the x variable as the domain. 
Here we define the following curves: Down1 = f(x), Down2 = f(1-x), Up1 = 1 - f(x), and, 
Up2 = 1 - f(1 - x). Here, Down2 is the reflection of Down1 in x = 1/2 vertical line. Up1 
and Up2 are the horizontal reflections of Down1 and Down2 curves in line y = 1/2. This 
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approach is partly similar to antithetic variables by the usage of 1-x. But there is an 
original contribution by the addition of horizontal reflections Up1 and Up2. Therefore, in 
functions of a single variable, instead of two estimators in antithetic variables we provide 
four estimators and use the sample space more efficiently. The situation is depicted in 
Figure 3 for the function f(x) = x2. Let us denote the four integral estimates obtained from 
these regions as Î1, Î2, Î3, and, Î4. As an efficient estimation method we propose using the 
mean of these four estimates: 

4

ˆˆˆˆ
ˆ 4321 IIII
I

+++
= .                                                                                                      (3) 

                   

Figure 3. Joint usage of four regions for the integral of f(x)= .x2 showing 
                            regions employed once (light shaded) and twice (dark shaded) 

The four graphs define nine different sub-regions when they are superimposed. The 
integral estimate Î contains data obtained from 8 mutually exclusive regions. Each of the 
regions 1, 3, 5, and 7 are added twice in forming Î. Regions 2, 4, 6 and 8 are added only 
once, whereas region 9 does not have any contribution. Therefore, in terms of sub-
regions we can write 

                                                        (4) 

Let X1, X2, ···, X9 be the random variables showing the number of points falling within 
the regions 1, 2, ···, 9 when n points are cast into the unit square. In a realization of the 
simulation experiment of size n with k mutually exclusive and collectively exhaustive 
regions these random variables will have 

∑xi =n.

Xi variables will have probabilities pi satisfying 

                  (5) 

∑pi =1.                                           (6) 
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This situation defines the multinomial distribution for X values 
kx

k
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21

21 = .                                                                      (7) 

It is well known that the random variable Xi has mean µi = npi, and variance σi
2 = npi(1- 

pi). The covariance between two variables is σij = -npi pj. It is possible to calculate the 
mean and variance of the EMCI reflection estimate by using formulas related to a linear 
function of random variables X1, X2, ··· , Xk. Let 

Y=∑aiXi.                                           (8) 

Then the mean and variance of Y are    
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The multinomial probabilities can be obtained by considering curves and axes around 
the sub-regions. For example, in f(x) = x2 the area of the first sub-region will be: 
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The symmetry of the curves will imply that p1 = p5, p2= p4=p6= p8 and p3=p7. By using 
these values it is possible to calculate the variance of Î as 0.4412/(16n2).  

For f(x) = x2 the performance of mean estimator against the single curve estimator is 
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Therefore, the integral using only a single region has a variance eight times higher than 
our new method. In our application, one does not need to be concerned about sub-regions 
and their areas. Here, we presented them in a simple function to demonstrate the 
performance of our new method. 
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2.3 Rotations of  f(x)  

A curve f1 = f(x) in the unit square may be rotated clockwise around the center of the 
square by 90 , 180 , and 270 degrees giving curves f 2, f3, and f4 respectively. Since two 
random numbers are needed for a hit-or-miss integration, we use both generators as the 
domain for the function. The functions are defined as: 

f1: f(x)  
f2: f(1-y)  
f3: 1- f(1-x)  
f4: 1- f(y). 

From these curves f1 and f3 correspond to down1 and up2 curves of the reflection 
system. In the second and fourth cases the roles of x and y variables are interchanged. 1 
is added to the indicator functions when x< f(1- y) and x> f(1-y), respectively. The 
performance of the rotations is discussed in the next section. For the Beta function 
studied above, it was slightly slower but more efficient than the reflection method. Since 
it requires the calculation of the function four times, it may be rather slow for very 
complicated functions. 

3. VARIANCE REDUCTIONS FOR VARIOUS FUNCTIONS 

We demonstrated above the performance of our method for the Beta function. In this 
section we calculate the outcomes of five more examples of integration for the reflection 
method: 

1. Trigonometric function sin(x) 
2. Exponential function e-x

3. Square root function √x
4. Square function x2

5. Cubic function x3

These functions partition the unit square into k = 9 regions. The multinomial 
probabilities for these sub-regions are presented in Table 3. 

Table 3. The multinomial probabilities of nine sub-sections for the integration of five different 
functions 
p1 p2 p3 p4 p5 p6 p7 p8 p9

Sin(x) 0.175 0.040 0.245 0.040 0.175 0.040 0.245 0.040 0.001

e-x 0.043 0.112 0.213 0.112 0.043 0.112 0.213 0.112 0.040

√x 0.083 0.112 0.138 0.112 0.083 0.112 0.138 0.112 0.109

x2 0.138 0.112 0.083 0.112 0.138 0.112 0.083 0.112 0.109

x3 0.095 0.123 0.031 0.123 0.095 0.123 0.031 0.123 0.253
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Table 4. The coefficients for the sum of Xi variables in estimation of the total of four sub-regions 
a1 a2 a3 a4 a5 a6 a7 a8 a9

Sin(x) 2 1 2 1 2 1 2 1 0 

e-x 2 1 2 1 2 1 2 1 4 
√x 2 3 2 3 2 3 2 3 4 
x2 2 1 2 1 2 1 2 1 0 
x3 2 1 2 1 2 1 2 1 0 

In our estimator the sum of the points used in the calculation of Î may be expressed in 
terms of Xi variables as a linear combination of these areas by ∑aiXi. The coefficients ai
are presented in Table 4. Here we observe that sin(x), x2, and x3 have the same 
coefficients. In the square root there are many intersections between regions; this 
reduces the efficiency. The coefficients in Table 4 and probabilities in Table 3 are used to 
determine the variance of our estimator as in Table 5 by employing equation (10). The 
last function in Table 5 represents the Beta function f (x) = 12x(1 - x)2. We scaled it by 
changing the constant to 6.75 in order to equate the maximum of f(x) to 1. That function 
partitions the unit square into 19 sub-regions. 

Table 5.  The variances of integral estimations for six different functions by using a single  integral 
area and the average of four sub-sections 

Variances Var(Reflection)  Ratio 

Sin(x) 0.2479 0.0086 28.92 

e-x 0.2325 0.0206 11.31 
√x 0.2222 0.0276 8.06 
x2 0.2222 0.0276 8.06 
x3 0.1875 0.0316 5.93 
6.75x(1-x)2 0.2461 0.0790 3.12 

4. SIMULATION RESULTS 

In order to test our theoretical arguments, we carried out Monte Carlo simulations to 
integrate the six aforementioned functions. For each function we used 1000 runs, each 
having n = 10000 random points cast into the unit square. The entries in Table 6 are 
obtained by dividing the average variance of sub-regions to the variance of the EMCI 
estimators. The findings strongly agree with our arguments presented in Section 3. The 
greatest variance reduction is obtained by using the average of the eight curves. In 
certain cases, such as sine and exponential functions, this reduces the variance more 
than twice of reflection and rotation alternatives. Reflection and rotation have 
comparable performances, although the latter is slightly better in Beta function. 
Reflection requires the calculation of the integrated function twice whereas eight curves 
and rotation methods require this calculation four times. Therefore the relative speeds  
must also be taken into account for preference among methods. 

We also conducted series of simulations to assess the effect of sample size and compare 
the performances of various random number generators. For this purpose we used 25 
different random number generators of various families. All these generators exhibit 
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similar behaviors. Our proposed EMCI method approaches the true parameter value 
faster than any single integration region. In Figure 4, we present the errors of sin(x) 
integrals in reflection method for the Linear Congruential Generator with multiplier 
48271 and modulus 231 -1 as an example. The examination of this figure indicates that 
the Down1 and Up2 regions compensate the bias effects of each other. They move to 
opposite directions and balance each other. The same pattern is seen in Down2 and Up1 
regions. Since these pairs are located on opposite corners, an increase in one of them 
implies a decrease in the other. This is the same situation we observed in multinomial 
random variables. Regions with large intersections have a positive correlation, as seen 
in Down1 and Down2 or Up1 and Up2 cases. The correlations of regions are presented 
in Table 7.  

Table 6. The variance ratio comparisons of the average variance of single sub-regions with the 
variance of the EMCI estimates 

Eight Curves Reflection Rotation

sin(x) 55.7 25.0 27.0 
e-x 24.0 11.1 11.3 
√ x 9.3 8.1 8.0 
x2 9.3 8.0 8.1 
x3 6.8 5.6 5.8 
6.75x(1-x)2 5.7 3.4 4.2 

Table 7.  The correlations between integration regions for the sin(x) integral 

  Down1 Down2 Up1 
Down2 0.601280 1 
Up1 -0.67895 -0.85012 1 
Up2 -0.94150 -0.66130 0.70334 

Factors affecting the magnitude of the variance reduction are as follows: 

1. The amount of unused area will increase the variance of the EMCI estimator. For 
example, the x2 has a smaller unused region compared to x3 and the improvement in this 
case is higher. Negative covariances due to sub-region 9 are not reflected in formula (10) 
for some functions because they have a9 = 0. 

2. Multiple usages of sub-regions will decrease the efficiency of EMCI because this 
situation will induce positive correlations between components. Consider, for example, 
two random variables of the form 

 T = X1 +X2 +X3 +X4                               (13) 
  

and 

 S=2X1 +X2 +X3,                               (14) 

given that p1 = p4 . In this case expected values of T and S are equal but the variance of 
S is larger than the variance of T. By formula (10) we get 
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σS
2 =σT 

2 +2np1.                               (15) 

Therefore, a large intersection of areas will increase the variance of Î and this will reduce 
the efficiency. In Tables 5 and 6 the worst situation is that of the Beta function because 
it has the largest intersection areas. 

3. If all sub-regions are included at least once in the summation formula, the least usage 
frequency can be subtracted from all cells. It is obvious that if m is the minimum 
coefficient, then 
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Figure 4. The error of Sin(x) integration for sample sizes from 10 thousand to 10 million 

∑mxi =m∑xi =mn                               (16) 

is a constant and has zero variance. The only contribution to the estimator variance 
comes from cells having excess usages. For example, the smallest coefficient of the 
square root function is 2 and it can be subtracted from all coefficients, giving ai values 
0, 1, 0, 1, 0, 1, 0, 1, and 2. The same remark applies to e-x. In √x and e-x sub-regions 2, 4, 
6, and 8 have roughly the same size but the frequently used sub-region 9 is almost three 
times larger in √x. This decreases the efficiency of reflection estimator for the square 
root compared to the exponential. 

These observations suggest the potential benefit of using rectangular areas other than the 
unit square. We can use a larger Y axis to minimize curve intersections. For example, in 
√x, the Y axis may have length h =√2 in order to eliminate the sub-region 9. There will 
be eight sub-regions with coefficients 2, 1, 2, 1, 2, 1, and 2. Subtracting regions with 
small coefficients, four very large portions will remain. This causes a great improvement 
in the estimation and reduces the variance 0.22222/0.01266 = 17.55 times. Increasing the 
rectangle height, h, will minimize the intersection but the unused area may also 
increase. Moreover, the variance of the EMCI will be multiplied by h2. Therefore, 
increasing h may not be beneficial in some cases. For example, choosing h = 1.6875 in 
Beta distribution will eliminate several intersections, but the final estimator will have 
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only an improvement of 2.56.  

5. TIMINGS 

We tested the running times of the single and EMCI programs by a simulation 
comprising of n = 100,000,000 points. Total time requirements (in seconds) are 
presented in Table 8. The concerned programs coded in Fortran Power Station 4.0 
compiler were executed on an Intel Pentium 4, CPU 3.06 GHz processor with 2.00 GB 
of RAM on a Microsoft Windows XP Professional Version 2002 platform. The results 
show that our proposed method is rather fast. In several cases Eight Curves is almost as 
fast as the Rotation method. When the function is complex, such as sine, exponential 
and square root cases, the Reflection has a distinct advantage. The slowest function is the 
e-x but still, it requires only 80% more time compared to the single integration in 
Reflection method. The extra time requirements can be considered negligible compared 
to the variance reductions provided by our estimator. 

Table 8.   Time (sec.) comparison for single and EMCI estimators for simulations with 100,000,000 
points 

Function Single         Eight       Reflection   Rotation    Eight/      Reflection/ Rotation/ 
Curves Single Single Single 

sin(x) 32.0 102.3 56.3 102.2 3.2 1.8 3.2 
e-x 39.6 133.2 71.9 130.9 3.4 1.8 3.3
√x 25.6 82.3 45.8 79.5 3.2 1.8 3.1
x2 10.0 17.1 14.0 14.0 1.7 1.4 1.4
x3 9.6 16.8 13.4 13.8 1.8 1.4 1.4
6.75x(1-x)2 10.1 20.7 14.9 15.8 2.0 1.5 1.6 

6. COMPARISON WITH CRUDE MONTE CARLO 

Evans and Swartz (1999) state that, “Discussion of the rejection algorithm brings up to 
the first integration technique in the text, sometimes referred to as Hit-or-Miss 
integration. However this method is mostly of historical interest.” In widely used Crude 
Monte Carlo method, the values of random numbers are directly inserted into the function 
to be integrated and the mean is calculated as 

∑
=

=
n

i
ic xf

n
I

1
)(1ˆ .                                                         (17)  

Since Îc has a smaller variance compared to the Hit-or-Miss estimator Îh, Monte Carlo 
integration sources recommend Îc in practice. This difference can be seen by comparing 
the variances. In the unit square, since f(x) ≤ 1, the difference of variances is larger than 
zero as seen below: 
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The usage of EMCI will improve the Hit-or-Miss technique as discussed in previous 
sections. According to our simulations, EMCI becomes very efficient and has a 
competitive advantage against the Crude estimator, as seen in Table 9. The Crude 
estimator will have a smaller variance only when it is used with a variance reduction 
technique such as the antithetic variable.

Table 9. Variances of Crude Monte Carlo and Reflection EMCI methods obtained from 1000 
simulation runs, each having n=10000 points (Entries must be multiplied with 10-6)

Function Crude EMCI
sin(x) 6.01 0.81
e-x 6.01 0.81
x 5.26 1.22
x2 8.85 2.81
x3 12.6 7.36
6.75x(1-x)2 8.17 3.09

Our method has a distinct advantage in certain estimation problems:

Crude Monte Carlo can be improved by the usage of antithetic variates but this
method does not always work. For example, if the integrand is symmetric there is no 
gain. In this case EMCI reflection in y=1/2 can be beneficial. Consider the parabola 
y=4x(1- x). The antithetic variable will give the same equation. But defining the second 
curve as y=1-4x(1-x) will improve the estimation 1.8 times. A more effective application 
is to cut the upper curve in two parts as  y=(2x-(1+ 2))2 and y=(y-(1- 2))2 and replace 
them to the left and right of the integrand. This application may be called Cut and Paste 
EMCI. The rectangle of length 2 will extend from (1- 2)/2 to (1+ 2)/2. This
application reduces the variance of the estimate 8.2 times.

In some situations the Crude Monte Carlo can not be used because there is no
function representing the area or volume to be assessed. These cases involve two- or 
three-dimensional spaces and arise in many practical applications. The following studies 
can be mentioned as examples:

a) In multi-dimensional Nuclear Magnetic Resonance (NMR) experiments quantitative 
information can be obtained by peak volume integration as depicted in Figure 5. In this 
case the Hit-or-Miss technique is the most efficient way (Romano et al., 2008).

Figure 5. Nuclear magnetic resonance (NMR) spectra to be integrated
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b) In order to assess the growth patterns of hepatocellular carcinoma with the aid of 
stochastic modeling, Saftoiu et al. (2004) use the Hit-or-Miss method for estimating the 
volume of tumors. According to their study this Monte Carlo technique gives more 
reliable results compared to the analysis of histological and ultrasonographic 
characteristics.

c) Hit-or-Miss Monte Carlo integration can be used to find virial coefficients of some 
volumes in Molecular Physics (Vlasov et al., 2002).

d) The Hit-or-Miss Monte Carlo method is used in path importance sampling and 
implementation for Markovian path simulations in atomistic modeling techniques (de 
Koning et al., 2005). Here, the purpose of predictive modeling and simulation at the 
atomistic level is to characterize and quantify the atomistic unit mechanisms that control 
the macroscopic behavior of complex systems. This objective is common to many fields 
of research, including chemistry, physics, biology, and materials science.

e) In some applications the location and even the shape of the area or volume to be 
inspected may be unknown (Naiman and Priebe (2001); Priebe et al. (2001). Therefore, 
in detecting a signal of unknown location and geometry in a Gaussian random field 
(GRF) and detecting a cluster of unknown location and geometry in a point process or a 
multinomial sequence there is no explicit function to be integrated. Examples of this 
application are multinomial sequences in molecular genetics, spatial point processes in 
digital mammography, and Gaussian random fields in PET scan brain imagery. Another 
application is the case of marked spatial Poisson processes applied to minefield 
reconnaissance using multiple scan geometries. Romano et al. (2008) prepared a toolbox 
called MatCAKE for integrating 2D NMR spectra in Matlab. It is possible to implement 
EMCI as a built-in software for some medical or physical equipment.

f) In studying cirrus clouds by remote-sensing Takano and Liou (1995) compute 
scattering, absorbtion and polarization properties of ice crystals with various irregular 
structures. In this study the incident photons are traced with a Hit-or-Miss Monte Carlo 
method.

7. APPLICATION TO HIGHER DIMENSIONS

The present work demonstrates the performance of the proposed technique for some 
simple univariate functions. It is worth studying the application for different volumes in 
higher dimensions. In reflection EMCI by introducing each variable as Ui or 1 -Ui in
functions with d variables, it is possible to obtain 2d different Down functions. By 
extending the calculations to the horizontal reflections of these functions we will have a 
sample space consisting of rectangular boxes in d + 1 dimensions. This is the crucial 
point in the Reflection EMCI method. For example, in a bivariate function we may use 
the following 2d=4 Down forms: f(x,y), f(1-x,y), f(x,1-y), f(1-x,1-y). By reflecting these 
functions horizontally we may get four additional curves: 1-f(x,y), 1-f (1-x,y), 1-f(x,1-y), 
and 1-f(1-x,1-y). Therefore, the integration of a bivariate function will involve eight 
corners of a three-dimensional rectangular box.

In order to demonstrate the performance of EMCI in higher dimensions we worked on 
the functions studied in Section 3 by forming their additions for two and three variables. 
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For example, for the trigonometric function we obtained a bivariate function 
f(x,y) =sin(x) + sin(y) and a three-variate function f(x,y, z) = sin(x) + sin(y) + sin(z). The 
average variance reductions of the reflection EMCI estimator for these cases are 
summarized in Table 10. In d = 2 and d = 3 columns each entry is the mean of eight and 
16 values, respectively. The difference between performances of various functions can be 
attributed to the magnitudes of curve intersections and empty regions. By changing the 
box dimensions it is possible to improve the performance further.

In higher dimensions the number of function evaluations increases exponentially with d
and this creates the curse of dimensionality problem. In this case, using only some 
evaluations can be recommended. For example, according to our data, in bivariate 
functions f(x,y) and 1-f(1-x,1-y) are situated on opposite corners and have a minimum 
intersection. Therefore, their joint usage provides rather good improvement compared to 
a single function. It is also promising to investigate the suitability of our method to 
multi-core processors. In this application each form can be assigned to a different core 
and the results can be collected for final evaluation.

Table 10. Mean ratio obtained by dividing the variances of single Hit-or-Miss estimators to the 
variance of the Reflection EMCI method

Function d =2 d =3
Sine 51.4 81.7
Exponential 13.6 11.1
Square root 9.8 9.6
Square 11.8 11.5
Cube 7.5 7.2
Beta 5.5 6.8

8. CONCLUSIONS AND FURTHER RESEARCH

In estimating integrals or finding areas (volumes) of figures (objects) the Hit-or-Miss 
Monte Carlo method can be used by considering different orientations of the regions. In 
functions within a unit square, this can be realized by finding the mean value of
integrations in different regions created by rotations and reflections. These regions define 
a multinomial probability distribution and by considering different sub-regions we prove 
that our proposed method, Extended Monte Carlo Integration, causes a substantial 
reduction in the variance of the estimate. In the current literature the Hit-or-Miss method 
has a very restricted application and is considered mainly for historical interest. Our new 
method creates an estimator with a rather small variance. Its efficiency can be improved 
further by choosing suitable rectangles other than the unit square in order to minimize 
intersections or empty regions in the plane. There are cases very common in physics, 
chemistry, medicine, genetics and biology where there is no explicit function defining the 
region or the volume to be estimated. These cases are generally restricted to two- and 
three-dimensional spaces. A distinct advantage of our method is its applicability to these
problems. Here, instead of different forms of function expression, various reflections and 
rotations of the figure or object can be used.

As final remarks we can suggest that:

• The method can be generalized to higher dimensions and non-unit rectangular boxes.
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• Since the number of function evaluations increases exponentially with dimension, 
only some forms taking place on opposite corners may be considered for calculations.

• The parallel calculation possibilities of multi-core computers will be beneficial in 
speeding up calculations in higher dimensions.
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MONTE CARLO İNTEGRASYONUNDA VARYANS AZALTıCı 
YENİ BİR TEKNiK. 

Ö7EI 

Monle Carlo ~kniti. rasgele sayılar hdlanarak yüzey alanlarım veya cisim 
hacimlerini bulmaya yarayan bir istatistik deMY ""'tada olarak 
kuUanıkJbilir. Kar_ık jrmksiyonlarda veya d/izgün olmayan şekilkrde 
OzeUikJe yüksek boyutlu uzaylar için yararlıdlr. Monte Car/o .. knigine yeni 
bir yaklaşım sunan bu çal~manuzda mültinom dağıl~tan hareketle nokta 
atışlarındaki lsabet-veya- lsabetsiz/ik inıegrasyonuna jarl:lı bir ~ açısı 
getirilmekte ve GeneUeştirilmiş Monte Carlo lnıegrasyonu diye 
adlandırdığımız bir teknik tanıtılmaktadır. Burada, tek değişkenli inıegral 
lfkmi yapılırken, üZerinde Çal~ılan alanın değişik ewikrle ifade edilme.iyle 
elde edilecek farklı taJunin edicüenn ortalaması alınmakta ve böylece 
hesaplama hı:.ı makul bir sm,rda tutulurken, tahminin etkinliği 

artımlmaktatilr. Birim kare ıel:lindeki bir düZknuk kullamlan tek değişkenli 
fonksiyonlar yardımıyla bu yeni teknigin uygulaması gOsıerilmiştir. Metod 
daha yüksek boyutlara da genelleştirilebUir. Öte yandan, fizjk, kimya, np, 
genetik ve biyolojide, alanı veya hacmi hesaplanacak yüZey veya şekiUeri 
ifade eden belli bir fonksiyonun bulunmadığı yaygın durumlar vardır. Bu 
durıım/arda farl:lı fonksiyon ifadekri yerine, yüZey veya cisim degişik 

yansımalara ve döndürmillere tabi tutulabilir. Tel:lif ettigimiz yeni teknigi 
Ü.rtUn kılan seçici özelliklerden birisi, bu tür problemlere ıtygulanabilmesidir. 
Metodun çok işlemcili bilgisayar ortamlarına uygulanabilmesi de üZerinde 
durulmoya değer bir husustur. 

Anahtar K2Iimeler: Etkinlik, Ham Monte Cmo, İsohet-nya.__ integrasyonu, Monte 
Carlo, Monte carlo integruyonu, Rastgele sayı ÜretIdS~ Varyans aZaLtıImaaı. 
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