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Abstract 

Many problems based on natural sciences need to be solved by the scientists and engineers to serve 
the humanity. One of the well-known model in atomic universe is condensed into an equation, and 
called the Thomas-Fermi equation. It is a second order differential equation, which describes charge 
distributions of heavy, neutral atoms. No exact analytical solution has been found for the equation yet. 
In fact, strong nonlinearity, singular character and unbounded interval of the problem causes great 
difficulty to obtain an approximate numerical solution as well. In this paper, the Thomas-Fermi equation 
is solved using a second order finite difference method along with application of quasi-linearization 
method. Semi-infinite interval of the problem is converted into [0, 1) using two different coordinate 
transformations, namely algebraic and exponential mapping. Numerical order of accuracy has been 
checked using systematic mesh refinements and comparing the calculated initial slope y'(0). Calculated 
results for initial slope is found in good agreement with the results available in the literature. Lastly, 
accuracy is improved by the application of the Richardson extrapolation. 

 

Rasyonel Üslü Cebirsel ve Üstel Eşleme Yaklaşımı ile Thomas-Fermi 
Denklemi için İkinci Derece Doğruluklu Sonlu Farklar Yöntemi 

Anahtar Kelimeler 

Thomas-Fermi 

Denklemi;  

nonlineer ADD;  

Yarı sonsuz aralık; 

 Sonlu Farklar Metodu;  

Sanki-lineerleştirme; 

 Aralık eşleme 

Öz 

Doğa bilimlerine dayalı birçok problemin insanlığa hizmet etmesi için bilim insanları ve mühendisler 

tarafından çözülmeleri gerekir. Atomik dünyadaki iyi bilinen modellerden biri, bir denklemde yoğunlaşır 

ve bu denklem Thomas-Fermi denklemi olarak adlandırılır. Thomas-Fermi denklemi ağır, nötr atomların 

yük dağılımlarını tanımlayan ikinci dereceden bir diferansiyel denklemdir. Denklem için henüz tam bir 

analitik çözüm bulunamamıştır. Esasen, problemin güçlü nonlineer yapısı, tekil özellik sergilemesi ve 

sınırsız aralıklı tanım kümesi, yaklaşık sayısal bir çözüm elde etmede de büyük zorluklara yol açmaktadır. 

Bu makalede, Thomas-Fermi denklemi, sanki-doğrusallaştırma yöntemi ile birlikte ikinci dereceden 

doğruluklu bir sonlu farklar yöntemi kullanılarak çözülmüştür. Problemin yarı sonsuz aralığı, cebirsel ve 

üstel eşleme olarak adlandırılan iki farklı koordinat dönüşümü kullanılarak [0, 1) aralığına 

dönüştürülmüştür. Sayısal doğruluk mertebesi, sistematik ağ sıkılaştırma tekniği kullanılıp hesaplanan 

başlangıç eğim y'(0) değerlerinin karşılaştırılması ile kontrol edilmiştir. Başlangıç eğimi için hesaplanan 

sonuçların, literatürde verilen sonuçlarla iyi bir uyum içinde olduğu gösterilmiştir. Son olarak, 

Richardson ekstrapolasyonunun uygulanmasıyla çözümün doğruluk mertebesi arttırılmıştır. 

© Afyon Kocatepe Üniversitesi 

 

1. Giriş 

Researchers use mathematics to reveal the mystery 

of the universe by modelling the physical 

phenomena mostly in differential forms. 

Engineering problems as well as scientific ones such 

as heat transfer, ship hydrodynamics, fluid 

dynamics, strength of marine structures are mostly 

described in differential equations. Moreover, they 
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are initial and/or boundary value problems in finite, 

semi-infinite and infinite intervals. However, exact 

solution of the investigated differential equation of 

the modelled system is not always available. 

Therefore, some approximations and approaches 

should take place to reach to the solution of the 

problem, which satisfies the requirements of the 

case or the investigated system.  

The Thomas-Fermi model was first presented by 

Thomas (1927) to determine the effective electric 

field inside the heavy atoms with four assumptions 

to condense the model into an equation. Moreover, 

Fermi (1928) stated that the model is statistically 

founded to determine the distribution of electrons 

in a heavy atom, where he considered electrons as 

a uniform gas around the nucleus. Therefore, 

Thomas-Fermi equation describes charge 

distribution of heavy, neutral atoms. The equation is 

a second order nonlinear and singular differential 

equation with semi-infinite interval, which is given 

as 

𝑑2𝑦

𝑑𝑥2
=

𝑦
3
2

√𝑥
, 𝑦(0) = 1, 𝑦(∞) = 0 (1) 

The Thomas-Fermi equation is considered as one of 

the most important non-linear equation in 

mathematical physics and attracted many 

researchers. Baker (1930) searched an analytical 

solution around 𝑥 = 0 and obtained a series 

solution as 

𝑦(𝑥) = 1 + 𝛼𝑥 +
4

3
𝑥

3
2 +

2

5
𝛼𝑥

5
2 +

1

3
𝑥3 + ⋯ (2) 

Where 𝛼 is the initial slope. Sommerfeld (1932) 

examined the asymptotic behaviour of the problem 

and reported  that:  

𝑦(𝑥)~
144

𝑥3
as 𝑥 → ∞ (3) 

Feynman (1949) numerically integrated the 

equation with quadratic approximation for the eight 

different values of the initial slope, and 

approximated 𝛼 in between −1.58876 and 

−1.58874. Kobayashi et al. (1955) obtained an 

improved asymptotic solution and reported 𝛼 =

−1.588070972 with great accuracy. Mason (1964) 

used a rational approximation, which satisfies both 

asymptotic approximation of Sommerfeld (1932) 

and initial approximation of Baker (1930) and 

obtained following analytical approximation:    

𝑦(𝑥) = (
1 + 1.81061𝑥

1
2 + 0.60112𝑥

1 + 1.81061𝑥
1
2 + 1.39515𝑥 + 0.77112𝑥

3
2 + 0.21465𝑥2 + 0.04793𝑥

5
2

)

2

(4)

Csavinsky (1968) obtained an approximate 

analytical solution for the Thomas-Fermi equation 

using Ritz variational method with a three-

parameter-trial function. Moreover, Roberts (1968) 

presented a one-parameter trial function.  Anderson 

and Arthurs (1968) suggested a better trial function 

in comparison with Csavinsky and Roberts. Bender 

et al. (1989) introduced a perturbative technique 

and applied to several ordinary differential 

equations including the Thomas-Fermi equation. 

They calculated the 𝛼 with 13% relative difference 

from the exact result. Laurenzi (1990) used a similar 

perturbative method and calculated the initial slope 

with only 0.03% relative difference from the exact 

result. Wazwaz (1999) introduced a new non-

perturbative analytical approach to solve the 

Thomas-Fermi equation, which is based on modified 

decomposition method with Pade approximants.  

Abbasbandy and Bervillier (2011) have achieved a 

new level of accuracy. They used Pade-Hankel 

method to solve the Thomas-Fermi Equation and 

were able to compute first 22 decimal places of the 

initial slope as 𝛼 =

−1.5880710226113753127189 ± 7 × 10−22. 

Parand et al. (2017) introduced an accurate spectral 

method using fractional order of rational Jakobi 

functions.  Robin (2018) gave an analytical 

approximation, which was obtained from numerical 

data provided by Parand et al. (2017). Parand and 

Delkhosh (2017) introduced another spectral 

method by using fractional order of rational 

Chebyshev functions and solved the Thomas-Fermi 
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problem with an excellent numerical accuracy of 37 

decimal places. The method of Parand and Delkhosh 

(2017) was further improved recently by Zhang and 

Boyd (2019). Zhao et al. (2021) introduced a hybrid 

technique using finite volume method and the 

asymptotic Puiseux series to obtain approximate 

solution to the Thomas-Fermi equation. 

Solving eq. 1 with common integration methods, 

such as Runge-Kutta method, involves great 

difficulty. The main reason for that, 𝑦 is strongly 

dependant to the initial slope  𝛼 = 𝑦′(0). In order 

to use such method, an initial guess for 𝛼 should be 

chosen in order to numerically integrate eq.1 from 

𝑥 = 0. If 𝛼 is chosen larger than its exact value, 𝑦 

tends to infinity for some finite value of x. On the 

other hand, if 𝛼 is chosen smaller that its correct 

value, 𝑦 becomes negative for a finite value of x so 

that the solution becomes complex. These 

behaviours of the equation were examined in detail 

by Hille (1970).  

Solving eq. 1 with a numerical method such as finite 

difference method also involves difficulties. Firstly, 

the problem is a boundary value problem, which is 

defined on an unbounded interval. Secondly, direct 

discretization of the eq. 1 results in a system of 

nonlinear equations. Finally, it is difficult to achieve 

second order or higher order accuracies, since 

second derivative and higher order derivatives of y 

has a pole at 𝑥 = 0. 

In this paper, a second order finite difference 

method is introduced to solve the Thomas-Fermi 

equation. Suitable coordinate transformations are 

used in order to achieve a second order accuracy 

and avoid any error due to domain truncation. By 

these transformations, semi-infinite interval of the 

problem is mapped into interval [0, 1).  Quasi-

linearization method is applied in order to convert 

the problem to a set of linear system of equations. 

The aim of this paper is to provide a simple and 

effective compact finite difference formulation and 

show the power of mapping to solve problems 

defined on an unbounded interval.  

 

 

2. Coordinate Transformation 

The Thomas-Fermi equation is a boundary value 

problem defined on a semi-infinite interval. A 

common method to solve such problems is called 

boundary truncation method. In this method, semi 

infinite interval where 𝑥 ∈ [0, ∞) is replaced with 

𝑥 ∈ [0, 𝑥∞) where 𝑥∞ is a sufficiently large finite 

number. However, choosing  𝑥∞ either is based on 

the experience or requires additional study. 

Mathematicians developed several techniques to 

determine 𝑥∞ (Lentini and Keller 1980; de Hoog and 

Weiss, 1980; Markowich, 1982; Markowich 1983; 

Fazio 1992). On either case, truncation of the 

boundary includes some error.  

Another approach is to introduce a suitable 

coordinate transformation, which maps the 

unbounded interval of the problem into a bounded 

one. Van de Vooren and Dijkstra (1970) applied 

coordinate transformations to investigate laminar 

fluid flow over a flat plate. They change the original 

interval  𝑥 ∈ [0, ∞) into 𝜉 ∈ [0,1.25) via following 

transformation: 

𝑥 =
5𝜉

5 − 4𝜉
+ 5𝜉2(1 − 𝜉2) (5) 

Grosch and Orszag (1977) used coordinate 

transformations for several problems such as heat 

equation, wave equation, fluid dynamics etc.,   and 

showed the success of the method for problems 

where the solution approaches to a constant value 

at infinity. Fazio and Jannelli (2014) introduced 

quasi-uniform grid approach, which is based on the 

coordinate transformations, in order to solve 

Falkner-Skan fluid flow equation and a structural 

mechanics problem. They used following 

transformations to map 𝑥 ∈ [0, ∞) into 𝜉 ∈ [0,1): 

𝜉 = 1 − 𝑒−
𝑥
𝑐 (6) 

𝜉 =
𝑥

𝑥 + 𝑐
(7) 

where c is a control parameter. Eq.s 6 and 7 are 

called exponential and algebraic maps, respectively. 

In this study, we introduce following 

transformations for the Thomas-Fermi Equation: 
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𝜉 = 1 − 𝑒−√𝑥 (8) 

𝜉 =
√𝑥

√𝑥 + 1
(9) 

These transformations map the interval 𝑥 ∈ [0, ∞) 

into 𝜉 ∈ [0,1).  

Eq. 8 is referred fractional order of exponential map 

(FOEM) while eq. 9 is referred fractional order of 

algebraic map (FOAM). The term fractional order is 

due to the fact that √𝑥 is used instead of 𝑥 in the 

equations. The reason we use  √𝑥 instead of 𝑥 is 

that, the asymptotic approximation of the eq. 1 

around 𝑥 = 0 is of the form of power series 

expansion of √𝑥 . Due to this behavior of y(x), it is 

not possible to achieve second or higher order 

accuracy by using eq.s 6 and 7 (see Ref. 3). There will 

always be an error dominated by the term 
4

3
𝑥

3

2.  

The FOEM and FOAM convert the Thomas-Fermi 

equation to the following boundary value problems, 

respectively: 

(1 − 𝜉)2

4 ln(1 − 𝜉)

𝑑2𝑦

𝑑𝜉2
+

(1 − 𝜉)[1 − ln(1 − 𝜉)]

4[ln(1 − 𝜉)]2

𝑑𝑦

𝑑𝜉
+ 𝑦

3
2 = 0, 𝑦(0) = 1, 𝑦(1) = 0 (10) 

(1 − 𝜉)5

4𝜉

𝑑2𝑦

𝑑𝜉2
−

(1 − 𝜉)4 + 3𝜉(1 − 𝜉)3

4𝜉

𝑑𝑦

𝑑𝜉
+ 𝑦

3
2 = 0, 𝑦(0) = 1, 𝑦(1) = 0 (11)

 3. Quasi-linearization of the Equations  

The quasi-linearization is an effective method for 

solving nonlinear differential equations. First, 

Bellman and Kalaba (1965) introduced this method, 

and used it to solve several nonlinear boundary 

value problems. It is also frequently used approach 

to analyze and solve engineering and design 

problems as in maritime applications. Amromin 

(2015) investigated bottom ventilated cavitation in 

seaways with control device of the flow by quasi-

linearize the cavity flow, pressure constancy 

condition as well as momentum for turbulent flow. 

In another article, Amromin (2018) executed a 

research on the impact of sea waves on ships as if 

the bottom cavity acts as a shock absorber, and 

quasi-linearized the equations to analyze and solve. 

Kumari and Kukreja (2022) proposed a method, 

which consists of quasi-linearization of the non-

linear terms, to analyze modified long wave 

equations. Ahmad et al. (2017) introduced a method 

to carry out static deflection analysis of an infinite 

beam, which requires governing non-linear 

equations to be quasi-linearized. Pelka et al. (2017)  

presented a study on underwater positioning and 

communication for the autonomous vehicles, and 

they use quasi-linearization to estimate the position 

based on distance. 

Discretization of the eq.s 10 and 11 leads to a set of 

nonlinear algebraic equations, which are not easy to 

solve. Instead, we apply quasi-linearization before 

discretizing the equations in order to obtain a set of 

linear equations, which can be solved.  

In this paper, the Thomas- Fermi equation is quasi-

linearized as: 

𝑑2𝑦𝑛+1

𝑑𝑥2
− 1.5√

𝑦𝑛

𝑥
𝑦𝑛+1 = −0.5

𝑦𝑛

3
2

√𝑥
(12) 

with the boundary conditions: 

𝑦𝑛+1(0) = 1,  𝑦𝑛+1(∞) = 0 (13) 

where 𝑛 denotes the number of iteration. The same 

quasi-linearization could be seen in Mandelzweig 

and Tabakin (2001) and Parand et al. (2017). It can 

be seen from the eq. 12 that (𝑛 + 1)’th solution of 𝑦 

is calculated from 𝑛th iteration. Thus, the quasi-

linearisation method requires an initial guess of 𝑦0, 

which can be chosen from physical or mathematical 

considerations. In this study, initial guess is assumed 

as follows: 

𝑦0(𝑥) = 𝑒−𝑥 (14) 

Using the similar approach, eq.s 10 and 11 can be 

rearranged as follows: 
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(1 − 𝜉)2

4 ln(1 − 𝜉)

𝑑2𝑦𝑛+1

𝑑𝜉2
+

(1 − 𝜉)[1 − ln(1 − 𝜉)]

4[ln(1 − 𝜉)]2

𝑑𝑦𝑛+1

𝑑𝜉
+ 1.5√𝑦𝑛𝑦𝑛+1 = −0.5𝑦𝑛

3
2 (15) 

(1 − 𝜉)5

4𝜉

𝑑2𝑦𝑛+1

𝑑𝜉2
−

(1 − 𝜉)4 + 3𝜉(1 − 𝜉)3

4𝜉

𝑑𝑦𝑛+1

𝑑𝜉
+ 1.5√𝑦𝑛𝑦𝑛+1 = −0.5𝑦𝑛

3
2 (16) 

with boundary conditions: 

𝑦𝑛+1(0) = 1, 𝑦𝑛+1(1) = 0 (17) 

Now, eq.s 15 and 16 can be solved numerically for 

𝑦𝑛+1 under boundary conditions given eq 17. 

Iterations can be terminated when a desired level of 

convergence is achieved.  

4. Discretization of the Equations via Finite 

Difference Method 

Finite difference method is considered as a popular, 

simple, yet powerful tool to obtain approximate 

solutions for nonlinear boundary value problems. 

Moreover, particularly in marine sciences, naval 

architecture and ocean engineering, the method is 

well-respected and utilized by many engineers and 

designers to cope with analytically unsolvable 

engineering problems.  Lee et al. (2011) simulated 

and analyzed tank sloshing phenomena regarding to 

the free surface effect by using finite difference 

method. Jose et al. (2017) modeled and simulated 

non-linear forces due to breaking waves on a mono-

pile structure and compared to experimental 

results, then they showed that finite difference 

method yields a good agreement with experiments. 

Mekki and Ali (2013) used finite difference method 

based on a Crank-Nicholson type discretization to 

simulate and handle a water wave problem, which 

appeals to engineers dealing with ships and off-

shore structures. Lu et al. (2016) applied finite 

difference method via utilizing Padé approximation 

to deal with a numerical solution of the propagation 

of long waves on the surface of water. In addition, 

researchers developed compact finite difference 

schemes for solving singular nonlinear boundary 

value problems (Roul et al. 2019, Setia and Mohanty 

2021, Chawla et al. 1986, Pandey and Singh 1978).   

We use a well-known finite difference method to 

obtain a numerical solution for eq.s 15 and 16. In 

order to achieve that, we first divide the interval 

[0,1) into 𝑁 equally spaced subintervals. Then, we 

define 𝜉𝑖 = 𝑖ℎ for 𝑖 = 0,1,2, … . , 𝑁, and ℎ denotes 

the length of subintervals. For convenience, we 

define 𝑦𝑖 = 𝑦(𝜉𝑖). The boundary conditions in eq. 

17 corresponds to: 

𝑦0 = 1, 𝑦𝑁 = 0 (18) 

Derivatives of 𝑦 with respect to 𝜉 can be calculated 

from the central difference formula, which are given 

by Gerrald (1978): 

𝑑2𝑦

𝑑𝜉2
|

𝜉𝑖

=
𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖−1

ℎ2
(19) 

𝑑𝑦

𝑑𝜉
|

𝜉𝑖

=
𝑦𝑖+1 − 𝑦𝑖−1

2ℎ
(20) 

The discretization of FOEM yields to: 

𝐴𝑖

(𝑦𝑛+1)𝑖+1 − 2(𝑦𝑛+1)𝑖 + (𝑦𝑛+1)𝑖−1

ℎ2
+ 𝐵𝑖

(𝑦𝑛+1)𝑖+1 − (𝑦𝑛+1)𝑖−1

2ℎ
+ 𝐶𝑖(𝑦𝑛+1)𝑖 = 𝐷𝑖 (21)

 

where coefficients are 

𝐴𝑖 =
(1 − 𝜉𝑖)2

4 ln(1 − 𝜉𝑖)
(22) 

𝐵𝑖 =
(1 − 𝜉𝑖)[1 − ln(1 − 𝜉𝑖)]

4[ln(1 − 𝜉𝑖)]2
(23) 

𝐶𝑖 = 1.5√(𝑦𝑛)𝑖 (24) 

𝐷𝑖 = −0.5(𝑦𝑛)𝑖

3
2 (25) 

Eqs. 21 – 24 can also be written as in the following: 

𝐴𝑖(𝑦𝑛+1)𝑖−1 + 𝐵𝑖(𝑦𝑛+1)𝑖 + 𝐶𝑖(𝑦𝑛+1)𝑖+1 = 𝐷𝑖 (26) 

where 
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𝐴𝑖 =
(1 − 𝜉𝑖)2

4ℎ2 ln(1 − 𝜉𝑖)
−

(1 − 𝜉𝑖)[1 − ln(1 − 𝜉𝑖)]

8ℎ[ln(1 − 𝜉𝑖)]2
(27) 

𝐵𝑖 = 1.5√(𝑦𝑛)𝑖 −
(1 − 𝜉𝑖)2

2ℎ2 ln(1 − 𝜉𝑖)
(28) 

𝐶𝑖 =
(1 − 𝜉𝑖)2

4ℎ2 ln(1 − 𝜉𝑖)
+

(1 − 𝜉𝑖)[1 − ln(1 − 𝜉𝑖)]

8ℎ[ln(1 − 𝜉𝑖)]2
(29) 

𝐷𝑖 = −0.5(𝑦𝑛)𝑖

3
2 (30) 

Eqs. 25 – 29 gives N-1 linear equations for N-1 

unknown (𝑦𝑛+1)𝑖 where the coefficient matrix of 

the system of equations has tridiagonal banded 

form so that this system of equations can easily be 

solved by the Thomas algorithm (Ford 2015). 

Application of the same procedure on FOAM leads 

to following equations: 

𝐴𝑖(𝑦𝑛+1)𝑖−1 + 𝐵𝑖(𝑦𝑛+1)𝑖 + 𝐶𝑖(𝑦𝑛+1)𝑖+1 = 𝐷𝑖 (31) 

where 

𝐴𝑖 =
(1 − 𝜉𝑖)5

4ℎ2𝜉𝑖
+

(1 − 𝜉𝑖)4 + 3𝜉𝑖(1 − 𝜉𝑖)3

8ℎ𝜉𝑖
(32) 

𝐵𝑖 = 1.5√(𝑦𝑛)𝑖 −
(1 − 𝜉𝑖)5

2ℎ2𝜉𝑖
(33) 

𝐶𝑖 =
(1 − 𝜉𝑖)5

4ℎ2𝜉𝑖
−

(1 − 𝜉𝑖)4 + 3𝜉𝑖(1 − 𝜉𝑖)3

8ℎ𝜉𝑖
(34) 

𝐷𝑖 = −0.5(𝑦𝑛)𝑖
1.5

(35) 

As one can notice that, the discretization of both 

eq.s 16 and 17 results in a similar system of linear 

algebraic equations where the coefficient matrix of 

the equations have a tridiagonal banded form.  

5. Results and Discussion 

Fig. 1 compares the meshes created with FOEM and 

FOAM approaches for 𝑁 = 10. It can be seen that 

both approaches provide higher resolution for small 

𝑥 while lower resolution for large 𝑥. This is very 

beneficial particularly for problems where 𝑦 closely 

follow a constant value for large values of 𝑥. When 

the meshes are compared, it is seen that FOEM 

approach gives slightly higher resolution than FOAM 

approach when 𝑥 is small. While FOAM approach 

gives higher resolution than FOEM approach when 

𝑥 is large.  

Figure 1. Comparison of the Meshes Created Using FOEM (Top Frame) and FOAM (Bottom Frame). The last 

mesh point is at infinity in both cases. 

Table 1 lists the calculated results of 𝛼 = 𝑦′(0) 

using both FOEM and FOAM approaches for 

increasing values of N. Estimated order of accuracies 

(𝑝) are also added to the Table 1. The order of 

accuracies is estimated by: 

𝑝 =
ln(|𝛼1280 − 𝛼𝑁|) − ln(|𝛼1280 − 𝛼2𝑁|)

ln 2
(36) 

where  𝛼𝑁 is the initial slope calculated using 𝑁 

intervals. It can be said that the results of the both 

approaches are in a good agreement. The calculated 

initial slopes obtained from FOEM approach are 

slightly less than those obtained from FOAM 

approach. It can also be deduced from the table that 

the second order of accuracy is achieved by both 

approximations.   Fig. 2 shows the numerical 
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solution obtained using FOEM approach when 𝑁 =

40.    

Table 1. Numerical Approximation of 𝛼 and Estimated Order of Accuracies 

𝑵 𝜶𝑭𝑶𝑬𝑴 
Relative 

Error 
𝒑𝑭𝑶𝑬𝑴 𝜶𝑭𝑶𝑨𝑴 

Relative 

Error 
𝒑𝑭𝑶𝑨𝑴 

40 -1.5866617401 -8,87E-04 1.93774 -1.5849416318 -1,97E-03 1.97696 

80 -1.5877020899 -2,32E-04 2.01871 -1.5872738147 -5,02E-04 2.03099 

160 -1.5879788813 -5,80E-05 2.05932 -1.5878736628 -1,24E-04 2.08197 

320 -1.5880478088 -1,46E-05 2.31679 -1.5880220892 -3,08E-05 2.32841 

640 -1.5880651998 -3,67E-06 ∞ -1.5880588486 -7,67E-06 ∞ 

1280 -1.5880695670 -9,17E-07  -1.5880679870 -1,91E-06  

 

 

Figure 2. Numerical Solution obtained with FOEM approach (𝑁 = 40). 

Zhang and Boyd (2019) gives 𝛼 =

−1.5880710226 ⋯ with high accuracy. The error of 

the both approaches in this paper, when 𝑁 = 1280, 

is less than 10−5 in comparison of initial slope. This 

error can be reduced by improving the order of the 

numerical accuracy via Richardson (1927) 

extrapolation method.  Application of this method is 

explained in detail by Fazio and Janelli (2014). By 

using this method, extrapolated values of 𝛼 can be 

calculated from 

𝛼𝑒𝑥𝑡 =
2𝑝𝛼2𝑁 − 𝛼𝑁

2𝑝 − 1
(37) 

Since 𝑝 = 2 for both numerical methods in eq. 36 

can be written as 

𝛼𝑒𝑥𝑡 =
4𝛼2𝑁 − 𝛼𝑁

3
(38) 

Table 2 shows the results obtained for 𝛼 after 

extrapolations. We see that the extrapolated value 
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of 𝛼 is correct up to 10 decimal places for FOEM 

approach and 8 decimal places for FOAM approach. 

 

Table 2. Numerical Results for 𝛼 after Richardson’s Extrapolations 

𝑵 𝜶𝑭𝑶𝑬𝑴 𝜶𝒆𝒙𝒕 𝜶𝑭𝑶𝑨𝑴 𝜶𝒆𝒙𝒕 

320 -1.5880478088  -1.5880220892  

640 -1.5880651998 -1.588070997 -1.5880588486 -1.5880711018 

1280 -1.5880695670 -1.588071023 -1.5880679870 -1.5880710332 

 

6. Concluding Remarks 

The main goal of this study is to develop an effective 

numerical method to solve the Thomas-Fermi 

Equation with second order accuracy. We 

introduced two different coordinate 

transformations to convert the semi-infinite interval 

of the problem to a finite interval in order to avoid 

potential errors caused by boundary truncation. We 

applied the quasi-linearization method and the 

finite difference method to convert the boundary 

value problem into linear systems of algebraic 

equations. Resulting algebraic equations are easy to 

solve since coefficient matrix of them has 

tridiagonal-banded form. Hence, it can be said that 

the proposed method requires a low amount of 

computational effort.  

Numerical accuracy of the solution was improved by 

applying Richardson extrapolation. An alternative to 

achieve third order or higher order solutions would 

be to use higher order finite discretization stencils.   

Proposed coordinate transformations can be used 

to solve nonlinear boundary value problems, which 

are defined on semi-infinite intervals. We suggest 

following algebraic transformation to extend this 

method to solve problems defined on (−∞, +∞): 

𝜉 =
𝑥

√𝑐2 + 𝑥2
38 

where c is a control parameter. This transformation 

converts the infinite interval into (-1, 1). 
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