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-Abstract- 
 

We make a comparative study of Multifractal Detrended Fluctuation Analysis 
(MF-DFA) and the Wavelet Transform Modulus Maxima (WTMM) method to 
detect multifractal character of natural gas daily returns. We give a brief 
introduction on above methods and compare their effectiveness. The results from 
this methodoligies show that behaviour of natural gas daily returns were 
multifractal. The major sources of multifractality are long-range correlations of 
small and large fluctuations and  Fat-tail distributions of the series. 
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1. INTRODUCTION 
 

Energy plays an essential role in the world economy. The dynamics of energy 
prices are of great interest among researchers and market participants. Modeling 
and forecasting has increasingly become very important in analysis of trends in 
commodity markets, particularly in high frequency trades. It is difficult to predict 
the price return, i.e. profit or loss, due to many unknown variables including 
social and political unrest, catastrophic events, etc.  

 

Natural gas prices are a function of market supply and demand. Because of 
limited alternatives for natural gas consumption or production in the short run, 
even small changes in supply or demand over a short period can result in large 
price movements to bring supply and demand back into balance. Natural gas has 
several interesting characteristics. First, gas is costly to transport internationally, 
so prices and forward curves vary regionally. Second; once a given well has 
begun production, gas is costly to store. Third, demand for gas in the United 
States is highly seasonal, with peak demand arising from heating in winter 
months. Thus, there is a relatively steady stream of production with variable 
demand, which leads to large and predictable price swings (http://www.eia.gov/). 

 

A traditional assumption used in the early studies of financial time series, 
considered that returns are independent, Gaussian random variables. However, 
uncountable  number of empirical studies, initiated by B. Mandelbrot, have shown 
that empirical returns reveal instead very rich and non trivial statistical features, 
such as fat tails, volatility clustering and multiscaling. This paper aims to 
empirically test whether returns on the Natural Gas spot prices exhibit long-range 
correlations and multifractal patterns. The term fractal was coined by Mandelbrot 
(Mandelbrot,1982:15) to characterize a rough or fragmented geometric shape that 
displays a large degree of self similarities within its own fractional dimensions. 

 

In principle there are two competitive methods for detecting the multifractality 
which are commonly used to eliminate trends and concentrate on the analysis of 
fluctuations. Multifractal Detrended Fluctuation Analysis (MF-DFA) 
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(Kantelhardt,2002:87)    and Wavelet Transform Modulus Maxima (WTMM) 
(Muzzy,1994:245) . 

2. METHODOLOGY 
 

2.1.Multifractal Detrended Fluctuation Analysis 
 

By using the MF-DFA analysis, we estimate the generalized Hurst and the Renyi 
exponents for price fluctuations. By deriving the singularity spectrum from the 
above exponents, we quantify the multifractality of a financial time series and 
compare the multifractal properties . In this method, we use the logarithmic return 
of the time series for each step u. Methodlogy of MF-DFA is as follows.   The 
deviation in return from the mean of the return is 

  y(u) (u=1,2,....N)               
(1) 

  

The length N of the time series is partitioned into n segments, each of length s, N 
= ns. A least squares method can be used to identify trends in running deviation 
over each segment k by a polynomial . The average fluctuation  in each 
subregion k is 

 

 )               
(2) 

 

The average moment of the fluctuation of order q over n segments of the time 
series is 
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   )               
(3) 

 

As q - > 0                                                             (4)                    

The power-law dependence of the q-th order moment of the fluctuation Fq(s) in 
interval s of the time series provides an estimate of the Hurst exponent h(q), i.e.,    
         

In general, the exponent  may depend on . When is constant for all  the 
time series are mono-fractal. For stationary time series,  is identical to the well-
known Hurst exponent H. Thus, we will call the function  generalized Hurst 
exponent. Positive values of  are used for magnifying the effects of large price 
variations in the scaling analysis, and negative values of  are used for 
magnifying the effects of small price variations.  

 

When  ,the kinds of fluctuations related to are persistent. An increase 
(decrease) is always followed by another increase (decrease). When , 
the kinds of fluctuations related to  are anti-persistent. An increase (decrease) is 
always followed by another decrease (increase). However,  the, the 
kinds of fluctuations related to  display random walk behavior. The richness in 
multifractality is associated with high variability of and the degree can be 
quantified as . As large fluctuations are characterized by 
smaller scaling exponent  than small fluctuations,  for  are larger 
than those for , and  is positively defined . Multifractality degree can be 
used to measure the efficient extent of a finance market. When multifractality 
degree is weaker, for all  value, generalized Hurst exponents are closer to 0.5. 
This shows that no matter the fluctuation is big or small, its change of state is 
closer to random walk, so the market is more efficient.  
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The analytical relationship between generalized Hurst exponents based on MF-
DFA and Renyi exponent  is, . The exponent  represents the 
temporal structure of the time series as a function of the various moments , or  
reflects the scale dependence of smaller fluctuations for negative values of , and 
larger fluctuations for positive values of . If  increases nonlinear with , 
then the series is multifractal.  

 

Via a Legendre transform, another important variable set ) is defined 
by      Here,  is the Holder exponent or 
singularity strength which characterizes the singularities in a time series. 
Singularity basically points at the rapid changes in the time series values for small 
changes in time. In the multifractal case, the different parts of the dataset are 
characterized by different values of , or the singularity spectrum .  

2.2.Wavelet transform modulus maxima method (WTMM) 

 
As proven by Mallat and Hwang (1990:549), multifractal formalism based on 
wavelet transform modulus maxima (WTMM) allows us to determine the whole 
singularity spectrum directly from any experimental signal.  Muzy et al. 
(1991:3515) define the scaling behavior of partition functions ( a) from the 
WTMM. The slope of the partition function determines the scaling τ() of moments 
of the distribution. Linearity of the scaling function suggests monofractal behavior 
of the time series, (all moments exhibit the same H scaling with time).  The 
procedures of calculating the multifractal singularity spectrum based on WTMM 
is described in Yalamova (2003). Wavelet transform has proved to be a 
particularly efficient tool for measuring the local regularity of a function. The 
wavelet transform of  =  is defined as:  

 

                                         (5)         
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where the analyzing wavelet ψ is a function with local support, centered around 
zero and the family of wavelet vectors is obtained by translation τ and dilatation a. 
The modulus maxima (largest wavelet transform coefficients) are found at each 
scale a as the suprema of the computed wavelet transforms such that:  

 

                                                                        (6)                                     

 

The originality of the WTMM method is in the calculation of the partition 
function  from these maxima lines. The space-scale partitioning given by 
the wavelet tiling or skeleton defines the particular Gibb's partition function:  
 

                                                           (7) 

 

The WTMM method uses continuous wavelet transform rather than Fourier 
transforms to detect singularities – that is discontinuities, areas in the signal that 
are not continuous at a particular derivative. Another interesting property of the 
wavelet transform is that the coefficients at these maxima-which are a small 
fraction of the total number of coefficients-are enough to encode the information 
contained in the signal (Muzzy,1994:245), Moreover, as one follows a maxima 
line from the lowest scale to higher and higher scales, one is following the same 
singularity. This fact allows for the calculation of  by a power law fit to the 
coefficients of the wavelet transform along the maxima line  (Struzik,2000:163).  

 

Wavelet  Skeleton is an aggregate of all Local Maxima Lines (LML) on each 
scale of Wavelet coefficient matrix. The idea of Skeleton matrix construction is to 
remove all wavelet coefficients in absolute wavelet coefficients matrix that are not 
maximal.  Skeleton matrix is a scope of all local maxima points that exist on each 
scale a.  If scaling exponential function is everywhere convex that indicates 
multifractal behaviour of the signal. It assumes that the signal does not have some 
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decent fractal measure, but is characterized by the scope of fractal measures. In 
case of monofractal behaviour, the scaling exponential function is line. 
(Puckovs,2012:83)   

 

3. DATA ANALYSIS 
 

The Natural Gas Spot prices data were taken from Energy Information 
Administration in the US Department of Energy (http://www.eia.gov/) The data 
constitutes of daily closing prices over the period from Jan 01, 1997 to April 01, 
2013 for 4065 observations in Figure1. In our analyses we used log return of the 
spot prices illustrated as Figure 2. 

 

 
Figure1- Natural Gas Spot Price           
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     Figure 2:Log Return Of Spot Prices 

 

4. EMPRICAL RESULTS 
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4.1. MDF-FA Method 
 

We have used matlab codes to implement MF-DFA on log-return data of 
NaturalGas  Spot prices . (Ihlen,2012:3) We estimate the generalized Hurst and 
the Renyi exponents for price fluctuations. Deriving the singularity spectrum from 
the exponents, we quantify the multifractality of a financial time series. In  Figure 
3 (Upper Right Corner), The generalized Hurst exponents for time scales is given. 
When  varies from -5 to 5, decreases from 0.4465 to -0.16511. is not a 
constant, indicating multifractality in time series. Due to H < 0.5, the system 
displays fractional Brownian motion and anti-correlation and The antipersistent 
behavior and deviations of one sign generally followed by deviations with the 
opposite sign is an indication of the high degree of natural gas prices nervousness 
and uncertainty. It means that  the analysis of these events  doesn’t give support to 
the Efficiency Market Hypothesis.  

 

There are two factors contributing to multifractal properties, namely long-range 
temporal correlations for small and large fluctuations and the fat-tailed probability 
distributions of variations. (K.Matia, 2003:422) As shown in Figure 3 (Lower Left 
Corner), multifractal scaling function  almost linear with  for negative moments, 
but show significant non-linearities for positive moments. This means that the 
temporal structure of the larger fluctuations play an important role in the 
multifractality.  

The spectrum, in Figure 3 (Lower Right Corner) as an upside-down parabola, 
peaks at and stretches from min to max.  =  conventionally 
quantifies the degree of multifractality which is the width of singularity spectrum, 
while   tells how frequently events with α scaling exponent occur. The width 
of the fractal spectrum, which shows the distinction between the maximum 
probability and the minimum probability,The larger the value of , the more 
uneven is the distribution of time series, and thus the stronger is the 
multifractality. The long-range and short correlations lead to a relatively narrow 
width of the spectrum (lower risk) or vice versa.In our case,the widht of spectrum 
0.57409-(-0.37938)=0.95347 reveals that there is strong multifractility in Natural 
Gas daily returns. 
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 Figure:3 Generalized Hurst Exponent, Reyni Exponents, Multifractal Spectrum 

 

4.2. Wavelet Transform Modulus Maxima (WTMM) 
 

We draw the Wavelet Skeleton by using Mathematica. Time shifting coefficients 
(b) are drawn on x axis, Scales (a) are drawn on Y axis. Local maxima lines are 
constructed using Wavelet coefficient matrix, selecting local maxima points on 
each scale parameter (Figure 4). The scope of all local maxima lines builds the so 
called Skeleton function. This function illuminates periodicity of the signal on 
decent scales. Dark colours correspond to lower absolute wavelet coefficient 
values. Light colours indicate higher absolute wavelet coefficient values. 
Continuous maxima line from small scales to large scales determine the time of 
the singularity at different scales. According to WTMM methods, we see that 
scaling exponential function is convex which shows that Natural Gas daily returns 
has multifractal properties. 
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Figure 4:Wavelet Sceleton                                  Figure 5:Histogram Of Local Holder Exponent 

  
 Figure 6: Local Holder Regularity                               Figure 7. Average Scaling of Maxima  Lines 
 

Unlike Multifractal, If we look at the scaling function, the Monofractal price 
series’ behaviour is observed to be less deviated from the trend line (Figure 7). 
And also fat tails in both ends of  the  Local Holder Exponents indicates 
multifractality of the series (Figure 5). 
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5. CONCLUSION 
 

Using the multifractal detrended fluctuation analysis (MF-DFA) together with 
WTMM, we showed the multifractal properties of the USA Natural Gas daily 
returns. Anti-persistent behaviour of prices which means that  an increase  
(decrease) is always followed by another decrease (increase) is an indication of 
the high degree of market nervousness and uncertainty as stated in the literature. 
The fat-tailed distributions (probability distribution of returns), also contribute to 
the multifractal behaviour of the natural gas daily returns. 
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