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Abstract: In this paper, we consider the proof of stability of a nonlinear system. We found it useful to employ 

Polya’s general four step problem solving process to organize and present the solution and our thinking. Polya's 

ideas can help us become aware of how we think when we solve problems. Reflecting on how we solve a problem 

allows us make conceptual connections between a problem at hand and the problems we may need to solve in the 

future. 

Key Words: Saturation Nonlinearity, Lyapunov stability, Teaching problem solving and heuristic strategies 

 

 

 

I. INTRODUCTION 

 

Stability problems are important in engineering, 

especially in designing control systems. Solving 

stability problems may require extensive use of 

mathematical analysis. Methods of solution are 

sometimes more than straightforward applications of 

familiar algorithms. The problems and their solutions 

require intuition, experimentation, trial and error and 

active monitoring of one’s thinking. 

In presenting mathematical solutions of 

many engineering problems, most scholarly papers 

and textbooks treat the solution as a finished product, 

giving little insight into the processes of solution. 

There is often little exposition of the choices made, 

why they were made, and little reflection on the 

solution once it is reached. As George Polya said in 

his well-known book How to solve it, “Teachers and 

authors of textbooks should not forget that the 

intelligent student and the intelligent reader are not 

satisfied by verifying that the steps of reasoning are 

correct but also want to know the motive and the 

purpose of the various steps.” [7, p. 50]. We believe 

that there is value in consideration of these aspects of 

“thinking about thinking” in solving problems. 

Most experienced problem solvers agree that 

relating the problem at hand to similar problems, 

understanding it, choosing a method of approach, 

knowing when to back off and reconsider the method 

when it seemed unproductive, and looking back and  

 

 

reflecting on the solution are critical parts of the 

solution process. Readers of a problem solution 

would benefit from discussion of these issues as 

much as the products of the solution, because it helps 

to give a deeper understanding of the solution. For 

novices, it makes attainment of these self-regulatory 

skills less of a solitary experience. 

In this article, we present a solution of a 

stability problem. We found it useful to employ 

George Polya’s (1887-1985) general four step 

problem solving process to organize and present the 

solution and our thinking. The steps of solving a 

problem are outlined in his well-known book “How 

to Solve It” [7]: 

1. Understanding the problem, 

2. Devising a plan, 

3. Carrying out the plan, 

4. Looking back. 

 

 

 

 

 

 

 

 

 

 



 

 

The first step involves understanding the given 

conditions and constraints of the problem,  
     

elaborating the goal and the unknown, making the 

necessary assumptions. The second step requires 

consideration of similar problems solved before, if 

the problem can be worded differently to make it 

more familiar, and eventually developing a plan of 

attack. The third step involves applying the 

procedures of the chosen method and making sure 

that it is used correctly. In the last step, findings are 

tested against the conditions of the problem, and 

connections with similar problems of more general 

type are made based on the findings. 

The steps may not be used in a fixed order. 

.For example, if problems are encountered while 

carrying out the plan, individual may need to go back 

and revise the plan, or even return to the first step to 

make additional assumptions in order to use a 

particular method [9]. It is important to note that we 

use Polya’s steps of problem solving as a tool of 

illustrating, organizing, and presenting our thinking, 

rather than a specific method of solution by itself. 

 

II. THE PROBLEM 

 

“Solving problems is a fundamental human activity. 

In fact, the greater part of our conscious thinking is 

concerned with problems.” [7, p. 221] 

 

As an example, consider the following specific 

system provided in [3]: 
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with a saturated linear control function 
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The problem is to find out if the above system is 

globally asymptotically stable. 

 

 

 

 

 

 

 

 

 

 

III. UNDERSTANDING THE 

 PROBLEM 

 

 

“The intelligent problem-solver tries first of all to 

understand the problem as fully and as clearly as he 

can. … The open secret of real success is to throw 

your whole personality into your problem.” [7, p. 

173] 

Our first duty is to understand the problem 

[7, p173]. If there was no saturation, the system 

would be completely linear, and we could have 

checked the global asymptotic stability by just seeing 

if the eigenvalues of the feedback system have 

negative real parts. Anyhow, let us check them and 

have an idea about the system. When there is no 

feedback (u=0), the open loop system eigenvalues are 

both located at 0, and they are coupled. This is a little 

bit alarming because this kind of system is potentially 

unstable. Assuming there is no saturation, with the 

linear feedback, the system eigenvalues are moved to 

-0.5 and -0.6 which would produce a stable system. 

This linear feedback is only valid in the unsaturated 

region where 

1475.0625.01 21 ≤−−≤− xx . 

This region, on the other hand, includes the origin, 

where the state variable will eventually reach. This 

suggests that the system (1) with the feedback is 

asymptotically stable. To show that it is globally 

asymptotically stable, we further need to show that 

all trajectories starting at any initial position in the 

state space will actually reach the origin.  

Let us elaborate on the problem further. We 

should simulate the system to understand its 

behavior. Figure 1 shows trajectories for various 

initial conditions. As expected, the system shows a 

stable behavior at least locally. To see the behavior in 

the large, we simulate the system for an initial value 

of (25, 25) as shown in Figure 2. The corresponding 

saturated control is depicted in Figure 3. 
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Fig. 1. State trajectories of the nonlinear system for 

various initial values. 
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Fig. 2. The state trajectory for an initial value of 

(25, 25). 
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Fig. 3. The control input versus time (in seconds) 

for an initial value of (25, 25). 

 

As seen in Figure 2, although the trajectory starts at 

(25, 25), it first moves to around (600, -600) then to 

(-300, 300) and eventually stabilized at the origin. Of 

course, one example would not be sufficient, but our 

intuition says that although the trajectory moves and 

oscillates too much, the system could be globally 

stable.  

 

 

 

 

In order to obtain a simpler system representation, a 

linear transformation can be applied. From (1), it is 

easily seen that uxx 221 =+ && . Hence, if one of the 

state variables is chosen as 2/)( 21 xx + , its 

derivative will be simply u . Also 

)(2 2121 xxxx +=− && or 

4/)(2/)( 2121 xxxx && −=+ . 

  

Therefore if the second state variable is chosen as 

4/)( 21 xx − , its derivative will be simply the first 

state variable. Using this idea, let us try the following 

transformation: 
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Now, the following equivalent system is obtained, 
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Since the transformation (2) is invertible, the systems 

(1) and (3) are equivalent in the global asymptotic 

stability. The system (3) on the other hand looks a 

little simpler. We know that the system (3) must also 

be asymptotically stable locally, but is it globally 

stable? We simulate the system (3) for an initial value 

of (0, 75) as shown in Figure 4. 
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Fig. 4. The state trajectory for the system (3) for an 

initial value of (0, 75). 

 

The trajectory path now appears easier to 

follow. The linear region where 

11.13.01 21 ≤−−≤− yy , 

 

looks so thin for large y values that it is shown as a 

dotted line in Figure 4. Outside this linear region, 

saturation occurs. When the trajectory hits the linear 

region, it quickly changes its  

SOLVING A STABILITY PROBLEM BY POLYA’S FOUR STEPS 

Cengiz Alacacı, Murat Doğruel 

 



 

direction and follows the other saturated dynamics as 

seen in Figure 4. 

 

IV. DEVISING A PLAN 

 

“To devise a plan, to conceive the idea of the solution 

is not easy. It takes so much to succeed; formerly 

acquired knowledge, good mental habits, 

concentration upon the purpose, and one more thing: 

good luck.” [7, p. 12] 

 

How can then we show that the system is actually 

globally stable? There are some methods to try in our 

toolbox. The famous circle or Popov criteria (for 

example see [10] or [4]) would be a suitable method 

for this problem; however the open loop system has 

coupled eigenvalues on the jw axis. Loop 

transformation (see [4]) will not work either because 

the saturation nonlinearity belongs to the sector [0 1]. 

In fact, for this kind of systems there are some 

nonlinearities in sector [0 1] that makes the system 

globally unstable (see Example 7.1 in [6]); therefore 

the system is actually not absolutely globally stable, 

therefore these methods are not applicable. There is, 

actually, a result to show the global stability of this 

specific system in the literature (for example see 

[2],[1],[8]), however, let us continue on our path 

since our main goal is to show a solution strategy of 

the problem.  

A very well-known method to show global 

stability is Lyapunov’s direct method ([10], [4]). Let 

us try to use this classical and powerful method. The 

level surfaces of the Lyapunov function (for a fixed 

function value) must be in such a way that when the 

trajectory enters in the surface, it must never leave 

that surface. To be able to guess a proper Lyapunov 

function for this example, we need to understand how 

exactly the trajectory moves when it is in the 

saturated regions. 

On the right side of the linear region 

(for 11.13.0 21 −<−− yy ),the corresponding 

system dynamics is 
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And, on the left side  

(for 11.13.0 21 >−− yy ), we have 
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The solutions of these systems can be easily found as 

follows. 
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     For the system 

(5):
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Therefore we conclude that outside the linear region 

the trajectories follow a parabolic path. Another 

observation, from Figure 4, is that although the 

intersections of the trajectory with the y2 axis grow 

linearly as y2 is increased, the intersections grow 

approximately in square fashion for the y1 axis. 

Through these observations we can conclude that 

V(x) = x’Px type quadratic Lyapunov function 

candidates are not suitable for this nonlinear system. 

The reason is that a quadratic function produces 

elliptic level surfaces which have a fixed 

width/height ratio. In this case however, the level 

surfaces should be in such a way that the 

width/height ratio should grow for a higher Lyapunov 

function value. 

 

“Devising the plan of the solution, we should not be 

too afraid of merely plausible, heuristic reasoning. 

Anything is right that leads to the right idea.” [7, p. 

68] 

 

Then, how can we find a proper Lyapunov function 

for this example? From the simulations, and from (6) 

and (7), we observe that in either one of the 

saturation regions and for a certain portion of the 

trajectory, the quantity 1

2

2 2yy +  remains constant. 

This may be a good start for a Lyapunov function 

candidate. Let  

1

2

2 2)( yyyV += ,                                    (8) 

and check how it behaves for the system (3). Using 

the same initial value as in Figure 4, the function (8) 

is shown in Figure 5. It almost works; there is no 

increase in the function, and it stays constant on the 

parabolic paths as expected. However, the function 

must be strictly decreasing to show the global 

stability. 
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Fig. 5. The Lyapunov function candidate (8) for an 

initial state value of (0, 75). 

 

How can we make the function decrease when the 

trajectory moves on the parabolic path? We observe 

that y2 increases for the left region, and decreases for 

the right region when the time moves forward. Using 

this hint, we suggest this new Lyapunov function 

candidate 

21

2

2 2)( kyyyyV ++= .                         (9) 

After some simulations, we see that this candidate 

seems to work for positive k values less than 6.4. For 

k=1, the resulting function is shown in Figure 6. Now 

we have a strictly decreasing Lyapunov function 

candidate for the system (3). 
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Fig. 6. The Lyapunov function candidate (9) for an 

initial state value of (0, 75). 

 

One problem with (9) is that it does not have 

continuous first order derivatives due to the absolute 

value operator. To fix this problem, we may 

substitute the following smoother function in place of 

the absolute value function 
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which has continuous first order derivatives, and for 

larger values ( 1>z ), approximately does the same 

job as an absolute value function. Therefore, 

choosing k=1, we suggest a Lure-type Lyapunov 

function candidate 

 

∫+=
+ 212

0

2

2 )()(
yy

dsatyyV αα ,                 (10) 

which behaves approximately the same as shown in 

Figure 6. Simulations fortunately shows that, for 

small y values around the origin, in the linear region, 

(10) still works as a proper Lyapunov function. 

 

Finally, using the transformation (2) and the 

candidate (10), the corresponding Lyapunov function 

candidate for the system (1) can be found as 

∫++=
1

0

2

214
1 )()()(

x

dsatxxxV αα .    (11) 

We expect that the global asymptotical stability of 

the system (1) should be shown using this function. 

 

 

 

IV. CARRYING OUT THE PLAN 

 
“To carry out the plan is much easier; what we need 

is mainly patience. The plan gives a general outline; 

we have to convince ourselves that the details fit into 

the outline, and so we have to examine the details one 

after the other, patiently, till everything is perfectly 

clear, and no obscure corner remains in which an 

error could be hidden.”  

[7, p. 12-13] 

 

Now, we need to prove that the candidate (11) is 

really a proper Lyapunov function for global 

asymptotic stability (for example see Theorem 3.3 in 

[4]). It is easy to see that )(xV  is positive definite 

and radially unbounded, and has continuous first 

order derivatives. Using the system equations, we 

have 
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Let us first formally define the regions shown in 

Figure 7, 
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Fig. 7. The regions for the Lyapunov function (11). 
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In regions F to I:  Since )()( xVxV −= && , and 

0)( <xV& in the opposite regions, )(xV&  must also 

be negative in these regions. 

 

Hence, )(xV&  is a negative definite function. 

Therefore we conclude that the system (1) with the 

saturated linear feedback is actually globally 

asymptotically stable. 

 

 

VI. LOOKING BACK 

“Looking back at the completed solution is an 

important and instructive phase of the work. ‘He 

thinks not well that thinks not again.’ ‘Second 

thoughts are best.’ ” [7, p.224] 

 

Looking back the problem, according to Polya, we 

need to ask these questions [7]: 

• Can you derive the solution differently? 

• Can you use the result, or the method, for 

some other problem?  
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Here, we have considered a specific problem, 

however we may use the solution strategy and the 

insights we gained from it in a general statement of 

the problem. Let us reconsider (3) with general 

parameters, 
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Here 
1k  and 

2k  are assumed to be positive 

constants, otherwise the system will not be 

asymptotically stable, because locally the 

corresponding linear system will not have both 

eigenvalues in the left half plane.  For any positive 

1k  and 
2k , on the other hand, the system will be 

guaranteed to be asymptotically stable locally. To 

understand the global behavior in general, let us 

consider Figure 8, as done for the specific case in 

Figure 4. 
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Fig.8. The general state trajectory in the large. 

 

As before, the linear region looks so thin in the large 

view that it is shown as a dotted line in Figure 8. 

Assuming the initial state is sufficiently large, we see 

that trajectory starting at point (1) follows a parabolic 

path, and reaches point (2). Then it follows another 

parabolic path and reaches point (3). The formulas 

(6) and (7) will also apply here for the general case. 

Then, the trajectory continues in a similar way until it 

reaches the origin. This suggests that for any positive 

1k  and 
2k , the system (12) should be globally 

asymptotically stable. However, how can we prove 

this result? In the earlier specific problem, we spent 

too much effort to find and prove a proper Lyapunov 

function. 

 

Using (6) and (7), the parabolic trajectory paths can 

be obtained as, 

For the system (4) (the right side):
rpyy +−= 2

22
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For the system (5) (the left side):
lpyy −= 2

22
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where pr and -pl are the points that the trajectory 

crosses y1 axis on the right and left sides. Actually the 

values pr and pl can be good measures for the 

“energy” or “size” of the parabolic trajectory. 

Perhaps we can use these values to construct the 

Lyapunov function. Therefore, using (13) and (14), 

let us suggest a Lyapunov function candidate as 
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(15) 

Actually this function may not even be positive 

definite (especially when k1/k2 is small), however, let 

us not stop and get discouraged, but go on and try to 

improve the function step by step if possible. The two 

cases in the above formula can be combined as 

shown below, 

 

),()( 22111
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where the sat() function automatically handles the 

sign of y1 in (15). Therefore when the trajectory is on 

the parabolic path, V(y) will be constant; and when 

the trajectory reaches the other side, it will be 

reduced almost instantly as observed in Figure 5. 

Again, y2 can be used to obtain a decreasing V(y) as, 

),()()( 221121

2

22
1 ykyksatyyyyV +++= σ (17) 

 

where σ  is a positive constant so that, on the right 

side, V should decrease since y2 decreases. On the left 

side, y2 increases, but because of the negative sign of 

the sat() function, V should again decrease. To ensure 

that the function in (17) is a positive definite function 

for any (positive) 1k  and 2k , the parameter σ can 

be chosen as k2/k1, therefore one obtains  

).()(
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)( 22112211
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k
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Note that )(zsatz ⋅  is always positive for 0≠z . 

Now the problem, as before, is that V must have 

continuous first order derivatives.  
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To overcome this problem, the following 

approximation can be used, 

∫≅⋅
z

dsatzsatz
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and finally the following Lyapunov function 

candidate can be suggested, 
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“Examining the various parts, one after the other, 

and trying various ways of considering them, we may 

be led finally to see the whole result in a different 

light, and our new conception of the result may 

suggest a new proof.” [7, p. 64] 

 

It is clear that V(y) is positive definite and radially 

unbounded, also it has continuous first order 

derivatives. Let us check its derivative,  
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It is easily seen that )(yV&  is negative semidefinite; 

and for the points satisfying 02211 =+ ykyk  (the 

linear line in Figure 8), )(yV& is zero. Since )(yV&  is 

only negative semidefinite, the invariant set theorem 

can be applied (see Theorem 3.5 in [10]). In fact, 

according to (12), for any initial state starting on the 

invariant set (the points on the linear line), the 

corresponding trajectory immediately leaves the 

invariant set, except for the origin. Hence, we 

conclude that the origin of the system (12) is globally 

asymptotically stable for any positive 
1k  and 

2k . 

Therefore using the Lyapunov function (19) instead 

of (11), the stability is proven in a much easier way, 

and for a general system. 

 

Let us generalize the system representation even 

further, as 
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Here a general nonlinear function is used instead of 

the saturation. Adapting (19) for this case, we can 

suggest 
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If the following conditions are satisfied, 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

then the Lyapunov function (22) will be positive 

definite (conditions 2 and 4), radially unbounded 

(condition 3), having continuous first order 

derivatives (condition 1); and, the derivative (23) will 

be negative semidefinite (condition 4), and zero only 

on the line 02211 =+ ykyk  (condition 2). Again, 

according invariant set theorem, we can conclude the 

following result: 

 

 

The system (21) satisfying the conditions (24), is 

globally asymptotically stable. 

 

 

Actually many systems in practice can be reduced to 

the system description in (21). Many 

electromechanical systems can be described as a 

double integrator type dynamics with linear negative 

feedback through a nonlinear and/or saturating 

actuator. One example for such f(x) is shown in 

Figure 9. It should be noted that, although this kind 

of systems are globally asymptotically stable, the 

trajectories may easily pass over the practical limits 

in the state space as observed in Figure 2. 
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Fig.9. An example of a nonlinear function 

satisfying the conditions 1-3 in (24). 

 

It is also interesting to note that when there are three 

or more cascaded integrators, no linear saturated 

feedback will produce a globally asymptotically 

stable system [11]. According to the result found, 

when there are two cascaded integrators (double 

integrators), all the stabilizing linear feedbacks will 

work for the saturated case. 

 

The result presented here could not be found on many 

books or papers on nonlinear systems. For example, 

[10] (Example 3.14), [4] (Example 4.9), and [6] 

(Example 6.5) only mentions that the systems in the 

following form are globally asymptotically stable: 
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where f satisfies the conditions 1-3, and g satisfies the 

conditions 1-2 in (24). As indicated in [8], Meyer 

studied the linear systems with two zero eigenvalues 

and saturated linear control, and gave conditions on 

the global asymptotic stability (see pp.53-54 in [5]). 

Although it is not shown explicitly, when (21) is 

considered as a special case, Meyer’s conditions 

reduce to (24). Also in an exercise (p.65 in [1]), 

Aggarwal suggests a similar Lyapunov function as in 

(22) for the system (21). Many different control 

methods and stability results for double integrators 

are presented in [8]. 

 

VII. CONCLUDING COMMENTS 

 

“The author remembers the time when he was a 

student himself, a somewhat ambitious student, eager 

to understand a little mathematics and physics. He 

listened to lectures, read books, tried to take in the 

solutions and facts presented, but there was a 

question that disturbed him again and again: “Yes, 

the solution seems to work, it appears to be correct;  

 

but how is it possible to invent such a solution? Yes, 

this experiment seems to work, this appears to be a 

fact; but how can people discover such facts? And 

how could I invent or discover such things by 

myself?” … Trying to understand not only the 

solution of this or that problem but also the motives 

and procedures of the solution, and trying to explain 

these motives and procedures to others, he was 

finally led to write the present book.” [7, from 

introduction] 

In this article, we attempted to present the 

plausible reasoning that Polya described. We tried to 

expose the thinking that went into solving a 

saturation nonlinearity type stability problem with 

specified parameters. In order to solve it, we needed 

to understand the effect of the nonlinearity on the 

linear system, and explore its behavior. For example, 

to understand the problem, we simulated the system 

in various initial conditions. Then we looked into 

plausible methods and chose the one that seemed to 

satisfy the constraints of the problem. Popov criterion 

could not be applied even with a loop transformation, 

but Lyapunov method seemed promising. After 

considerable experimentation, we were able to find a 

function that helped demonstrate the global stability 

of the problem and we verified the findings. Looking 

back, based on the insights gained from solving the 

specific version of the problem, we posed a new 

question: What if the parameters are considered in 

general as k1 and k2? Using a similar solution 

strategy, but finding a more convenient Lyapunov 

function this time, we could prove the global stability 

for the general case. By simply adapting the 

Lyapunov function, we were able to demonstrate the 

global stability of the more general case when the 

saturation is replaced by a special nonlinear function. 

We moved from specific to a general case in this 

problem. Technically, the more general solution 

subsumes the specific solution, but this should not 

take away from the value of the findings to the 

specific case. Because reaching the general solution 

was based on the findings of the specific case. We are 

hoping that the inductive solution we present here 

can provide a glimpse of the thinking that produced 

the results which are often given deductively as a 

finished product in most scholarly writings. 
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By its nature, Polya's ideas can help us 

become aware of how we think when we solve 

problems. By reflecting on how we solve a problem, 

we are more likely to make connections with the 

problem at hand and the problems we may need to 

solve in the future.  Being well-versed in Polya's 

ideas and steps may not by itself guarantee success in 

understanding or solving a new problem, because 

such success is a product of both knowledge of 

similar problems and how we regulate that 

knowledge and our mental resources.  However, 

Polya’s ideas can help unpack the complex thinking 

processes that go into the solution of a problem, and 

hence can help the novices develop effective self-

regulating skills in thinking to re-produce the solution 

and produce new solutions to other problems.  
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