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Abstract 

Recent advancements in advanced neural networks have given rise to new adaptive learning strategies. Conventional learning strategies 

suffer from many issues, such as slow convergence and lack of robustness. To fully exploit its potential, these issues must be resolved. 

Both issues are related to the step-size, and momentum term, which is generally fixed and remains uniform for all weights associated 

with each network layer. In this study, the recently published Back-Propagation Algorithm with Variable Adaptive Momentum 

(BPVAM) algorithm has been proposed to overcome these issues and improve effectiveness for classification. The study was conducted 

on various hyperparameters based on the grid search approach, then the optimal values of hyperparameters have trained these 

algorithms. Six cases were considered with varying values of the hyperparameter to evaluate the impact of the hyperparameter on the 

training models. It is empirically proven that the convergence behavior of the model is improved in terms of the mean and standard 

deviation for accuracy and the sum of squared error (SSE). A comprehensive set of experiments indicated that the BPVAM is a robust 

and highly efficient algorithm. 

Keywords: Adaptive neural networks; Hyperparameter; Steady-state error; Optimization. 

Grid Arama Yoluyla Monotonik Olmayan Hiperparametre Planlama Sisteminin 

Yardımcı Öğrenimi 

Öz 

Gelişmiş sinir ağlarındaki son gelişmeler, yeni uyarlanabilir öğrenme stratejilerine yol açmıştır. Geleneksel öğrenme stratejileri, yavaş 

yakınsama ve sağlamlık eksikliği gibi birçok sorundan muzdariptir. Potansiyelinden tam olarak yararlanmak için bu sorunların 

çözülmesi gerekir. Her iki konu da adım boyutu ve genellikle sabit olan ve her ağ katmanıyla ilişkili tüm ağırlıklar için tek tip kalan 

momentum terimi ile ilgilidir. Bu çalışmada, bu sorunların üstesinden gelmek ve sınıflandırma etkinliğini artırmak için yakın zamanda 

yayınlanan Değişken Uyarlanabilir Momentumlu Geri Yayılım Algoritması (BPVAM) algoritması önerilmiştir. Çalışma grid arama 

yaklaşımına dayalı olarak çeşitli hiperparametreler üzerinde yürütülmüş, daha sonra hiperparametrelerin optimal değerleri bu 

algoritmaları eğitmiştir. Hiperparametrenin eğitim modelleri üzerindeki etkisini değerlendirmek için hiperparametrenin değişen 

değerlerine sahip altı durum ele alındı. Modelin yakınsama davranışının, doğruluk için ortalama ve standart sapma ve karesel hatanın 

toplamı (SSE) açısından iyileştirildiği deneysel olarak kanıtlanmıştır. Kapsamlı bir deney seti, BPVAM'nin sağlam ve yüksek verimli 

bir algoritma olduğunu gösterdi. 

Anahtar Kelimeler: Uyarlanabilir sinir ağları; Hiperparametre; Kararlı durum hatası; Optimizasyon. 

1. Introduction 

Advanced Adaptive Neural Networks (AANNs) are 

the latest developments for classification that have 

shown their effectiveness in solving different problems 

in various domains. For instance, AANNs are employed 

for pattern recognition (Jain et al., 2018) (Jain et al., 

2019), object detection (Erol et al., 2018) (Rahman et 

al., 2020), images classification (Sharma et al., 2018) 

(Patel et al., 2019), medical diagnosis (Sarvamangala 

and Kulkarni, 2022) (Yu et al., 2021) (Houssein et al., 

2021), etc (Demircan Keskin et al., 2022) (Güney et al., 

2022) (Gemirter and Goularas, 2021). Recently, 
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AANNs have gained more attention due to their 

applicability to large datasets in an efficient manner. 

Machine learning models required training samples 

to learn the patterns in the data. The performance of the 

machine learning models is evaluated using a cost 

function. It will determine how accurately a model 

learns patterns from data. In addition, the model has 

many hyper-parameters that should be selected to 

minimize the cost function. The learning process is 

repeated over several epochs to obtain an optimal set of 

these parameters, generally termed learning. Therefore, 

the choice of the cost function is subjective as it depends 

on the model and the training data (Hinton et al., 2012) 

(Mestres et al., 2017). There are various methods that 

can be employed for training the neural networks, 

however, gradient-based methods are most commonly 

used due to their simplicity and efficiency. It aims to 

reduce the gradient of the cost function to obtain optimal 

weights during training (Krizhevsky et al., 2012) (Park 

et al., 2020). Although neural networks are prevalent, 

several issues must be addressed to carry out the training 

process smoothly (Hertel et al., 2020) (Sandha et al., 

2020) (Sun et al., 2022). The most common issues 

include vanishing and exploding gradients (Bengio et 

al., 1994) (Glorot and Bengio, 2010.) and overfitting 

(Liu et al., 2021).  

Another problem that can affect the neural network's 

performance is the presence of local minima. This 

situation may occur when training the model on a large 

dataset using more complex models. The gradient 

descent algorithm may face a gradient vanishing 

problem if it gets stuck in local minima. In addition, 

selecting an optimal learning rate is crucial for obtaining 

good accuracy for the model. Research has shown that 

too small value for the learning rate results in slow 

convergence of the model. In contrast, if a large value of 

learning rate is selected, then it may cause the model to 

skip the global optima (Jagtap et al., 2020) (Jin et al., 

2022). 

Recent research has shown that instead of using a 

fixed learning rate, an adaptive learning rate offers faster 

convergence with good accuracy (Seong et al., 2018) 

(Yan et al., 2020). Moreover, a large learning rate should 

not be used, which can lead to super-convergence and 

have regularizing effects (Smith and Topin, 2019). 

The literature review reveals that researchers have 

proposed different solutions to the gradient vanishing 

problem (Liu et al., 2021). For instance, adding a 

momentum term can accelerate the weight updating 

processing that may help the model to push out of the 

local optima. The momentum term will keep changing 

the weights continuously with an appropriate ratio. 

During the training, it is possible that the derivative of 

the cost function produces zero value. Even in such a 

situation the model continues to update weights using 

the previous iteration’s values of the cost function 

(Sutskever et al., 2013). It is interesting to note that 

during learning it is not possible to determine whether 

the solution obtained is optimal or reached a local. In 

both cases, the model will stopped as there will be no 

change in the parameter values over consecutive 

iterations. The model depends on several parameters 

that affect its performance. Learning rate (LR) also 

known as step-size is one of the crucial parameters. Fine 

tuning LR plays crucial role in obtaining optimal 

solution. Selection of a small value may allow the model 

to reach the optimal solution very slowly. In contrast, a 

large value may allow the model to reach the optimal 

solution faster. However, there is a trade-off between 

selection of a large/small value with the optimal 

solution. Therefore, care must be taken in selection of 

this crucial parameter. This problem can be solved using 

a scheduled rate. The most commonly used technique is 

to multiply the gradient with a constant during training 

of the model. The main issue with such technique is that 

the LR may not scale well during training. There are 

various solutions proposed to overcome this problem, 

such as time-based techniques where the LR is altered 

as the training proceeds (Li and Arora, 2019). Some 

other techniques, such as Adagrad and RMSProp are 

also proposed to solve this problem. These techniques 

apply adaptive optimization on the LR to adapt its value 

during the training (Duchi JDUCHI and Singer, 2011) 

(Reddi et al., 2019) (Yi et al., 2020). Some research 

proposed to combine both adaptive optimization 

adaptive LR schedules to further improve the accuracy 

of the model. However, these methods only apply a 

function in such as way that it decreases the LR as the 

model training proceeds. The main drawback of such 

techniques is that it may stuck in local minimum due to 

small gradient changes (Rumelhart et al., 1986) (Sohl-

Dickstein et al.,2014).  

Other advanced techniques to solve these 

bottlenecks include different activation functions 

(Klambauer et al., 2017) (Nair and Hinton, 2010), batch 

normalization (Ioffe and Szegedy, 2015), novel 

initialization schemes (He et al., 2015), and dropout 

(Srivastava et al., 2014). The main drawback of these 

methods is the higher computational overhead, which 

limits the performance improvements in terms of CPU 

cost, convergence rate, and optimal error. 

The most common techniques for optimizing the 

deep neural networks (DNN) include batch gradient 

(BGD) and stochastic gradient descent (SGD) 

algorithms. BGD is usually slower and is more suitable 

for a small size dataset. On the other hand, SGD is faster 

and is more suitable to process large size data. Typically, 

SGD produces less reliable results which may also lead 

to bad convergence. In (Yang, 2021), authors proposed 

a new method based on the Kalman filter for better 

optimization of the network using adaptive filtering. The 

method employed the historical state of the 

optimization, which helped reduce the estimation 

variance in the SGD algorithm. This led to faster 

convergence and resulted in better gradient direction 

estimation even in the presence of noise.  

Other gradient-based methods, such as adaptive 

gradient methods (AGMs), can also be employed to 
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optimize nonconvex problems in machine learning, 

specifically deep learning. In (Tong et al., 2022), two 

improvements of AGMs are proposed to enhance the 

model's accuracy further. It was observed that the 

anisotropic scale of the adaptive learning rate (A-LR) 

has high variations across multiple dimensions of the 

nonconvex optimization problem. This variation may 

lead to slower convergence and the model may get stuck 

in the local minima. The literature shows that a number 

of research are dedicated to improving the AGMs using 

A-LR. Another main bottleneck that plays vital role in 

obtaining the optimal accuracy is finding optimal values 

for its hyperparameters used in the A-LR. In some 

works, authors proposed adding activation functions in 

A-LR such as softplus function for AGM’s 

improvement. Two such methods, namely SADAM and 

SAMSGRAD are also proposed to improve the model 

accuracy. Results showed that SAMSGRAD exhibit 

faster convergence than the AMSGRAD under various 

conditions such as nonconvex, non-strongly convex, and 

Polyak-Łojasiewicz conditions.  

Another adaptive gradient descent algorithm that is 

commonly used in backpropagation (BP) for training 

feed-forward neural networks (FFNNs) is called Adam. 

The Adam algorithm's main issue is that it might fail to 

reach global optima. Solutions based on metaheuristic 

methods exist, which help train FFNNs to overcome the 

local minima issue. However, the solutions also have 

compromise on the convergence efficiency of the model 

compared to the Adam optimizer. A solution was 

proposed in terms of an ensemble of differential 

evolution and Adam (EDEAdam), combining both 

Adam optimizer and differential evolution algorithm, 

which forms a robust and efficient search mechanism to 

achieve better results in both global and local search. 

The integration of these two methods not only helped 

improve results but also showed faster convergence 

speed (Xue et al., 2022). 

Hameed et al. (Hameed et al., 2016), proposed a BP 

algorithm with variable adaptive momentum (BPVAM). 

The algorithm improves the convergence behavior by 

achieving faster convergence, optimal error, and lower 

mathematical complexity, reducing the overall CPU cost 

and processing time. The learning rate is a crucial 

parameter that controls the model. The learning rate 

parameter depends on the input data’s eigenvalues of the 

autocorrelation matrix.  

This study investigates the learning performance of 

BPVAM algorithm. An adaptive momentum scheduler 

is introduced to overcome the gradient vanishing 

problem. A detailed set of experiments are performed on 

various benchmark datasets to evaluate the performance 

of the proposed model. The main contributions of this 

study are highlighted as follows: 

• Introduction of a variable adaptive momentum 

term in the weight update equation. 

• Fine-tuning the hyperparameters for computing 

an optimal momentum in stochastic gradient descent in 

BPVAM algorithm 

• Investigate the model's behavior with adaptive 

momentum term and compare it with models with a 

fixed learning rate. 

• Diverse set of experiments on different 

benchmark datasets are performed to test the efficiency 

and robustness of the proposed model.  

The paper is organized as follows. In Section 2, 

details about the adaptive learning rate algorithms are 

presented. Extensive set of experiments are presented in 

Section 3. Finally, the paper is completed with 

conclusion. 

2. Backpropagation Algorithm with 

Variable Adaptive Momentum (BPVAM) 

Hameed et al (Hameed et al., 2016), introduced the 

BPVAM algorithm see fig. 1, where 𝛼 (the adaptive 

momentum) is controlled by the learning rate 

parameter 𝜂. In this case, if given initial weights Ѱ 0 and 

Ѱ 1, and a momentum factor 𝛼 𝜖(0, 1), BPVAM updates 

the weight vector iteratively which means that equation 

(28) can now be represented as 

 

 

∆Ѱ𝑖 = 𝜂𝛿𝑤Ѱ𝑖 + 𝛼Ѱ
𝑖 ∆Ѱ𝑖−1,  𝑖 =  1, 2, …,     (1) 

 

Where 𝜂 > 0 is the learning rate which is assumed 

to be a constant in this work and 𝛼Ѱ
𝑖 =

(𝛼Ѱ0

𝑖 , 𝛼Ѱ1

𝑖 , 𝛼Ѱ2

𝑖 , … … … , 𝛼Ѱ𝑞

𝑖 ) is the momentum 

coefficient vector at the 𝑖th  training iteration which is 

constituted by the coefficient 𝛼Ѱ
𝑖  for every ∆Ѱ𝑖

𝑖 (i= 0, 1, 

2, ….,q) and for each 𝛼Ѱ
𝑖 , it is adjusted after each 

training epoch by 

 

𝛼Ѱ𝑖

𝑖 =  {
𝛼 ∙

−𝜂𝛿Ѱ𝑖
Ѱ𝑖∙∆Ѱ𝑖

𝑖−1

‖∆Ѱ𝑖
𝑖−1‖

2     𝑖𝑓 𝛿Ѱ𝑖
Ѱ𝑖 ∙ ∆Ѱ𝑖

𝑖−1 < 0

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

 

  (2) 

 

In the BPAM, 𝛼 (the adaptive momentum) was 

controlled by the learning rate 𝜂, where 𝜂 is dependent 

on the eigenvalues of the autocorrelation matrix of the 

input. 

 

The work presented by (Hameed et al., 2016) 

estimates the autocorrelation matrix R(𝑖) of the input 

recursively as 

 

𝑅𝑖 = 𝛽𝑅𝑖 + 𝑅𝑥𝑥        (3) 

 

Where  𝛽 is the forgotten factor (0<<𝛽<1), 

and 𝑅𝑥𝑥 = 𝐸{𝑋(𝑖)𝑋𝑇(𝑖)}, E is the expectation operator. 

Tacking the expected value of both sides of equation 

(32) produces 

 

𝑅̅𝑖 =
1−𝛽𝑖

1−𝛽
𝑅𝑥𝑥          (4) 
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Where 𝑅̅𝑖 = 𝐸{𝑅𝑖}. Solving equation (32) in the 

steady state (𝑖 → ∞) yields 

 

𝑅̅𝑖 =
1

1−𝛽
     (5) 

 

In this case, equation (34) implies that the 

eigenvalues of the estimated autocorrelation matrix 

increase exponentially, and in the limit they become 
1

1−𝛽
 

times the original value. 

The work done by (Hameed et al., 2016) also 

proposed a variable momentum, which is expressed by  

 

𝛼𝑖 =
𝜆

1−𝛽𝑖    (6) 

 

Where 𝜆 <
2−2𝛽

𝑚𝑎𝑥 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓𝐑𝐱𝐱
  and this case 𝛽 is 

the forgetting factor (0 ≪ 𝛽 < 1), 

 

Assuming that 𝛽 is large, this will force the term 1 −
𝛽𝑖 to reach unity, and assuming that the initial 𝛼(𝑖) is 

relatively large, to provide fast convergence of the 

weights. By updating equations (27) and (28), with time 

it becomes very close to 𝜆 (a small positive constant) 

hence it provides law error, equation (27) and (28) can 

then be represented as 

 

∆Ѱ𝑗𝑖(𝑖 + 1) = 𝜂𝛿𝑦𝐱𝑖(𝑖) + (
𝜆

1 − 𝛽𝑖
) ∆Ѱ𝑗𝑖(𝑖) (7) 

 

∆Ѱ𝑘𝑗(𝑖 + 1) = 𝜂𝛿𝑜𝑦𝑖(𝑖) + (
𝜆

1−𝛽𝑖) ∆Ѱ𝑘𝑗(𝑖), 𝑖 =

0,1, …         (8) 

 

Where 𝑖 represents the number of iterations and ∆Ѱ 

is defined as updating the weights. 

 

 
 

Figure 1. BPVAM architecture 

 

3. Experimental Results 

The experiments were performed on four different 

data sets obtained from various domains. A diverse set 

of datasets were considered for testing the application of 

the proposed method for different types of data. These 

datasets include Breast cancer, Heart Disease, Lung 

Cancer, and Iris. Each dataset has a varying number of 

samples, attributes, and classes (Asuncion and 

Newman,2007). 
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3.1 Preprocessing and Experimental Setup 

All data in the dataset was normalized between 0 and 

1 using the Min-Max normalization method. The main 

advantage of the normalization is maintaining stability 

in the network by allowing all the weights to converge 

almost simultaneously. Moreover, missing data were 

replaced with the mean value of the attribute.  

All the experiments were performed in the Matlab™ 

environment. The models were executed on a Dell 

machine with Intel core i7, 2.10 GHz processor with 16 

GB of RAM and NVIDIA™ GeForce TMGTX 1080. 

The dataset was divided into training (70%) and testing 

(30%) for each experiment. Since the dataset was 

balanced, therefore, no augmentation was performed. 

3.2  Evaluation 

The performance evaluation of BPVAM and its 

comparison with conventional BP was carried out in 

terms of accuracy and SSE on four benchmark datasets. 

Moreover, the models were also compared in terms of 

mean and standard deviation behaviors over the whole 

training process. Since the models depend on various 

hyperparameters, therefore, the optimal values of these 

hyperparameters were obtained using the Grid Search 

algorithm. The obtained optimal values of 

hyperparameters were then used to train the models. Six 

different cases were considered with varying values of 

the hyperparameter to evaluate the impact of the 

hyperparameter on the model accuracy. The 

experimental setup was similar to the one presented by 

the authors in (Hameed et al., 2016). The evaluation 

results for each dataset are described in detail as below. 

Table 1 summarizes the results obtained on the 

breast cancer dataset. As it can be seen, the error 

convergence for the BPVAM (4.678) is better than the 

conventional BP (4.707) algorithm in terms of SSE for 

case 6. For other cases (1-5), the performance of 

BPVAM was also higher than conventional BP as it 

produced less error. Similarly, in terms of accuracy, the 

BPVAM algorithm produced higher accuracy compared 

BP in general overall six cases. It is observed that 

BPVAM obtained optimal results with 𝜂 = 0.9 , 𝜆 =

0.0085 , and 𝛽 = 0.992 , whereas conventional BP 

produced best results with 𝛼 = 0.01, and 𝜂 = 0.9. 

Table 2 summarizes the evaluation results obtained 

heart disease dataset. These results showed that the 

BPVAM always produced better results than the 

conventional BP algorithm. Highest accuracy (61.96%) 

was obtained for BPVAM and  lowest error (3.961)  with 

parameter values of 𝜂 = 0.03, 𝜆  = 0.022, 𝛽 = 0.995.  It 

is interesting to note that the accuracy of models tend to 

become close to each other as the parameter values were 

decreased from case-1 to case-6. 

Table 3 shows the experimental results obtained by 

the models on the Lung Cancer dataset. The SSE and 

accuracy of BPVAM were BP 0.0054 and  60.00%, 

respectively. Similarly, for BP the SSE and accuracy 

remained 0.0063 and 60.00, respectively. The cases 

show that the convergence behavior of BP is very slow 

and very sensitive to the hyperparameter selection 

compared to BPVAM.  The best results were obtained 

for BPVAM with parameters 𝜂 = 0.1, 𝜆 = 0.005, and 

𝛽 = 0.9980. For BP BP optimal results were obtained 

with 𝛼 = 0.05, and 𝜂 = 0.1. 

Table 4 summarizes the results obtained on the Iris 

dataset. The results show that case 1 produced the 

optimal results for BPVAM with an accuracy of 84.44% 

and SSE of 0.853, while for BP the accuracy was 

77.78% and SSE of 0.991 for BP. Following all cases 

from 1 to 6, it shows the BPVAM is more robust and can 

keep improving the network model steadily. 

Further experiments were performed to compare the 

performance of the two models in terms of mean and 

standard deviation. Figure 2 and 3 shows the comparison 

of models in terms of the mean and standard deviation 

obtained for accuracy and SSE, respectively. It is 

evident that despite the improvement of the BP 

algorithm, the significant change indicates the 

sensitivity of the algorithm to its selection of parameters. 

On the other hand, the BPVAM algorithm shows its 

superiority from the first case until the sixth case. It 

increases the mean accuracy of the model while 

decreasing the standard deviation over all cases. We can 

deduce that the overall BPVAM model outperformed 

BP in terms of accuracy and SSE.

Table 1. Performance comparison metrics of the tested algorithms for Breast Cancer dataset 

Case Algorithm 𝛼 𝜂 𝜆 𝛽 SSE Accuracy (%) 

1 BP 0.06 0.4 -  - 7.244 60.34 

BPVAM - 0.4 0.0090  0.997 6.873 63.79 

2 BP 0.05 0.5 -  - 5.691 67.24 

BPVAM - 0.5 0.0089  0.996 5.685 67.24 

3 BP 0.04 0.6 -  - 5.656 68.97 

BPVAM - 0.6 0.0088  0.995 5.053 70.69 

4 BP 0.03 0.7 -  - 4.924 72.41 

BPVAM - 0.7 0.0087  0.994 4.787 75.86 

5 BP 0.02 0.8 - - 4.801 74.14 

BPVAM - 0.8 0.0086  0.993 4.780  75.86 

6 BP 0.01 0.9 - - 4.707 77.59 

BPVAM - 0.9 0.0085  0.992 4.678 77.59 
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Table 2. Performance comparison metrics of the tested algorithms for Heart Disease dataset 

Case Algorithm 𝛼 𝜂 𝜆 𝛽 Training 

Cost 

Accuracy 

Performance 

1 BP 0.06 0.08 -  - 5.306 48.91 

BPVAM - 0.08 0.027  0.999 4.900 51.09 

2 BP 0.05 0.07 -  - 4.648 52.17 

BPVAM - 0.07 0.026  0.999 4.615 54.35 

3 BP 0.04 0.06 -  - 4.586 55.43 

BPVAM - 0.06 0.025  0.998 4.022 58.70 

4 BP 0.03 0.05 -  - 4.332 57.61 

BPVAM - 0.05 0.024  0.997 4.017 59.78 

5 BP 0.02 0.04 - - 4.020 59.78 

BPVAM - 0.04 0.023  0.996 4.001 60.87 

6 BP 0.01 0.03 - - 3.969 61.96 

BPVAM - 0.03 0.022  0.995 3.961 61.96 

 

Table 3. Performance comparison metrics of the tested algorithms for Lung-Cancer dataset 

Case Algorithm 𝛼 𝜂 𝜆 𝛽 Training 

Cost 

Accuracy 

Performance 

1 BP 0.10 0.6 -  - 0.0275 30.00 

BPVAM - 0.6 0.010  0.9994 0.0161 40.00 

2 BP 0.09 0.5 -  - 0.0163 40.00 

BPVAM - 0.5 0.009  0.9993 0.0081 50.00 

3 BP 0.08 0.4 -  - 0.0120 40.00 

BPVAM - 0.4 0.008  0.9992 0.0075 50.00 

4 BP 0.07 0.3 -  - 0.0081 50.00 

BPVAM - 0.3 0.007 0.9991 0.0066 60.00 

5 BP 0.06 0.2 - - 0.0072 60.00 

BPVAM - 0.2 0.006  0.9990 0.0060 60.00 

6 BP 0.05 0.1 - - 0.0063 60.00 

BPVAM - 0.1 0.005 0.9980 0.0054 60.00 

 

Table 4. Performance comparison metrics of the tested algorithms for Iris dataset 

Case Algorithm 𝛼 𝜂 𝜆 𝛽 Training 

Cost 

Accuracy 

Performance 

1 BP 0.006 0.10 -  - 0.991 77.78 

BPVAM - 0.10 0.07  0.9994 0.853 84.44 

2 BP 0.005 0.09 -  - 0.926 82.22 

BPVAM - 0.09 0.06  0.9993 0.812 86.67 

3 BP 0.004 0.08 -  - 0.756 88.89 

BPVAM - 0.08 0.05  0.9992 0.618 91.11 

4 BP 0.003 0.07 -  - 0.516 93.33 

BPVAM - 0.07 0.04  0.9991 0.201 97.78 

5 BP 0.002 0.06 - - 0.334 95.56 

BPVAM - 0.06 0.03  0.9990 0.182 100.00 

6 BP 0.001 0.05 - - 0.184 100.00 

BPVAM - 0.05 0.02 0.9980 0.180 100.00 
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(a) 

 
(b) 

Figure 2. Performance evaluation metrics of BP and BPVAM for four benchmarks, a) mean 

accuracy, and b) standard deviation accuracy 
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Figure 3. Performance evaluation metrics of BP and BPVAM for four benchmarks, a) mean error, and 

b) standard deviation error 
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improved the accuracy and robustness of the model.  

Moreover, this study suggests a significant improvement 

in accuracy, mean error, and standard deviation when 

the BPVAM is optimized with adaptive momentum. It 

can be observed that BPVAM exhibit features to 

guarantee its convergence and produce a much lower 

SSE against any valid data sets. In the future, we aim to 

apply this optimization algorithm to obtain an optimal 

set of parameters for a deep end-to-end neural network 

to overcome the issue of obtaining the optimal 
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hyperparameters, we also are plan to monitor the 

progress of the hyperparameter optimization in real-

time. This will allow the extraction of highly 

discriminative features from input data that can improve 

the model's performance. 
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