Fundamental Journal of Mathematics and Applications, 6 (1) (2023) 35-41
Research Article

% FuiMa Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.org.tr/en/pub/fujma
ISSN: 2645-8845
doi: https://dx.doi.org/10.33401/fujma.153224

Holomorphically Planar Conformal Vector Field On Almost
o—Cosymplectic (x, 1 )— Spaces

Mustafa Yildirim'* and Nesip Aktan?

I Department of Mathematics, Faculty of Science and Arts, Aksaray University, Aksaray, Turkey
2Department of Mathematics and Computer Science, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
*Corresponding author

Article Info Abstract
Keywords:  Almost a-cosymplectic The aim of the present paper is to study holomorphically planar conformal vector (HPCV)
(x, t)-spaces, a- cosymplectic mani- fields on almost a—cosymplectic (k, 1) —spaces. This is done assuming various conditions

fold, Hpcv field

2010 AMS: 53C18, 53C25,53D15
Received: 2 August 2022
Accepted: 4 November 2022
Available online: 9 January 2023

such as i) U is pointwise collinear with & ( in this case, the integral manifold of the
distribution D is totally geodesic, or totally umbilical), ii) M has a constant & —sectional
curvature (under this condition the integral manifold of the distribution D is totally geodesic
(or totally umbilical) or the manifold is isometric to sphere S2*1(,/c) of radius ﬁ), iii) M
an almost or—cosymplectic (k, i) —spaces ( in this case the manifold has constant curvature,
or the integral manifold of the distribution D is totally geodesic(or totally umbilical) or U is
an eigenvector of /).

1. Introduction

Killing vector fields are of great importance in terms of having an impact on the the geometry in addition to the topology of
Riemannian manifolds and being incompressible fields has a significant role in physics. The importance of Killing vector
fields in Riemannian geometry is associated with the fact that the flows preserve the given metric and determine the symmetry
degree of the manifold. Also, in terms of physics, Killing vectors allow the energy and momentum of a freely moving particle
to be conserved in flat space- times. In a general manner, special vector fields such as Killing vector fields are conformal vector
fields of which flow maintains a conformal class of metrics. A vector field V satisfying £y g = 2fg on a Riemannian manifold
(M, g) is said to be a conformal vector field or conformal transformation on M, where £ denotes the Lie derivative on M and f
is a smooth function. If f is constant, then V is called homothetic. Also, it has been stated that if the metrically associated
I—form of V is closed, it is described as closed. V is named as the gradient conformal vector field in case of the fact that the
conformal vector field V is the gradient of any differentiable function. The conformal vector fields have been carried out in
numerous studies ([1]- [3]).

As a result of these studies, Sharma [4] introduced a holomorphically planar conformal vector (HPCV) field U as a general-
ization of a closed conformal vector field on an almost Hermitian manifolds. Then, Ghosh—Sharma [5] extensively studied
this concept in various conditions. Later, in [6], HPCV fields studied on contact metric manifolds and Einstein contact
metric manifolds under some curvature conditions. An HPCYV field on a contact metric manifold refers to a vector field U on
(M, @,,n) which satisfies

VxU = aX + boX (1.1)

for arbitrary X € x (M), where a and b are smooth functions on M.
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It must be considered that another class of almost contact manifold, named almost cosymplectic manifold, has gained much
attention in various studies [7]. The notion was introduced in [8] as an almost contact metric manifold of which the fundamental
2—form ® and 1—form 7 are closed. It has been reported that if the almost contact structure is normal then the manifold is
called cosymplectic (in the present case the term “cosymplectic” has been adopted to refer to the term “coKihler” in [7]). Also,
Endo [9] defined almost cosymplectic (k, i) —spaces that the curvature tensor of the manifold satisfies

RX,Y)§ =x(nY)X —n(X)Y)+u(nY)hX —n(X)hY) (1.2)

for any X,Y € x(M), where K, i are constant and h = %fg(p. On the other hand, Kenmotsu [10] defined the almost Kenmotsu
manifold, an almost contact manifold satisfying dn = 0 and d® = 21n A ®. According to this definition, Kim [11] introduced
the notion of almost &x—cosymplectic manifold, referring to an almost contact manifold satisfying dn = 0 and d® =2an AP
(a is real constant). Aktan et al. [12] carried out an extensive study on almost a—cosymplectic (k, i, D) —spaces and revealed
some outcomes of substantial importance. In recent studies numerous studies were carried out on this subject (cf. [13]-[17]).
In the light of these studies, the aim of the paper is to study the HPCV fields on almost t—cosymplectic manifolds and almost
a—cosymplectic (k, 1) —spaces. Firstly, we give some basic definitions and properties of such structures. In main section, we
consider an almost ot—cosymplectic and almost cosymplectic (k, 1) — spaces admits a non zero HPCV field U. This is done
assuming various conditions such as i) U is pointwise collinear with { (in this case the integral manifold of the distribution D
is totally geodesic or totally umbilical), ii) M has a constant { —sectional curvature (under this condition the integral manifold
of the distribution D is totally geodesic (or totally umbilical) or the manifold is isometric to sphere S (,/c) of radius %), 1ii)

M an almost a-—cosymplectic (k, i) —spaces ( i this case the manifold is constant negative curvature or the integral manifold
of the distribution D is totally geodesic(or totally umbilical) or U is an eigenvector of k).

2. Preliminaries

Let M be a (2n+ 1)—dimensional smooth manifold. An almost contact structure on M is a triple (¢, {, 1) which carries a field
¢ of endomorphisms of the tangent spaces, a vector field {, called characteristic vector field, and a 1—form 7 satisfying

o’ =-I1+1®¢, n(p)=0, p(£) =0. (2.1)

A smooth manifold with such a structure is called an almost contact manifold. It is known that any almost contact manifold M
admits a Riemannian metric g satisfying

8(9X,0Y) = ¢(X,Y) —n(X)n(Y), ¢(X, &) = n(X),

then g is called compatible metric with the structure. Then the manifold (M, @,{,n,g) is called an almost contact metric
manifold. An almost contact structure (¢, ,n) is said to be normal if the Nijenheus tensor of ¢ vanishes identically. The
fundamental 2—form & on M is defined by ®(X,Y) = g(¢X,Y) for any vector fields X, Y € x(M).

An almost ¢—cosymplectic manifold is an almost contact metric manifold defined by dn = 0 and d® = 2an A ®, for any real
number ¢ . If @ = 0 then the manifold reduce to almost cosymplectic manifold. Furthermore, normal almost &t —cosymplectic
manifold is called ¢—cosymplectic manifold ( For more detail [11], [12]).

Let M be an almost or—cosymplectic manifold and D = {X : n(X) = 0} which denote the distribution orthogonal to {. Since
the 1—form is closed, then we have £,n =0 and [X,{] € D for any X € D. The Levi-Civita connection satisfies V£ = 0 and
V¢ € D, which implies that VX € D for any X € D.

In addition, an almost @—cosymplectic manifold satisfies the following equations [11]:

h =0, g(hX,Y) = g(X,hY), trace(h) =0, @h-+ho =0,
Vx¢ = —a@’X — phX = —A,
(Vx@)Y + (Vox @) 0¥ = —a[n(Y) X +28(X, 9Y) L] - n(Y)hX, (22)
(Vxm)Y = a[g(X,Y) = n(X)n(¥)] +g(@Y,hX), (23)
tr(Ap) =1r(9A) =0, tr(hg) = tr(ph) =0,

tr(A) = —2an, tr(h) =0,

for any vector fields X,Y € x(M).
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3. Holomorphically planar conformal vector fields on almost & —cosymplectic manifolds

In this part, we study almost @ —cosymplectic manifolds with respect to a HPCV field U. We first state and prove the following
lemma for the our main theorem.

Lemma 3.1. Let M be an almost o—cosymplectic manifold with respect to a HPCV field U .Then
oU(a) =-U(b)+((b)+2anb)n(U) (3.1
holds on M.
Proof. Using equation (1.1) in the formula Riemannian curvature tensor R(X,Y)Z = [Vx,Vy]Z—V|x yZ, we have
RX,Y)U=X(a)Y =Y (@)X +X (D)oY =Y ()X +b[(Vx9)Y — (Vyo)X]. (3.2)
Replacement of X with ¢X and Y with ¢Y in the previous equation yields

R(eX,0Y)U = ¢X(a)pY — @Y (a)pX — X (b)Y + X (b)n(Y)C + @Y (b)X
—oY(O)n(X)E+b[(Vex @) @Y — (Vor @) X ] . (3.3)

By adding (3.2) and (3.3) and using (2.2), we obtain

RX,Y)U+R(¢X,9Y)U = ¢X(a)pY — Y (a)pX — X (b)Y + X (b)n(Y)E
+<PY(b) —oY(b)n(X)E+X(a)Y —Y(a)X (3.4)
+X(b)pY =Y (b)pX +ban(X)eY +2¢(0X,Y)E
+N(X)hY —n(Y)eX —2g(X, oY) +n(Y)hX].

Using (2.1) and considering the inner product of (3.4) with U and then replacing X with ¢X and
Y with @Y, we have

X —n(X)Cl(a)g(eY,oU) —[Y —n(Y){] (a)g(eX, @U)
—[=X+nX)¢](a)g(@Y.U) +[-Y +n(Y){](a)g(9X,U)
+9X(a)g(oY,U) — ¢Y (a)g(9X,U) — X (b)g(¢Y, @U) (3.5)
+<pY(b)g(<pX,<pU)—4abg(X,<PY>n(U)

= 0.

Putting @Y for Y in (3.5), we have

8(Da, oX) [=g(Y,U)+n(Y)n(U)] = [-g(Da,Y) +n(Y){(a)] g(@X,U)
—8(Db, 9X)g(Y,U) — [—g(Db,Y) +n(Y)(b)] [-g(X,U) +n(X)n (V)]
+[8(Da,X) =n(X)¢(a)|g(9Y,U) +g(Da, oY) [—g(X,U) +n(X)n (V)]
+[8(Db,X) =n(X)E(b)] [ (Y, U) +n(Y)n(U)] — &(Db, ¢Y )g(9X,U) (3.6)
—4ab[g(X,Y) —n(X)n(Y)]

= 0.

Contracting X and Y in (3.6), we obtain

oU(a) =-U(b)+§(b)n(U) +2abnn (U).

Theorem 3.2. ([11]) Let M be an almost a—cosymplectic f—manifold and M be integral manifold of D. Then

i) when o =0, ]\Z is totally geodesic if and only if all the operators h; vanishes.
ii) when a # 0 M is totally umbilical if and only if all the operators /; vanishes.

Theorem 3.3. Let M be an almost x—cosymplectic manifold. If M admits a non zero HPCYV field U such that U is pointwise
collinear with &, then the integral manifold of the distribution D is totally geodesic or totally umbilical.
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Proof. Let U be a nonzero HPCV field on M and U is pointwise collinear with { such that
U=p¢ (3.7)

where p # 0 a smooth function on M. Substituting (3.7) in (3.1), we obtain 2nabp = 0, which implies b = 0 since p # 0.Using
these obtained result together with equations (3.7) and (1.1), we get p = 1 (U). From

X(p) = Vxp =Vx(n(U)) = (VxmU +n(VxU)
and using (1.1), (2.3), (3.7) , we have
X(p)=an(X).
Taking the covariant derivative of equation (3.7) along X, we get
aX = —ap@’X — pehX + aan(X)<. (3.8)

Considering by the inner product of (3.8) with Y, then contracting X and Y last equation po = a. Then equation (3.8) reduces
to

aphX =0, (3.9)
since p # 0 a smooth function, so a # 0. Hence from (3.9) we obtain the result 2 = 0. The proof is completed. O

Theorem 3.4. Let M be a complete almost o.—cosymplectic manifold that admits an HPCV field U. If M has a constant
{ —sectional curvature, then

1) the integral manifold of the distribution D is totally geodesic or totally umbilical,
ii) the manifold M is isometric to sphere §>"*!(,/c) of radius %

7

Proof. Let K(&,X) = c is the positive constant sectional curvature of an almost a—cosymplectic manifold. Then by a simple
calculation, we obtain:

R(§,X)¢ = —c[X —n(X)¢]. (3.10)

for any vector field X € y(M).
Using X = ¢ in (3.2) yield

R(E,Y)U={(a)Y —Y(a)l+ { (D)@Y +bapY + bhY. (3.11)
By considering the inner product of (3.11) with {, we obtain
8(R(E,Y)U,C) = E(an(Y) —Y(a). (3.12)
Then, using (3.10), we obtain
8(R(E,Y)U,C) = —g(R(E,Y)E,U) =clg(Y,U) —n(Y)n(U)]. (3.13)
From the equations (3.12) and (3.13), we obtain
Da—{(a)l+cU—cn(U){ =0. (3.14)
By considering the inner product of (3.11) with U implies
(@)U — (Da)n(U) —&(b)pU —bopU + bhU = 0. (3.15)
If we eleminate Da from the last two equations, we obtain
—¢(a)@*U —en(U)@*U — &(b)@(U) — baoU +bhU = 0. (3.16)

Then differentiating (3.14) covariantly along any vector field X and further the inner product with Y, we obtain

8(VxDa,Y) = {(a)[ag(X,Y)E—an(X)n(Y)—g(phX,Y)]
+X(E(a))n(Y) —clag(X,Y) +bg(@X,Y)]
+en(Y) [an(X) +og(X,U) —an(X)n(U)] (3.17)

+en(U) [og(X,Y) —an(X)n(Y) — g (phX,Y)]
—cg(U,hX)n(Y).
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If we recall the Hessian operator, that is, Hess,(X,Y) = g(VxDa,Y) = g(VyDa,X) and using the antisymmetrizing of the
preceding equation

X(8(@)n(Y)+oacn(Y)g(X,U) —cg (¢hX,U)n(Y) —Y({(a))n(X)
—oen(X)g(Y,U) + cg(ohY, U)n(X) +2bcg(9X,Y) (3.18)
= 0.

Replacing X by ¢X and Y by ¢Y in (3.18), we obtain 2bcg (¢X,Y) = 0, then from b = 0 ( ¢ # 0). Thus using (3.15), we obtain
$(a)U = Dan(U). (3.19)
On the other hand, since b = 0 equation (3.16) reduce to
[§(a) +en(U)]9*U =0,
which implies either *U = 0 or {(a) = —cn(U).

Casel. If ¢>U =0, then U = n(U){ which implies U is pointwise collinear with {. Thus, from Theorem 3.3. the integral
submanifold of the distribution D is totally geodesic or totally umbilical.

Case2. If {(a) = —cn(U), then from (3.19) we have (Da+ cU)n(U) = 0.Thus, in both cases, Da = —cU obtained. By
considering (1.1) and using covariant differentiation, we obtain VxDa = —caX, any X € x(M). By view of ([18]-
Theorem 3), condition ii) is proved.

O

In this part, we suppose that (M, @, {,n) is an almost @—cosymplectic (k, 1) —spaces, namely the Riemannian curvature
tensor satisfies (1.2). Furthermore, the following relations are provided.

4. Holomorphically planar conformal vector fields on almost oc—cosymplectic (k, 1t) —spaces

Proposition 4.1. [12] Let M be an almost o.—cosymplectic (K, L) —spaces. Then the following relations are hold.

W= (k+a?) ¢*, for k < —a, 4.1)
V¢h = —poh,
R(E.X)Y =k (g(Y,X)E —n(Y)X)+pu(g(hY,X){ —n(Y)hX), (4.2)

(Vx@)Y = g(apX +hX,Y){ —n(Y)(apX +hX),

for any X,Y € y(M),where h is symmetric operator h = %;E co.
From (4.1), we find easily that ¥ < 0 and kx = 0 if and only if M is a cosymplectic manifold, thus in the following we always
suppose K < 0.

Theorem 4.2. Let (M, ,{,n) be an almost a—cosymplectic (x, L) —spaces that admits an HPCV field U, then

1) the manifold has constant curvature,
ii) the integral manifold of the distribution D is totally geodesic or totally umbilical,
iii) U is an eigenvector of /.

Proof. Using X = { in (3.2), we obtain
R(E,Y)U={(a)Y —Y(a)l +E(b)@Y +bogY + bhY. (4.3)
By considering the inner product of (4.3) with {, we have
8R(E,Y)U, ) = Clan(Y) =Y (a). (4.4)
Using the (4.2) in the preceding equation, we obtain

8(R(E, VU, L) = Kkg(Y,U) —kn(Y)n(U) + pug(hY,U). 4.5)
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Egs. (4.4)-(4.5) yield to
Slan(Y)=Y(a) = kg(Y,U) —xkn(Y)n(U)+ ug(hY,U) (4.6)
which implies
—kn(U)E+ uhY + xU = §(a){ — Da. 4.7
On the other hand,taking the inner product both sides of equation (4.3) with U,
§(a)g(Y,U) =Y (a)n(U) +E(b)g(Y,U) +bog(Y,U) +bg(hY,U) = 0.
Remove Y in preceding equation
(@)U —Dan(U)—E(b)o(U) —boeU +bhU =0. (4.8)
Eliminating Da from (4.7) and (4.8), we have
un(U)RY +bhU — &(b)o(U) — baoU — ¢ (a)@*U — kn(U)@*U = 0. (4.9)
On the other hand, substituting ¥ = { and then taking the covariant derivative of equation (4.7) along X, we have
—Kk[n (VxU) & +¢(U,Vx§)E+n(U)Vx$ - VxU] = X (£(a)) € — §(a)Vx § — VxDa.
Then using (1.1) and AX = —Vx{ in preceding equation, also taking the inner product with Y, we obtain

—Kklan(X)n(Y) —g(AX,U)n(Y) = g(AX, Y)n(U) — ag(X,X2) — bg(¢X,Y)] (4.10)
= X(C(@)n(Y)+E(a)g(AX,Y) —g(VxDa,Y)

Using the symmetry of the Hessian operator, we have
K[2bg (¢X,Y) —g(U,AX)n(Y) —g(U,AY)n(X)] = X (S (a)) n(¥) =Y (£(a)) n(X) =0
Replacing X with X and Y with ¢Y in the previous equation, we obtain that
2kbg (¢X,Y)=0
which implies b = 0 as k¥ < 0. Therefore, from equation (4.8), we get
{(a)U = (Da)n(U). (@.11)
Considering that Y € [l]/ in (4.6), we obtain that
(k+uA)g(Y,U) = —Y(a). (4.12)
Substituting Y = ¢ in the last equality, then (4.11) and (4.12) implies that
C(a)=—(k+uA)n(U) and Da = — (k + uA)U. (4.13)
By using equality of {(a) and b = 0 in (4.9), we obtain
~L(a)9’U —xn(U)@*U +un(U)hY =0
which implies
u [An(U)9*U +hU]n(U) =0.

Casel. If u = 0, then from (4.2) the manifold has constant curvature.

Case2. If An(U)@?U +hU = 0, then from (2.1), we obtain AU = AU — An(U){. If we apply / to both sides of the equation,
we infer that 42U = AhU. From that, tr(h*) = 0, so we obtain # = 0. Under the same conditions of Theorem 3.3 the
integral manifold of the distribution D is totally geodesic or totally umbilical.

Case3. If n(U) =0, then from (4.13), {(a) = 0. Using that value in (4.7), we obtain

Da=xn(U){—uhyY —xU.
When this result is considered together with the value of Da in (4.13), we infer that
hU = AU.

which implies that V is an eingenvector of .
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5. Conclusion and discussion

The notion of conformality is an important object that appears in various fields of mathematics (e.g., real and complex analysis,
Riemannian geometry, classical geometry) as well as in physics (e.g., general relativity, conformal field theory) and also,has
many applications in military aircraft, electronics, cartography, and so on. The notion, which started with conformal functions
between Euclidean spaces, conformal maps between Riemannian or semi-Riemannian manifolds, was later extended to
conformal vector fields. Recently, it is an important tool used in many mathematical and physical subjects with many special
types.

Considering the importance and wide application of this notion, we characterize and classify almost a—cosymplectic
(x, i) —spaces admitting holomorphically conformal vector fields which a generalization of the conformal vector field. In this
direction, many results have been given in the third section and an important characterization of the given structure has been
obtained. This study will shed light on our future investigations. Our further studies will be denote applications of some types
of conformal vector fields like ¢ —holomorphic planar conformal vector fields and Ricci biconformal vector fields.
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