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Parameter Extraction of Photovoltaic Models by Honey Badger 

Algorithm and Wild Horse Optimizer 

Highlights 

❖ PV parameter estimation has been made with honey badger algorithm (HBA) and wild horse optimizer 

(WHO) 

❖ PV cells and modules are modeled with single and double diode models and real measurement data are used 

to test the problem. 

❖ Objective function values are calculated between 9.9318E-04 and 1.7011E-03 with HBA and between 

9.8602E-04 and 1.7298E-03 with WHO. 

Graphical Abstract 

In this article, the topic of PV parameter extraction has been studied and this optimization problem has been solved 

with HBA and WHO. 

 

 

Figure. Optimization process for PV parameter extraction with HBA and WHO 

Aim 

In this study, it is aimed to extract PV parameters and obtain optimal parameters with HBA and WHO. 

Design & Methodology 

PV cells and modules are modeled with single and double diode models. The root mean square error was chosen as 

the objective function and the results of HBA and WHO were compared with the evaluation metrics in terms of 

computational accuracy and computational time.  

Originality 

HBA and WHO were used together and compared for the first time in this study.  

Findings 

When the algorithms are compared in terms of computational accuracy and computational time; it has been observed 

that both WHO and HBA, with WHO in the first place, produce successful, stable and fast results in PV parameter 

extraction. 

Conclusion 

As a result; It has been seen that HBA and WHO are effective and successful in PV parameter extraction and can be 

used in the solution of such engineering problems with their competitive structure compared to the literature. 

Declaration of Ethical Standards 

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee 

permission and/or legal-special permission. 
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 ABSTRACT 

Analyzing the processes ranging from the determination of the installation configuration of the photovoltaic (PV) systems to the 

operation at the maximum power, from the technical and economic feasibility study to the positive contribution to the region where 

the production is planned are just possible with the accurate and efficient simulation models of the PV systems. PV parameter 

extraction, which is a topic frequently discussed recently, is crucial for the detailed modeling of PV cells and modules and 

simulating the behavior of these systems. For this reason, the current study examined PV parameter extraction and solved this 

optimization problem with the honey badger algorithm (HBA) and wild horse optimizer (WHO). PV cells and modules were 

modeled with the single diode model (SDM) and double diode model (DDM) and tested with actual measurement data. The root-

mean-square error (RMSE) was chosen as the objective function, and the results were compared with the evaluation metrics for 

computational accuracy and time. Based on four PV model results, RMSE values were calculated between 9.9318E-04 to 1.7011E-

03 for HBA and between 9.8602E-04 and 1.7298E-03 for WHO. As a result, even though both algorithms produce successful, 

stable, and fast results in PV parameter extraction, the WHO yielded better results.  

Keywords: Double diode PV model, honey badger algorithm, PV parameter extraction, single diode model, wild horse 

optimizer. 

Bal Porsuğu Algoritması ve Vahşi At Optimize Edici 

ile Fotovoltaik Modellerin Parametre Çıkarımı 

ÖZ 

Fotovoltaik (FV) sistemlerin kurulum konfigürasyonunun belirlenmesinden, maksimum güç noktasında çalıştırılmasına, teknik ve 

ekonomik fizibilite çalışmasından üretim yapması planlanan bölgeye sağlayacağı pozitif katkısına kadar olan süreçlerin analizinin 

yapılması FV sistemlerin doğru ve verimli simülasyon modellerine bağlıdır. FV hücrelerin ve modüllerin detaylı modellenmesi ve 

bu sistemlerin davranışının taklit edilebilmesi için FV parametre çıkarımı son derece önemli olup son zamanlarda sıklıkla çalışılan 

bir konudur. Bu sebeple bu çalışmada, FV parametre çıkarımı konusunda çalışılmış ve bu optimizasyon problemi bal porsuğu 

algoritması (BPA) ve vahşi at optimize edici (VAO) ile çözülmüştür. FV hücre ve modüller tek diyotlu model (TDM) ve çift diyotlu 

model (ÇDM) ile modellenmiştir. Bu modellerin test edilmesinde ise gerçek ölçüm verileri kullanılmıştır. Amaç fonksiyonu olarak 

hata kareler ortalamasının karekökü (RMSE) seçilmiş ve sonuçlar, hesaplama doğruluğu ve zamanı açılarından değerlendirme 

metrikleri ile karşılaştırılmıştır. Dört FV modelin sonuçlarına göre; BPA 9,9318E-04 ile 1,7011E-03 aralığında ve VAO ise 

9,8602E-04 ile 1,7298E-03 aralığında RMSE değerleri hesaplanmıştır. Sonuç olarak her iki algoritma da PV parametre çıkarımında 

başarılı, kararlı ve hızlı sonuçlar vermesine rağmen VAO daha iyi sonuçlar vermiştir.  

Anahtar Kelimeler: Çift diyotlu FV model, bal porsuğu algoritması, FV parametre çıkarımı, tek diyotlu FV model, vahşi 

at optimize edici.

1. INTRODUCTION 

 PV systems attract the attention of researchers in theory 

and investors in practice because of their ability to 

transform solar energy directly into electrical energy and 

their application in many fields [1-2]. PV systems 

operating in severe ambient conditions are affected by 

many factors such as extreme temperatures, dust, 

pollution, rain, and snow. These factors, causing various 

malfunctions, shorten the life of the PV modules and 

reduce the entire system’s efficiency [3-4]. PV systems 

need to be modeled in detail in order to design PV 

systems or to ensure that existing systems work at 

optimum efficiency levels [5-6]. The model should also 

contain the effects of environmental factors for an 

optimum PV system design. Modeling of a PV system 

starts with the PV cells, the smallest unit of the PV 

system, and then the modules and arrays are handled, 

respectively. However, the information obtained from the 

PV manufacturer data sheets alone is insufficient for 

modeling PV cells, modules, and arrays. Therefore, it is 

necessary to create electrically equivalent circuit models 

*Sorumlu Yazar (Corresponding Author)  
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to PV models and extract unknown parameters [7]. 

Equivalent circuit equations are non-linear due to the 

diodes in the electrical equivalent circuits of PV cells. 

The larger the number of diodes, the greater the variety 

of parameters to be determined and the system 

complexity. The most dominant elements of PV cells are 

diodes. Therefore, the circuit models of PV systems get 

their names according to the number of diodes. The most 

common circuit models are the single diode model, the 

double diode model, and the three diode model (TDM). 

In addition, in the literature, PV circuit models are named 

according to the unknown parameter counts in the 

equivalent circuit. SDM, DDM, and TDM are also called 

the 5-parameter model, the 7-parameter model, and the 

9-parameter model, respectively. Accurate, fast, and 

reliable estimation of the parameters of PV models is the 

primary goal of an optimal operation [8-9]. 

The PV cell has a nonlinear mathematical infrastructure. 

Solving the equations and getting optimal parameters for 

PV systems is an optimization problem. A review of 

valuable literature studies showed that analytical, 

deterministic, and meta-heuristic methods generally 

served in PV parameter extraction. Meta-heuristic 

algorithms are popular among these methods. Many 

researchers work on them because they have chief 

advantages, such as not having problem constraints, ease 

of use, being usable in multidimensional optimization 

problems, and producing fast and reliable results [10]. 

Garip et al. used henon chaotic based whale optimization 

algorithms (HBOA) to estimate the parameters of the 

SDM model of three commercial modules PWP-201 (36 

cells), STM-40/36 (36 cells), and STP6-120/36 (36 cells) 

and compared HBOA with the classical whale 

optimization algorithm. HBOA variants produced a 

smaller RMSE than the classical whale optimization 

algorithm [11]. Rizk et al. used the emended heap-based 

optimizer (EHBO) to find the parameters of the SDM 

model of three commercial modules PWP-201, 

KC200GT (36 cells), and Shell solar PowerMax Ultra 

85-P (54 cells). They compared the proposed algorithm 

with particle swarm optimizer, interior search algorithm, 

artificial ecosystem optimizer, equilibrium optimizer, 

and heap-based optimizer algorithms. The RMSE value 

of EHBO was 2.4170E-03 and produced better results 

than other algorithms [12]. Wang et al. used the enhanced 

ant lion optimizer (EALO) to estimate the SDM and 

DDM parameters in the commercial model of RTC 

France and the SDM parameters in the PWP-201 

commercial model. RTC France-SDM results were 

compared with artificial bee colony optimization (ABC), 

chaos pattern search, generalized oppositional teaching 

learning based optimization algorithm (GOTLBO), 

artificial bee swarm optimization, and hybrid bee 

pollinator flower pollination algorithm (FPA). EALO, 

hybrid BPFPA, and ABC algorithms gave better results 

than others by their RMSE values. RTC France-DDM 

results were compared with pattern search, harmony 

search-based algorithms, simulated annealing algorithm, 

ABC, artificial bee swarm optimization, GOTLBO, and 

hybrid FPA. The best RMSE value was 9.8247E-03 

produced by the EALO. In the PWP-201-SDM results, 

the best RMSE value from the proposed algorithm was 

2.4248E-03 [13]. Yeşilbudak used the african vulture 

optimization algorithm to determine the SDM and DDM 

parameters in the commercial RTC France and the SDM 

parameters in the PWP-201 commercial model. The 

proposed algorithm, compared with many algorithms in 

the cell and module model, worked successfully [14]. Ndi 

et al.  determined the optimal parameters of the DDM and 

SDM equivalent circuit models in RTC France using the 

balance optimizer algorithm and found the RMSE values 

9.8553E-04 and 9.8603E-04 for DDM and SDM, 

respectively. The proposed algorithm gave successful 

results in parameter extraction [15]. Pourmousa et al. 

found DDM and SDM parameters in the RTC France 

commercial cell model and SDM parameters in the 

STM6-40 commercial module with an improved Lozi 

map-based chaotic optimization algorithm. The RMSE 

values of DDM, SDM, and PV modules were 8.8257E-

04, 9.8602E-04, and 1.6932E-02, respectively [16]. Long 

et al. used the enhanced adaptive butterfly optimization 

algorithm to find the DDM, SDM equivalent circuit 

models in the RTC France model, and the SDM 

parameters in the PWP-201 commercial module. The 

RMSE values of the DDM cell, SDM cell, and PV 

module were found at 9.8607E-04, 9.8602E-04, and 

2.4252E-03, respectively [17]. 

The literature review has revealed that many algorithms, 

methods, and techniques for optimum PV parameter 

extraction were available, but no single algorithm or 

method could solve all problems. Therefore, unknown 

SDM and DDM parameters in PV models (modules and 

cells) were estimated using HBA and WHO algorithms, 

and their performances were compared using evaluation 

metrics. The current study employing HBA and WHO for 

optimizing PV parameter extraction might remarkably 

contribute to the literature for future studies. 

This article comprises five parts. After the introduction, 

Section 2 covers the PV parameter extraction problem. 

Section 3 explains the optimization algorithms and 

mathematical background, which are the tools for solving 

this problem. The results and discussion sections are in 

Section 4, while Section 5 covers the conclusion part. 

 

2. DEFINITION OF PROBLEM 

It is possible to come across different circuit models 

while expressing the current-voltage relationship of PV 

systems [18]. In this study, PV parameter extraction, 

which is the main topic of this study, was carried out 

through four models: single diode cell (SDM-C), double 

diode cell (DDM-C), single diode module (SDM-M), and 

double diode module (DDM-M). In this direction, the 

current study covered the equivalent circuit models and 

mathematical infrastructure of the PV cell and module in 

the following subsections and defined the objective 

function for the unknown parameter identification. 
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2.1. Single Diode Model (SDM) 

The single diode cell consisted of one diode, parallel and 

series resistors, and a photo/generated current source. 

Figure 1(a) shows the equivalent circuit model of the 

SDM-C model. While Equation 1 shows the general 

representation of the output current (𝐼𝑆𝐷𝑀) of the SDM 

equivalent circuit, Equation 2 shows the output current 

(𝐼𝑆𝐷𝑀−𝐶) of the SDM-C [19]-[22]. In these equations, 𝐼𝑝ℎ 

is the photo/generated current, 𝑉 is the output voltage of 

the cell, 𝐼𝑜 is the reverse saturation current, 𝑅𝑠 and 𝑅𝑠ℎ 

are the series and parallel resistance, respectively, 𝑇 is the 

operating temperature, 𝛼 is the diode ideality factor, 𝑞 is 

the electron charge (1.60217646𝑥10−19𝐶) and 𝑘 is the 

Boltzmann constant (1,3806503𝑥10−23 𝐽 𝐾⁄ ). Figure 

1(b) shows the equivalent circuit model of the SDM-M. 

No parallel cells were available in this study. Equation 3 

shows the output current (𝐼𝑆𝐷𝑀−𝑀) of SDM-M [21]-[24]. 

In SDM-M, 𝑁𝑠 refers to cells connected in series. There 

were five parameters to be estimated in the SDM-C and 

SDM-M models, namely 𝐼𝑝ℎ, 𝐼𝑜, 𝛼, 𝑅𝑠, and 𝑅𝑠ℎ. 

𝐼𝑆𝐷𝑀 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ                                                    (1) 

𝐼𝑆𝐷𝑀−𝐶 = 𝐼𝑝ℎ − 𝐼𝑜 [𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝛼𝑘𝑇 − 1] −
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
               (2) 

𝐼𝑆𝐷𝑀−𝑀 = 𝐼𝑝ℎ − 𝐼𝑜 [𝑒
𝑞(𝑉+𝐼𝑅𝑠𝑁𝑠)

𝛼𝑘𝑇𝑁𝑠 − 1] −
𝑉+𝐼𝑅𝑠𝑁𝑠

𝑅𝑠ℎ𝑁𝑠
             (3) 

 

 

(a) SDM-C 

 

(b) SDM-M 

Figure 1. SDM equivalent circuits of PV cell and module 

 

2.2. Double Diode Model (DDM) 

DDM-C consisted of two diodes, parallel and series 

resistors, and a photo/generated current source. Figure 

2(a) shows the equivalent circuit model of DDM-C. The 

common representations of the output current (𝐼𝐷𝐷𝑀) of 

DDM and the output current (𝐼𝐷𝐷𝑀−𝐶) of DDM-C are in 

Equations 4 and 5, respectively [20]-[23]. In these 

equations, 𝐼𝑑1 and 𝐼𝑑2 are the diode currents, 𝛼1 and 𝛼2 

are ideality factors of the 1st and the 2nd diodes, and 𝐼𝑜1 

and 𝐼𝑜2 are the reverse saturation currents. Figure 2(b) 

shows the equivalent circuit DDM-M. The study 

assumed that all cells in the PV module were series-

connected. This module's output current (𝐼𝐷𝐷𝑀−𝑀) is in 

Equation 6 [25].  Seven parameters were defined in cell 

and module models: 𝐼𝑝ℎ, 𝐼𝑜1, 𝐼𝑜2, 𝛼1, 𝛼2, 𝑅𝑠, and 𝑅𝑠ℎ. 

𝐼𝐷𝐷𝑀 = 𝐼𝑝ℎ − 𝐼𝑑1 − 𝐼𝑑2 − 𝐼𝑠ℎ                                              (4) 

𝐼𝐷𝐷𝑀−𝐶 = 𝐼𝑝ℎ − 𝐼𝑜1 [𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝛼1𝑘𝑇 − 1] 

                 −𝐼𝑜2 [𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝛼2𝑘𝑇 − 1] −
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
                               (5) 

𝐼𝐷𝐷𝑀−𝑀 = 𝐼𝑝ℎ − 𝐼𝑜1 [𝑒
𝑞(𝑉+𝐼𝑅𝑠𝑁𝑠)

𝛼1𝑘𝑇𝑁𝑠 − 1] 

                 −𝐼𝑜2 [𝑒
𝑞(𝑉+𝐼𝑅𝑠𝑁𝑠)

𝛼2𝑘𝑇𝑁𝑠 − 1] −
𝑉+𝐼𝑅𝑠𝑁𝑠

𝑅𝑠ℎ𝑁𝑠
                        (6) 

 

 

(a) DDM-C 

 

(b) DDM-M 

Figure 2. DDM equivalent circuits of PV cell and module 

 

2.3. Objective Function 

The present work has solved the PV parameter 

extraction problem by transforming it into an 

optimization problem. As with all optimization 

problems, the objective function must be specified for 

analyzing and evaluating the selected algorithms. The 

parameter extraction optimization is usually performed 

according to the error between the calculated and 

measured currents. Therefore, parameter extraction is a 

minimization problem. Most previous studies have 

selected RMSE as an objective function (fitness 

function) to solve this problem. To compare the study 

results with the literature, the RMSE given in Equation 

7 was chosen as the objective function. Equation 8 

shows the decision variables of the objective function: 

𝐼𝑝ℎ, 𝐼𝑜, 𝛼, 𝑅𝑠, and 𝑅𝑠ℎ for SDM-C and SDM-M; 𝐼𝑝ℎ, 

𝐼𝑜1, 𝐼𝑜2, 𝛼1, 𝛼2, 𝑅𝑠, and 𝑅𝑠ℎfor DDM-C and DDM-M.
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𝑅𝑀𝑆𝐸 = √
1

𝐾
∑𝑓(𝑥)2
𝐾

𝑘=1

 

           = √
1

𝐾
∑ (𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)

2𝐾
𝑘=1                      (7) 

𝑥 = {
𝐼𝑝ℎ , 𝐼𝑜, 𝛼, 𝑅𝑠, 𝑅𝑠ℎ 𝑆𝐷𝑀 − 𝐶 𝑎𝑛𝑑 𝑆𝐷𝑀 −𝑀

𝐼𝑝ℎ , 𝐼𝑜1, 𝐼𝑜2, 𝛼1, 𝛼2, 𝑅𝑠, 𝑅𝑠ℎ 𝐷𝐷𝑀 − 𝐶 𝑎𝑛𝑑 𝐷𝐷𝑀 −𝑀
         (8) 

 

3. OPTIMIZATION ALGORITHMS 

Two metaheuristic algorithms, HBA and WHO, were preferred 

to find a solution to the optimal PV parameter extraction 

problem. The source of inspiration, solution steps, and 

mathematical design and equations of the algorithms are in the 

subsections. 

 

3.1. Honey Badger Algorithm (HBA) 

Proposed and published in 2022 by Hassim et al., HBA 

was inspired by the foraging behavior of honey badgers. 

The HBA algorithm has two basic steps. The first step is 

the digging phase. This step imitates the honey badger's 

smell sense to approach its prey and dig to hunt it. The 

second stage is the honey phase. During the honey phase, 

the honey badger follows the honeyguide birds to reach 

the beehive location. There is teamwork between the 

honeyguide bird and the honey badger–which is 

unskilled at finding beehives. Equation 9 shows the 

processes and mathematical background of the HBA 

algorithm, including initialization, density definition, 

updating density factor, escaping from the local 

optimum, and updating the agent positions. Algorithm 1 

presents the pseudocode of the HBA. Figure 3 also shows 

the flowchart of the algorithm. After defining the initial 

parameters, random locations of the candidate solutions, 

namely honey badgers, are assigned. The fitness of the 

positions of each honey badger is evaluated. Hunting 

continues until the stopping criterion is met. 

Algorithm 1. Pseudo-code of HBA 

Determination of 𝑇𝐻𝐵𝐴, 𝑁𝐻𝐵𝐴, C, 𝛽 

Initialize the honey badger population with random 

location 

Asses the fitness of each honey badger position 𝑥𝑖 
using objective function and designate to 𝑓𝑖, 𝑖 ϵ [1, 2, 

…..N] 

Record best honey badger position 𝑥𝑝𝑟𝑒𝑦  and 

designate fitness to 𝑓𝑝𝑟𝑒𝑦 

while t ≤ 𝑇𝐻𝐵𝐴 do 

     Modify the decreasing factor α 

     for 𝑖= 1 to 𝑁𝐻𝐵𝐴 do 

          Calculation the intensity 𝐼𝑖  

          if 𝑟 < 0.5 then 

               Modify the position 𝑥𝑛𝑒𝑤  using digging 

phase  equation in Eq. (9) 

          else 

               Modify the position 𝑥𝑛𝑒𝑤  using honey phase 

equation in Eq. (9) 

          end if 

          Asses new position and assign to 𝑓𝑛𝑒𝑤 

          if 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑖 then 

               Set 𝑥𝑖 = 𝑥𝑛𝑒𝑤 and 𝑓𝑝𝑟𝑒𝑦 =  𝑓𝑛𝑒𝑤 

          end if 

          if 𝑓𝑛𝑒𝑤 ≤ 𝑓𝑝𝑟𝑒𝑦 then 

               Set 𝑥𝑝𝑟𝑒𝑦 = 𝑥𝑛𝑒𝑤  𝑎𝑛𝑑 𝑓𝑝𝑟𝑒𝑦 = 𝑓𝑛𝑒𝑤 

          end if 

     end for 

end while stop criteria satisfied 

return 𝑥𝑝𝑟𝑒𝑦  

 

𝐻𝐵𝐴 =

{
 
 
 
 
 
 

 
 
 
 
 
 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 {

𝑥𝑖 = [𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3, ⋯ , 𝑥𝑖

𝐷]

𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟1 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖)

𝐷𝑒𝑓𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 {

𝐼𝑖 = 𝑟2 ×
𝑆

4𝜋𝑑𝑖
2

𝑆 = (𝑥𝑖 − 𝑥𝑖+1)
2

𝑑𝑖 = 𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖

𝑈𝑝𝑑𝑎𝑡𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝛼 = 𝐶 × 𝑒𝑥𝑝 (
−𝑡

𝑇𝐻𝐵𝐴
)

𝐸𝑠𝑐𝑎𝑝𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑙𝑜𝑐𝑎𝑙 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝐹 = {
1 𝑟6 ≤ 0.5
−1 𝑟6 > 0.5

𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡𝑠’ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
𝐷𝑖𝑔𝑔𝑖𝑛𝑔 𝑝ℎ𝑎𝑠𝑒 {

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝛽 × 𝐼 × 𝑥𝑝𝑟𝑒𝑦 +⋯

⋯𝐹 × 𝑟3 × 𝛼 × 𝑑𝑖 × |𝑐𝑜𝑠(2 𝜋 𝑟4) × (1 − 𝑐𝑜𝑠(2 𝜋 𝑟5))|

𝐻𝑜𝑛𝑒𝑦 𝑝ℎ𝑎𝑠𝑒 𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟7 × 𝛼 × 𝑑𝑖

      (9)   

 

Where, 𝑥𝑖 is honey badger position, 𝑙𝑏𝑖  is the lower 

bound, 𝑢𝑏𝑖 is the upper bound, 𝐷 is the dimension, 𝐼𝑖  is 

smell intensity of prey, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7 are random 

numbers between [0,1], 𝑆 is source strength, 𝑑𝑖 is prey 

distance and 𝑖 is the badger, 𝛼 is the density factor, 𝐶 is 

the constant number (𝐶 ≥ 1, default 2), 𝑥𝑝𝑟𝑒𝑦  is the 

position of the prey, 𝛽 is the constant number (𝛽 ≥ 1, 

default 6), 𝑥𝑛𝑒𝑤  is the new position of the honey badger, 

𝐹 is the flag, and 𝑇𝐻𝐵𝐴 and 𝑡 are the maximum numbers 

of iterations and current iteration, respectively, [26].
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Figure 3. Flowchart of HBA algorithm 

 

3.2. Wild Horse Optimizer (WHO) 

Recommended and published by Naruei et al. in 2021, 

WHO was inspired by non-terrestrial horses. These 

horses are usually in a herd consisting of several mares, 

foals, and a stallion led by the most dominant mare. 

WHO simulates these horses' behaviors and group 

dominance, leadership, grazing, and mating 

characteristics within the group. Equation 10 shows the 

WHO algorithm processes and their mathematical 

backgrounds, including population formation, grazing, 

mating, group leadership, and leader selection. After 

defining the initial parameters, the random initial 

positions of the candidate solutions, horses, are 

determined. The compatibility of each wild horse is 

evaluated according to its objective function. Solution 

seeking process continues until the stopping criterion is 

met. Algorithm 2 shows the pseudocode of the WHO, 

while Figure 4 shows the flowchart of the algorithm. 

  

𝑊𝐻𝑂 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑔𝑎𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 {

�⃗� = {𝑥1⃗⃗⃗⃗⃗, 𝑥2⃗⃗⃗⃗⃗, 𝑥3⃗⃗⃗⃗⃗, ⋯ , 𝑥𝑛⃗⃗⃗⃗⃗}

𝐺 = [𝑁𝑊𝐻𝑂 × 𝑃𝑆]

𝐺𝑟𝑎𝑧𝑖𝑛𝑔𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟

{
  
 

  
 𝑋

𝑗
𝑖,𝐺 = 2𝑍𝑐𝑜𝑠(2𝜋𝑅𝑍) × (𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛

𝑗 − 𝑋𝑗𝑖,𝐺) + 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛
𝑗

𝑃 = �⃗⃗�1 < 𝑇𝐷𝑅

𝐼𝐷𝑋 = (𝑃 = 0)

𝑍 = 𝑅2𝛩𝐼𝐷𝑋 + �⃗⃗�3𝛩(𝐼𝐷𝑋)

𝑇𝐷𝑅 = 1 − 𝑡 × (
1

𝑡𝑚𝑎𝑥
)

𝐻𝑜𝑟𝑠𝑒𝑚𝑎𝑡𝑖𝑛𝑔𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 {
𝑋𝑃𝐺,𝐾 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑋

𝑞
𝐺,𝑖 , 𝑋

𝑧
𝐺,𝑗)

𝑖 ≠ 𝑗 = 𝑘, 𝑝 = 𝑞 = 𝑒𝑛𝑑
𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = 𝑀𝑒𝑎𝑛

𝐺𝑟𝑜𝑢𝑝𝑙𝑒𝑎𝑑𝑒𝑟𝑠ℎ𝑖𝑝

{
 
 

 
 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖 = {

2𝑍𝑐𝑜𝑠(2𝜋𝑅𝑍) × (𝑊𝐻 − 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖) +𝑊𝐻 𝑅3 > 0.5

2𝑍𝑐𝑜𝑠(2𝜋𝑅𝑍) × (𝑊𝐻 − 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖) −𝑊𝐻 𝑅3 ≤ 0.5

𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖 = {
𝑋𝐺,𝑖 𝑖𝑓𝑐𝑜𝑠𝑡(𝑋𝐺,𝑖) < 𝑐𝑜𝑠𝑡(𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖)

𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖 𝑖𝑓𝑐𝑜𝑠𝑡(𝑋𝐺,𝑖) > 𝑐𝑜𝑠𝑡(𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖)

            (10) 

 

Where, 𝑥 is horse population, 𝑁𝑊𝐻𝑂 is the number of 

populations, 𝐺 is the number of groups, 𝑃𝑆 is the 

percentage of stallions, 𝑋𝑗𝑖,𝐺 is group members’ current 

position, 𝜋 is pi-number, 𝑅 is the uniform number inside 

[−2, 2], 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝑗  position of stallion, 𝑍 is an adaptive 

mechanism, 𝑋𝑗𝑖,𝐺 is the group members’ new position, 𝑃
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Figure 4. Flowchart of WHO algorithm 

is a vector, �⃗⃗�1, 𝑅2, and �⃗⃗�3 are random vectors, 𝐼𝐷𝑋 are 

indexes of the random vectors, 𝑇𝐷𝑅 is the adaptive 

parameter, 𝑡 is current iteration, 𝑇𝑊𝐻𝑂 is the maximum 

number of iterations, 𝑊𝐻 is the position of a suitable area 

(the water hole), 𝑋𝑧𝐺,𝑗 is the position of the horse z in 

group j, 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖  is following position of the leader of 

the i group (stallion position), 𝑋𝑃𝐺,𝐾 is the position of 

horse p from group k,  𝑋𝑞𝐺,𝑖 is the position of the foal in 

group i, 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖  is the current position of the leader of 

the group [27]. 

 

4. RESULTS AND DISCUSSION 

In this part, the optimization problem of parameter 

extraction was solved using HBA and WHO, and the 

results were analyzed in detail. The control parameter 

values of the algorithms are given in Table 1. For the 

solution of the parameter extraction optimization 

problem, the number of agents is generally taken as 50 

and the number of iterations as 10000 in the literature. 

Therefore, in this study the HBO and WHO algorithms 

were run in 10000 iterations over 50 populations. After 

30 independent studies, 300000 functions were 

evaluated. There were two control parameters in the 

HBA and three in the user-adjusted WHO. These control 

parameters are based on the values reported in the 

original article. 𝛽 and 𝐶 were 6 and 2 in the HBA 

algorithm, respectively. In WHO, percent cross (𝑃𝐶), 

percent stallion (𝑃𝑆), and crossover parameters were 

taken as 0.13, 0.2, and 𝑀𝑒𝑎𝑛, respectively. RTC France 

[28] and Schutten Solar STM6-40/36 [29] panel data 

served to test the optimization performance of HBA and 

WHO. Table 2 shows the upper and lower limits of the 

decision variables in the objective function. Parameter 

extraction results and comparison of optimization results 

according to evaluation metrics are in the subtitles.  
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Algorithm 2. Pseudo-code of WHO 

Determination of 𝑁𝑊𝐻𝑂, 𝑇𝑊𝐻𝑂 , 𝑃𝐶, 𝑃𝑆, 
 𝑁𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛 = 𝑃𝑆 × 𝑁𝑊𝐻𝑂, 𝑁𝑓𝑜𝑎𝑙 = 𝑁𝑊𝐻𝑂 − 𝑁𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛   

Compute the fitness of all horses 

Create foal groups and select stallions 

Discover best horse as the optimum 

while t ≤ 𝑇𝑊𝐻𝑂   do 

     Calculate 𝑇𝐷𝑅 by Eq. (10) 

     for 𝑖= 1 to 𝑁𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛  do 

          Calculate 𝑍 by Eq. (10) 

            for 𝑖= 1 to 𝑁𝑓𝑜𝑎𝑙  do 

             if 𝑟𝑎𝑛𝑑 > 𝑃𝐶  

             Modify the position of the all foals by Eq. (10) 

             else 

             Modify the position of the all foals by Eq. (10) 

             end if 

            end for 

             if 𝑟𝑎𝑛𝑑 > 0.5 

              Modify the position 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖  by Eq. (10) 

             else 

               Modify the position 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖 by Eq. (10) 

              end if 

              if 𝑐𝑜𝑠𝑡(𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖) < 𝑐𝑜𝑠𝑡(𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛) 

                 Stallion=𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖 

              end if 

               Classify foals of groups by cost  

               Choose foal with lowest cost 

              if 𝑐𝑜𝑠𝑡(𝑓𝑜𝑎𝑙) < 𝑐𝑜𝑠𝑡(𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛) 
                 Exchange foal and stallion position Eq. (10) 

              end if 

     end for 

     Modify optimum 

end while 

 

 

Table 1. Control parameter values of algorithms 

Algorithm Control Parameter Value 

HBA 
𝛽 6 

𝐶 2 

WHO 

𝑃𝐶 0.13 

𝑃𝑆 0.2 

Crossover 𝑀𝑒𝑎𝑛 

 

4.1. Results of SDM-C and SDM-M 

Table 3 shows the results of the decision variables of the 

problem and the objective function for the SDM-C and 

SDM-M. The most successful algorithm for single diode 

cells and single diode modules was HBA because this 

algorithm produced the smallest RMSE value between 

these two models. The RMSE result produced with the 

WHO was 4.97117E-10%, which was higher than HBA. 

Figure 5 shows the P-V and I-V curves obtained from the 

voltage and current results and the results of the HBA and 

WHO. The curves in Figure 5(a) belong to SDM-C, and 

the curves in Figure 5(b) belong to SDM-M. The 

comparison of SDM-C and SDM-M shows that measured 

and simulation data overlap successfully, and both 

algorithms are successful in parameter estimation. 

4.2. Results of DDM-C and DDM-M 

Table 4 shows the PV parameter extraction results of the 

DDM-C and DDM-M. For DDM-C, WHO yielded the 

smallest RMSE, and the RMSE result of HBA was 

1.08896 percent greater than WHO. As in SDM-C and 

SDM-M, the HBA was the most successful algorithm in 

DDM-M. Figure 6 shows the P-V and I-V curves 

obtained from the voltage and current results and also the 

results of the HBA and WHO. As in SDM, the measured 

data and simulation data matched perfectly, and both 

algorithms were successful in parameter extraction.

Table 2. Lower and upper limits of PV models 

Model Parameter 
Limit  

Model Parameter 
Limit 

Unit 
 

Upper  Lower  Upper  Lower  

SDM-C 

DDM-C 

𝐼𝑝ℎ 1  0  

SDM-M 

DDM-M 

𝐼𝑝ℎ 2  0 A  

𝐼𝑜 1  0  𝐼𝑜1, 𝐼𝑜2 50  0 µA  

𝑅𝑠ℎ 100  0  𝑅𝑠ℎ 1000  0 Ω  

𝑅𝑠 0.5  0  𝑅𝑠 0.36  0 Ω  

𝛼 2  1  𝛼1, 𝛼2 60  1 -  

 

Table 3. Parameter extraction results of SDM-C and SDM-M 

Model Alg. 𝑰𝒑𝒉 (A) 𝑰𝒐 (µA) 𝑹𝒔𝒉 (Ω) 𝑹𝒔 (Ω) 𝜶 𝑹𝑴𝑺𝑬 Rank 

SDM-C 

HBA 0.76078                   0.32302                  53.71853                   0.03638                   1.48119 
9.8602E-04 

0.00098602187789178933 
1 

WHO 0.76078                   0.32302                  53.71857                   0.03638                   1.48119 
9.8602E-04 

0.00098602187789669101 
2 

SDM-M 

HBA 1.66390                   1.73866                  15.92831                   0.00427                   1.52030 
1.7298E-03 

0.00172981370994954660 
1 

WHO 1.66155                   5.50511                  23.55866                   0.00000                   1.65853 
3.3299E-03 

0.00332985093708718660 
2 
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(a) SDM-C 

 

(b) SDM-M 

Figure 5. P-V and I-V curves for SDM-C and SDM-M 

 

Table 4. Parameter extraction results of DDM-C and DDM-M 

Model Alg. 𝑰𝒑𝒉 (A) 𝑰𝒐𝟏 (µA) 𝑰𝒐𝟐 (µA) 𝑹𝒔𝒉 (Ω) 𝑹𝒔 (Ω) 𝜶𝟏 𝜶𝟐 𝑹𝑴𝑺𝑬 Rank 

DDM-C 

HBA 0.76079                   0.10014                   1.00000                  57.65219                   0.03727                   1.39050                   1.82558 
9.9318E-04 

0.00099318377796803734 
2 

WHO 0.76078                   0.22574                   0.75136                  55.49025                   0.03674                   1.45093                   2.00000 
9.8248E-04 

0.00098248491200868542 
1 

DDM-M 

HBA 1.66382 4.62062 0.00060 17.95595 0.00899 1.71338 1.00000 
1.7011E-03 

0.00170114625497150680 
1 

WHO 1.66390 0.00000 1.73866 15.92829 0.00427 60.00000 1.52030 
1.7298E-03 

0.00172981370994071620 
2 

 

In order to fully reveal the performances of the HBA and 

WHO algorithms, the RMSE results of the algorithms 

used in parameter extraction in the literature were 

compared with the RMSE results of the HBA and WHO 

of this study. This comparison is given in Table 5. 

When Table 5 is examined, the RMSE results produced 

by the HBA and WHO algorithms are within the range 

reported in the literature. Therefore, these two algorithms 

can be used successfully in parameter extraction 

problem. 

 

 

4.3. Results of Parameter Extraction Based on 

Evaluation Metrics 

After independently running HBA and WHO algorithms 

30 times, the results were recorded. The recorded 

objective function results and calculation times were 

analyzed using evaluation metrics. Table 6 shows the 

standard deviation (SD), the minimum, average, and 

maximum results of the objective function. WHO 

produced the lowest minimum values in SDM-C, DDM-

C, and SDM-M. WHO algorithm had the lowest mean 

and maximum RMSE in all models, and HBA produced 

the highest objective function value. The smallest SD in 

all models belonged to the WHO  algorithm.
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(a) DDM-C 

 

(b) DDM-M 

 

Figure 6. P-V and I-V curves for DDM-C and DDM-M 

 

Table 5. RMSE comparison results of PV models and algorithms 

Algorithm SDM-C SDM-M DDM-C DDM-M 

HBA 9.8602E-04 1.7298E-03 9.9318E-04 1.7011E-03 

WHO 9.8602E-04 3.3299E-03 9.8248E-04 1.7298E-03 

Equilibrium optimizer [15] 9.8603E-04 - 9.8553E-04 - 

Adaptive harris hawks optimization [30] 9.8933E-04 - 9.9486E-04 - 

Improved chaotic optimization algorithm [16] 9.8602E-04 1.6932E-02 9.8257E-04 - 

Cat swarm optimization [31] 9.8602E-04 - 9.8252E-04 - 

Complex evolution algorithm [32] 9.8602E-04 1.7298E-03 9.8248E-04  

Artificial ecosystem-based optimization algorithm [35] 9.8602E-04 1.7298E-03 9.8602E-04 1.7298E-03 

Flexible particle swarm optimization [33] 9.8602E-04 1.6743E-02 9.8253E-04  

Artificial bee colony optimization [34] 9.8629E-04 - 9.8619E-04 - 

Runge kutta optimizer [35] 1.0062E-03 1.7330E-03 9.8631E-04 1.8393E-03 

Grey wolf optimizer [35] 3.6574E-03 3.1076E-01 2.5667E-03 5.0353E-03 

Weighted mean of vectors optimization algorithm [35] 9.8602E-04 1.7298E-03 9.8248E-04 1.6949E-03 

Artificial hummingbird algorithm [35] 9.8602E-04 1.7298E-03 9.8375E-04 1.7091E-03 

Reptile search algorithm [35] 3.7211E-02 1.7714E-02 5.6100E-02 6.8145E-03 

Grey wolf optimizer with dimension learning [36] 9.8602E-04 - 9.8248E-04 - 

In addition, both algorithms showed a determined 

approach to providing successful solutions. Table 7 

shows the results of the evaluation metrics for calculation 

times. HBA had the lowest minimum, average, and 

maximum calculation time. HBA had the lowest SD in 

the SDM-C, DDM-C, and DDM-M models, while WHO 
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had the lowest SD in the SDM-M model. However, the 

calculation time alone is not a sufficient criterion. 

Although it varies according to the purpose of the 

problem, the algorithm performances should be 

evaluated together with the computational accuracy and 

computational time. 

4.4. Convergence Curves 

Figure 7 shows the process of producing solutions to the 

parameter extraction optimization problem of the HBA 

and WHO algorithms for the four models. The 

convergence curves showed that the results obtained by 

statistical methods and evaluation metrics converged. 

 
Figure 7. Convergence curves 

 

Table 6. RMSE values for 30 runs 

Model Alg. Minimum Average Maximum SD SD Rank 

SDM-C 
HBA 

9.8602E-04 

0.00098602187789165793    

6.3480E-03 

0.00634804181783911110    

4.6014E-02 

0.04601356782948297400    

1.3538E-02 

0.01353793060590704900 
2 

WHO 
9.8602E-04 

0.00098602187789151698 

1.1403E-03 

0.00114032872604427630   

2.4480E-03 

0.00114032872604427630 

3.1383E-04 

0.00031383106734804580 
1 

DDM-C 
HBA 

9.8264E-04 

0.00098264011744690649 

3.8184E-03 

0.00381841049961808300   

4.6014E-02 

0.04601356782948298100    

9.9143E-03 

0.00991429450862335060 
2 

WHO 
9.8248E-04 

0.00098248488734911437 

1.0875E-03 

0.00108754751229876580  

1.4385E-03 

0.00143847589736776350 

1.8936E-04 

0.00018935544657424784 
1 

SDM-M 
HBA 

1.7298E-03 

0.00172981370994070080 

5.4262E-02 

0.05426210555185624600    

3.1076E-01 

0.31075740938424645000    

1.1667E-01 

0.11667187601222467000 
2 

WHO 
1.7298E-03 

0.00172981370994066390 

9.0574E-03 

0.00905739476217793520    

1.5548E-01 

0.15548108439011429000    

2.8222E-02 

0.02822202932953198800 
1 

DDM-M 
HBA 

1.7011E-03 

0.00170114625497150680    

3.4372E-02 

0.03437157918835451900   

3.1076E-01 

0.31075740938424645000   

9.3710E-02 

0.09371039366414607400 
2 

WHO 
1.7298E-03 

0.00172980864681144640 

2.8868E-03 

0.00288684546378478780   

5.3604E-03 

0.00536036853218376480 

1.2361E-03 

0.00123612186837523560 
1 
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Table 7. Computational time values for 30 runs 

Model Alg. Minimum Average Maximum SD SD Rank 

SDM-C 
HBA 1.4859E+01    1.6572E+01    1.9783E+01    1.3490E+00 1 

WHO 2.7135E+01    2.9517E+01    3.3453E+01    1.7139E+00 2 

DDM-C 
HBA 1.7345E+01    1.8065E+01    1.9282E+01    6.0430E-01 1 

WHO 2.5676E+01    2.7602E+01    3.0571E+01    1.4302E+00 2 

SDM-M 
HBA 1.3643E+01    1.5229E+01    1.9042E+01    1.6866E+00 2 

WHO 2.3984E+01    2.5047E+01    2.6649E+01    6.4504E-01 1 

DDM-M 
HBA 1.5566E+01    1.6636E+01    1.9505E+01    9.6358E-01 1 

WHO 2.6425E+01    2.9744E+01    3.9331E+01    3.5869E+00 2 

5. CONCLUSION 

Correct parameter extraction and working with optimum 

parameters are critical issues in PV systems. Besides, the 

maximum power point directly affects the monitoring 

performance, especially in converters connected to PV 

panels. Therefore, the current study used HBA and WHO 

algorithms to solve the parameter extraction optimization 

problem. The RMSE results for the four models, 

including SDM-C, SDM-M, DDM-C, and DDM-M, 

were 9.8602E-04, 1.7298E-03, 9.9318E-04, 1.7011E-03 

for HBA, respectively. For WHO, they were 9.8602E-04, 

3.3299E-03, 9.8248E-04 and 1.7298E-03, respectively. 

In addition, the algorithm performances were determined 

with evaluation metrics over RMSE. In computational 

accuracy and time, both algorithms–especially WHO–

were effective and successful in PV parameter extraction 

and such engineering problem solutions. 

In the next stages, the authors of this study plan to study 

MPPT efficiency in a real-time PV system with the data 

obtained from this study. The compatibility of the 

modeled PV system according to the data calculated by 

parameter estimation will be compared with the data 

obtained from a real PV system. Another work planned 

for the future, a hybrid algorithm can be designed by 

combining HBA and WHO algorithm to obtain more 

stable parameter values. 
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NOMENCLATURE 

𝛼 density factor 𝑟5 random numbers between [0,1] 

ABC artificial bee colony optimization 𝑟6 random numbers between [0,1] 

𝐶 constant number (𝐶 ≥ 1, default 2) 𝑟7 random numbers between [0,1] 

DDM double diode model 𝑅 uniform number 

DDM-C double diode model based on PV cell �⃗⃗�1 random vectors between [0,1] 

DDM-M double diode model based on PV module �⃗⃗�2 random vectors between [0,1] 

𝐷 dimension of HBA �⃗⃗�3 random vectors between [0,1] 

𝑑𝑖  prey distance and 𝑖 is the badger RMSE root mean square error 

EHBO emended heap-based optimizer 𝑁𝑠 number of series cells 

𝐹 flag 𝑅𝑠 series resistance 

FPA flower pollination algorithm 𝑅𝑠ℎ shunt resistance 

𝐺 number of groups 𝑆 source strength of HBA 

GOTLB

O 

generalized oppositional teaching learning 

based optimization algorithm 
𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝑗  position of stallion 

HBA honey badger algorithm SDM single diode model 

𝐼𝐷𝑋 indexes of the random vectors SDM-C single diode model based on PV cell 

𝐼𝑖  smell intensity of prey SDM-M single diode model based on PV module 

𝐼𝑑1 first diode current 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖  next position of the leader of the i group 

𝐼𝑑2 second diode current 𝑆𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝐺𝑖  current position of the leader 
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𝐼𝐷𝐷𝑀 output current of DDM 𝑇 operating temperature 

𝐼𝐷𝐷𝑀−𝐶  output current of DDM-C TDM three diode model 

𝐼𝐷𝐷𝑀−𝑀 output current of DDM-M 𝑇𝐷𝑅 adaptive parameter 

𝐼𝑜 diode reverse saturation current 𝑇𝐻𝐵𝐴 maximum number of iterations of HBA 

𝐼𝑜1 first diode reverse saturation current 𝑇𝑊𝐻𝑂  maximum number of iterations of WHO 

𝐼𝑜2 second diode reverse saturation current 𝑢𝑏𝑖 upper bound of HBA 

𝐼𝑝ℎ photo-generated current 𝑉 output voltage of the PV cell 

𝐼𝑆𝐷𝑀 output current of SDM WHO wild horse optimizer 

𝐼𝑆𝐷𝑀−𝐶 output current of SDM-C 𝑊𝐻 position of the water hole 

𝐼𝑆𝐷𝑀−𝑀 output current of SDM-M 𝑍 adaptive mechanism 

𝐼𝑠ℎ  shunt resistor current 𝑥 horse population 

𝑘 boltzmann constant 𝑥𝑖 honey badger position 

𝑙𝑏𝑖  lower bound of HBA 𝑥𝑝𝑟𝑒𝑦  position of the prey 

𝑁𝐻𝐵𝐴 number of populations of HBA 𝑥𝑛𝑒𝑤  new position of the honey badger 

𝑁𝑊𝐻𝑂 number of populations of WHO 𝑋𝑗𝑖,𝐺  group members’ current position 

𝑃𝑆 percentage of stallions 𝑋𝑗𝑖,𝐺  group members’ new position 

PV photovoltaic 𝑋𝑧𝐺,𝑗  is the position of the horse z in group j 

𝑃 a vector 𝑋𝑃𝐺,𝐾 position of horse p from group k 

𝑞 electron charge 𝑋𝑞𝐺,𝑖 position of the foal in group i 

𝑟1 random numbers between [0,1] 𝛼 diode ideality factor 

𝑟2 random numbers between [0,1] 𝛼1 first diode ideality factor 

𝑟3 random numbers between [0,1] 𝛼2 second diode ideality factor 

𝑟4 random numbers between [0,1] 𝛽 constant number (𝛽 ≥ 1, default 6) 
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