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Abstract. Let R be a finite commutative ring with unity and x ∈ R. We

study the probability that the product of two randomly chosen elements (with

replacement) of R equals x. We denote this probability by Probx(R). We

determine some bounds for this probability and also obtain some character-

izations of finite commutative rings based on this probability. Moreover, we

determine the explicit computing formulas for Probx(R) when R = Zm × Zn.
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1. Introduction

Probability is a developing area in mathematics that has been applied to groups

for the past few decades. In 1968, Erdös and Turan [6] worked on symmetric groups

and introduced an idea of commutativity degree. The commutativity degree is

commuting probability of two randomly taken elements (with replacement) from

any finite group G. This commuting probability can be expressed as:

Pr(G) =
|{(x1, x2) ∈ G×G | x1x2 = x2x1}|

|G|2

After that, in 1973, W. H. Gustafson [8] pointed out that the commuting probability

of randomly taken pair of elements in a finite group G is K(G)
|G| , where K(G) is the

number of conjugacy classes in G. This is very clear that G is an abelian group iff

Pr(G) = 1. Commuting probability measures that how close is a finite structure to

abelian. In [8], the author showed that Pr(G) ≤ 5
8 , if G is non abelian. The same

result was also proved by D. Machale [10, Theorem 2] in 1974 and D. J. Rusin [17]

in 1979. In 1976, after the work of Erdös and Turan on commutativity degree for

groups, D. Machale [11] expanded this idea to finite rings. For a long time after

that, no mathematician did much work on commuting probability of finite rings.
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In 2018, M. A. Esmkhani and S. M. Jafarian Amiri [7] investigated the probability

of a zero product for two elements from ring R chosen at random. They denoted

this probability by zp(R) and showed that for any ring R this probability is either

equals to 1 or atmost 3
4 . Moreover they determined all the rings whose zp(R) = 3

4 .

They also found the structures of rings R that have the maximum or minimum

value of zp(R) among all rings with identity of same size. They distinguished all

the rings R having zp(R) ≥ 3
8 .

In 2019, S. U. Rehman et. al. [16] worked on the probability Pm(Zn) of getting

the product equal to any arbitrary element m in the ring Zn for pair of elements

taken randomly from the ring Zn. They explicitly formulated this probability of

product of a randomly chosen pair of elements in the ring Zn. They derived useful

results about Pm(Zn), especially when m = 0 or 1. Recently in 2020, Sanhan M. S.

Khasraw [9] conducted research on the probability of zero product for two randomly

chosen elements from ring R. He considered this probability as: Pr(R) = |Ann|
|R×R| ,

where Ann = {(r1, r2) ∈ R × R | r1r2 = 0}. This idea has been observed earlier

in [7]. He also found bounds of this probability for finite commutative rings with

unity.

We provide below an overview of some concepts for the reader’s convenience. A

local ring is a commutative ring R with a unique maximal ideal. A zero-divisor is

an element x of a commutative ring R such that there exists an element y ∈ R with

xy = 0. The zero-divisor graph Γ(R) of ring R is a simple graph in which vertices

are non-zero zero-divisors of R such that any two vertices x1 and x2 are adjacent if

x1x2 = 0. A simple graph that has exactly one edge between each pair of vertices

is called a complete graph. Any unexplained material is standard as in [1] and [5].

We have conducted the study about the probability of product for finite commu-

tative rings with unity. We denoted this probability by Probx(R). For an element

x ∈ R, we choose randomly the pair of elements and studied the probability that

their product equals x. We obtained some bounds for this probability Probx(R)

and few characterizations of finite commutative rings based on Probx(R).

This paper comprises of two sections. In first section, we provide useful formu-

lation about Probx(R) and introduced some useful bounds for Probx(R). More

precisely, we obtain the following results: If u ∈ U(R), then Probu(R) = |U(R)|
|R|2

(Theorem 2.1). If K is a field and 0 ̸= x ∈ K, then Probx(K) = |K|−1
|K|2 (Corol-

lary 2.2). If u ∈ U(R), then Probu(R) ≤ 1
4 (Theorem 2.3). For each x ∈ Z(R) \

{0}, P robx(R) ≥ 2|U(R)|
|R|2 (Theorem 2.4). The zero-divisor graph Γ(R) is complete

iff Probx(R) = 2|U(R)|
|R|2 for all x ∈ Z(R) \ {0} (Theorem 2.5). Probx(R) = 2|U(R)|

|R|2
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for all x ∈ Z(R) \ {0} iff Γ(R) is complete iff R ∼= Z2 × Z2 or R is local with

maximal ideal M such that M2 = 0 (Theorem 2.6). Probx(Zn) = 2ϕ(n)
n2 for all

0 ̸= x ∈ Zn with (x, n) ̸= 1 iff Probx(Zn) = n−
√
n

n2 iff n = p2 for some prime

p (Corollary 2.7). If R1 and R2 are finite rings and if (x1, x2) ∈ R1 × R2, then

Prob(x1,x2)(R1 × R2) = Probx1
(R1) · Probx2

(R2) (Theorem 2.8). In second sec-

tion, we obtain very useful formulations that completely describe the probability

Probx(R) in the ring R = Zm×Zn (Theorem 2.10, 2.11, 2.12, 2.13, 2.14 and 2.15).

2. Main results

2.1. Properties of Probx(R) for finite commutative ring R. Let R be a finite

commutative ring with unity and let x ∈ R. Suppose we choose two elements at

random (with replacement) from R, then what is the probability that the product

of these two elements is x. We denote this probability by Probx(R). In this section

we study some general properties about Probx(R).

Theorem 2.1. If u ∈ U(R), then Probu(R) = |U(R)|
|R|2 .

Proof. Probu(R) = |A|
|R|2 , where A = {(a1, a2) ∈ R×R | a1a2 = u}. Since, a1a2 =

u ⇔ (u−1a1)a2 = 1, therefore (a1, a2) ∈ A ⇔ (ua−1
2 , a2) ∈ A and a2 ∈ U(A).

Hence, |A| = |U(R)| and thus Probu(R) = |U(R)|
|R|2 . □

Corollary 2.2. If K is a field and 0 ̸= x ∈ K, then Probx(K) = |K|−1
|K|2 .

Theorem 2.3. If u ∈ U(R), then Probu(R) ≤ 1
4 .

Proof. Let |R| = n. Then we know from Theorem 2.1 that Probu(R) = |U(R)|
n2 .

Since |U(R)| ≤ n − 1, then Probu(R) ≤ n−1
n2 = 1

n − 1
n2 , which decreases as n

increases. If n = 2, then Probu(R) = 1
4 . □

Theorem 2.4. For each x ∈ Z(R) \ {0}, Probx(R) ≥ 2|U(R)|
|R|2 .

Proof. We have Probx(R) = |C|
|R|2 , where C = {(a, b) ∈ R × R | ab = x}. Notice

that for each u ∈ U(R), we have (u, u−1x) ∈ C and (u−1x, u) ∈ C. Therefore,

2|U(R)| ≤ |C|. Hence, Probx(R) = |C|
|R|2 ≥ 2|U(R)|

|R|2 . □

Recall from [2] that the zero-divisor graph Γ(R) of ring R is a simple graph in

which vertices are non-zero zero-divisors of R such that any two vertices x1 and x2

are adjacent if x1x2 = 0. The zero-divisor graph was introduced by D. F. Anderson

and P. S. Livingston in [2]. Since then the zero-divisor graph has been studied by

many authors, see [3,12,13,14]. The study of zero-divisor graph Γ(R) helps to study

the probability Probx(R) when x is a non-zero zero-divisor.
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Theorem 2.5. Γ(R) is complete iff Probx(R) = 2|U(R)|
|R|2 for all x ∈ Z(R) \ {0}.

Proof. Suppose Γ(R) is complete. For x ∈ Z(R) \ {0}, we have Probx(R) =

|{(a, b) ∈ R×R | ab = x}|
/
|R|2. Since x ∈ Z(R) \ {0} and Γ(R) is complete, so if

ab = x, then it is not possible that both a and b are zero-divisors and also it is not

possible that both a and b are units. Hence, if ab = x, then exactly one of a or b is

a unit. Suppose a ∈ U(R). Then ab = x ⇔ b = a−1x and hence we conclude that

Probx(R) =
(
|{(a, a−1x) | a ∈ U(R)}| + |{(a−1x, a) | a ∈ U(R)}|

)
/ |R|2 =(

|U(R)|+ |U(R)|
)
/ |R|2 = 2|U(R)| / |R|2.

Now suppose that Γ(R) is not complete. Then there exist z1, z2 ∈ Z(R)\{0} such
that z1z2 ̸= 0. Therefore, (a, a−1z1z2), (a

−1z1z2, a), (z1, z2) ∈ {(a, b) ∈ R×R | ab =
z1z2} for all a ∈ U(R). This implies that |{(a, b) ∈ R×R | ab = z1z2}| > 2|U(R)|,
and hence Probz1z2(R) > 2|U(R)|

|R|2 . □

Theorem 2.6. The following assertions are equivalent:

(1) Probx(R) = 2|U(R)|
|R|2 for all x ∈ Z(R) \ {0}.

(2) Γ(R) is complete.

(3) R ∼= Z2 × Z2 or R is local with maximal ideal M such that M2 = 0.

Proof. Apply Theorem 2.5 and [2, Corollary 2.7, Theorem 2.8 ]. □

Corollary 2.7. The following assertions are equivalent for a composite integer n.

(1) Probx(Zn) =
2ϕ(n)
n2 for all 0 ̸= x ∈ Zn with (x, n) ̸= 1.

(2) Probx(Zn) =
n−

√
n

n2 .

(3) n = p2 for some prime p.

Proof. (1) ⇒ (3) and (3) ⇒ (2) are straightforward. Moreover it is easy to verify

that ϕ(n) = n−
√
n ⇔ n = p2. So (2) ⇒ (1) also holds. □

Theorem 2.8. Let R1 and R2 be finite rings and let (x1, x2) ∈ R1 × R2. Then

Prob(x1,x2)(R1 ×R2) = Probx1(R1) · Probx2(R2).

Proof. We have Prob(x1,x2)(R1 × R2) = |C(R1×R2)|
|R1×R2|2 , where C(R1 × R2) is a col-

lection of those pairs of elements
(
(a1, a2), (b1, b2)

)
in the ring R1 × R2 for which

(a1, a2)(b1, b2) = (x1, x2). We define C(R1) =
{
(a1, b1) ∈ R1×R1 | a1b1 = x1

}
and

C(R2) =
{
(a2, b2) ∈ R2×R2 | a2b2 = x2

}
. Then

(
(a1, a2), (b1, b2)

)
∈ C(R1×R2) ⇔

a1b1 = x1 and a2b2 = x2 ⇔ (a1, b1) ∈ C(R1) and (a2, b2) ∈ C(R2). This implies

|C(R1×R2)| = |C(R1)×C(R2)| = |C(R1)|·|C(R2)|. Hence, Prob(x1,x2)(R1×R2) =
|C(R1×R1)|·|C(R2×R2)|

|R1×R2|2 = |C(R1×R1)|
|R1×R2| · |C(R2×R2)|

|R1×R2| = Probx1(R1) · Probx2(R2). □
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2.2. Probability in the ring Zm×Zn. Let (x, y) ∈ Zm×Zn be a fixed element.

We find the probability of the event in which the product of two randomly chosen

pair of elements in Zm × Zn equals the fixed element (x, y). We provide explicit

formulas to compute the probability Prob(x,y)(Zm × Zn) of getting product equal

to (x, y) for all possible values of (x, y) ∈ Zm × Zn.

It is very easy to find the Prob(x,y)(Zm × Zn) in ring Zm × Zn directly for the

small values of m and n, we only need to count the required pairs as shown in

following example.

Example 2.9. We compute directly the probability Prob(x,y)(R) in the ring R =

Z2×Z4. For any (x, y) ∈ R, we have Prob(x,y)(R) = |E|
|R|2 , where E = {

(
(a, b), (c, d)

)
∈

R×R | (ac, bd) = (x, y)}.

(x, y) E |E| Prob(x,y)(R) = |E|
|R|2

(0, 0)
(
(0, 0), (0, 0)

)
,
(
(0, 0), (0, 1)

)
,
(
(0, 0), (0, 2)

)
,(

(0, 0), (0, 3)
)
,
(
(0, 0), (1, 0)

)
,
(
(0, 0), (1, 1)

)
,(

(0, 0), (1, 2)
)
,
(
(0, 0), (1, 3)

)
,
(
(0, 1), (0, 0)

)
,(

(0, 2), (0, 0)
)
,
(
(0, 3), (0, 0)

)
,
(
(1, 0), (0, 0)

)
,(

(1, 1), (0, 0)
)
,
(
(1, 2), (0, 0)

)
,
(
(1, 3), (0, 0)

)
,(

(1, 0), (0, 1)
)
,
(
(1, 0), (0, 2)

)
,
(
(1, 0), (0, 3)

)
,(

(1, 2), (0, 2)
)
,
(
(0, 1), (1, 0)

)
,
(
(0, 2), (1, 2)

)
,(

(0, 2), (1, 0)
)
,
(
(0, 2), (0, 2)

)
,
(
(0, 3), (1, 0)

)

24
3/8

(0, 1)
(
(0, 1), (0, 1)

)
,
(
(0, 1), (1, 1)

)
,
(
(1, 1), (0, 1)

)
,(

(0, 3), (0, 3)
)
,
(
(0, 3), (1, 3)

)
,
(
(1, 3), (0, 3)

) 6
3/32

(0, 2)
(
(0, 2), (0, 1)

)
,
(
(0, 1), (0, 2)

)
,
(
(0, 2), (0, 3)

)
,(

(0, 2), (1, 1)
)
,
(
(0, 2), (1, 3)

)
,
(
(0, 3), (0, 2)

)
,(

(1, 1), (0, 2)
)
,
(
(1, 3), (0, 2)

)
,
(
(0, 1), (1, 2)

)
,(

(0, 3), (1, 2)
)
,
(
(1, 2), (0, 1)

)
,
(
(1, 2), (0, 3)

)
12

3/16

(0, 3)
(
(0, 3), (0, 1)

)
,
(
(0, 1), (0, 3)

)
,
(
(0, 3), (1, 1)

)
,(

(1, 1), (0, 3)
)
,
(
(0, 1), (1, 3)

)
,
(
(1, 3), (0, 1)

) 6
3/32

(1, 0)
(
(1, 0), (1, 0)

)
,
(
(1, 0), (1, 1)

)
,
(
(1, 1), (1, 0)

)
,(

(1, 0), (1, 2)
)
, (1, 0)

)
, (1, 3)

)
,
(
(1, 2), (1, 0)

)
,(

(1, 3), (1, 0)
)
,
(
(1, 2), (1, 2)

)
8

1/8

(1, 1)
(
(1, 1), (1, 1)

)
,
(
(1, 3), (1, 3)

)
2

1/32
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(x, y) E |E| Prob(x,y) =
|E|
|R|2

(1, 2)
(
(1, 2), (1, 1)

)
,
(
(1, 2), (1, 3)

)
,
(
(1, 3), (1, 2)

)
,(

(1, 1), (1, 2)
) 4

1/16

(1, 3)
(
(1, 3), (1, 1)

)
,
(
(1, 1), (1, 3)

)
2

1/32

It is quite difficult to count directly, the pairs as in above table, for the large

values of m and n. Here we successfully provide the general formulas to compute

this probability Prob(x,y)(Zm × Zn).

Theorem 2.10. Prob(0,0)(Zm × Zn) =
1

m2n2

∑
i|m

∑
j|n ijϕ(

m
i )ϕ(

n
j ).

Proof. By Theorem 2.8, Prob(0,0)(Zm × Zn) = Prob0(Zm) · Prob0(Zn). Also by

[16, Corollary 2.3], Prob0(Zm) = 1
m2

∑
d|m dϕ(md ) and Prob0(Zn) =

1
n2

∑
d|n dϕ(

n
d ).

Hence, Prob(0,0)(Zm × Zn) =
1

m2

∑
d|m dϕ(md ) ·

1
n2

∑
d|n dϕ(

n
d ) =

1
m2

∑
i|m iϕ(mi ) ·

1
n2

∑
j|n jϕ(

n
j ) =

1
m2n2

∑
i|m

∑
j|n ijϕ(

m
i )ϕ(

n
j ). □

Theorem 2.11. For u ∈ U(Zm) and v ∈ U(Zn), Prob(u,v)(Zm × Zn) =
ϕ(m)·ϕ(n)

m2n2 .

Proof. By Theorem 2.8, Prob(u,v)(Zm × Zn) = Probu(Zm) · Probv(Zn). Also by

[16, Theorem 2.4], Probu(Zm) = ϕ(m)
m2 and Probv(Zn) =

ϕ(n)
n2 . Hence, we obtained

Prob(u,v)(Zm × Zn) =
ϕ(m)ϕ(n)

m2n2 . □

Theorem 2.12. Let 0 ̸= u ∈ Z(Zm) and v ∈ U(Zn). Then Prob(u,v)(Zm × Zn) =
ϕ(n)
m2n2

∑
1≤x≤m−1
gcd(x,m)|u

gcd(x,m).

Proof. By using Theorem 2.8, Prob(u,v)(Zm × Zn) = Probu(Zm) · Probv̄(Zn).

Also by [16, Theorem 2.1], Probu(Zm) = 1
m2

∑
1≤x≤m−1
gcd(x,m)|u

gcd(x,m). Moreover,

by using [16, Theorem 2.4], Probv(Zn) = ϕ(n)
n2 . Hence, Prob(u,v)(Zm × Zn) =

ϕ(n)
m2n2

∑
1≤x≤m−1
gcd(x,m)|u

gcd(x,m). □

Theorem 2.13. Let u ∈ U(Zm). Then Prob(u,0)(Zm×Zn) =
ϕ(m)
m2n2

∑
1≤x≤n

gcd(x, n).

Proof. By applying Theorem 2.8, Prob(u,0)(Zm × Zn) = Probu(Zm) · Prob0(Zn).

Also, by [16, Theorem 2.4], Probu(Zm) = ϕ(m)
m2 . Moreover, by using [16, Corollary

2.2], Prob0(Zn) =
1
n2

∑
1≤x≤n gcd(x, n). Hence, we obtained Prob(u,0)(Zm×Zn) =

ϕ(m)
m2n2

∑
1≤x≤n gcd(x, n). □
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Theorem 2.14. Let 0 ̸= u ∈ Z(Zm). Then

Prob(u,0)(Zm × Zn) =
1

m2n2

∑
1≤y≤n

∑
1≤x≤m−1
gcd(x,m)|u

gcd(x,m)gcd(y, n).

Proof. By using Theorem 2.8, Prob(u,0)(Zm × Zn) = Probū(Zm) · Prob0(Zn).

Also, by [16, Theorem 2.1], Probu(Zm) = 1
m2

∑
1≤x≤m−1
gcd(x,m)|u

gcd(x,m). Moreover, by

applying [16, Theorem 2.2], Prob0(Zn) =
1
n2

∑
1≤y≤n gcd(y, n). Hence, we obtained

Prob(u,0)(Zm×Zn) =
1

m2

∑
1≤x≤m−1
gcd(x,m)|u

gcd(x,m) · 1
n2

∑
1≤y≤n gcd(y, n). This implies

Prob(u,0)(Zm × Zn) =
1

m2n2

∑
1≤y≤n

∑
1≤x≤m−1
gcd(x,m)|u

gcd(x,m)gcd(y, n). □

Theorem 2.15. For 0 ̸= u ∈ Z(Zm) and 0 ̸= v ∈ Z(Zn);

Prob(u,v)(Zm × Zn) =
1

m2n2

∑
1≤x≤m−1
gcd(x,m)|u

∑
1≤y≤n−1
gcd(y,n)|v

gcd(x,m) gcd(y, n).

Proof. By using Theorem 2.8, Prob(u,v)(Zm×Zn) = Probu(Zm)·Probv(Zn). Also,

by [16, Theorem 2.1], Probu(Zm) = 1
m2

∑
1≤x≤m−1
gcd(x,m)|u

gcd(x,m) and, Probv(Zn) =

1
n2

∑
1≤y≤n−1
gcd(y,n)|v

gcd(y, n). Hence, Prob(u,v)(Zm × Zn) = 1
m2

∑
1≤x≤m−1
gcd(x,m)|u

gcd(x,m) ·
1
n2

∑
1≤y≤n−1
gcd(y,n)|v

gcd(y, n) = 1
m2n2

∑
1≤x≤m−1
gcd(x,m)|u

∑
1≤y≤n−1
gcd(y,n)|v

gcd(x,m)gcd(y, n). □

This paper is from the MS thesis of Muhammad Naveed Shaheryar, written

under Shafiq ur Rehman.
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