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Introduction 

Increasing water requirements, climate change and 

extreme weather events have increased the importance of 

effective planning and management of water resources [1]. 

The effective management of water resources depends on 

the prediction of possible future flows. Accurate and 

reliable streamflow estimation is crucial regarding 

irrigation planning, water and electricity supply, flood and 

drought risks, and reservoir operation. [2]. In particular, 

estimating maximum and minimum flow values is critical 

for their use in flood and drought management. The 

physical formation process of streamflow in a basin is 

complicated because it depends on several factors such as 

precipitation, evapotranspiration, infiltration, ground 

moisture, soil permeability, terrain conditions and 

vegetation. For this reason, many researchers have 

modeled past precipitation and streamflow values with 

various black box models that require less data and can 

accurately model non-linear relationships [3]. 

Artificial intelligence (AI) technologies predict 

streamflows accurately and reliably with the development 

of AI technologies. However, it has attracted the attention 

of many researchers about which algorithm can predict 

streamflows with higher accuracy. In addition, the most 

important parameter affecting the success of the AI model 

is the correct selection of the training and test rate. The 

determination of this ratio is one of the topics that attracts 

the attention of many researchers. For this reason, the 

streamflow estimation performances of various AI 

techniques and data division ratios have been investigated 

with different statistical and graphical indicators. 
Humphrey, et al. [4] employed the bayesian artificial 

neural network approach and successful estimation results 

were obtained in the monthly streamflow estimation model 

by separating 80% of the data for training. Tosunoğlu, et 

al. [5] used Support Vector Machines (SVM), Adaptive 

Boosting (AdaBoost), K-Nearest Neighbors (KNN) and 

Random Forest (RF) methods to estimate monthly flows at 

station 2305, located in the Euphrates basin. As a result, it 

has been determined that the RF algorithm is the best. 

Parisouj, et al. [2] estimated daily flows of Support Vector 

Regression (SVR), backpropagation Artificial Neural 

Network (ANN) and Extreme Learning Machine (ELM) in 

4 rivers in the United States. Adnan, et al. [6] employed an 

ANN and genetic algorithm (ANN-GA) and ANFIS-

genetic algorithm (ANFIS-GA) and M5 Regression Tree to 

predict the monthly flow data of Pakistan's Neelum and 

Kunhar Rivers. It has been determined that the model of 
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ANN-GA and ANFIS-GA is superior to the Regression 

Tree. Yu, et al. [1] estimated the inputs that were separated 

into various components with Fourier transform and 10-

day streamflow values using SVR and extreme gradient 

boosting (XGBoost) algorithms. Ni, et al. [7] used 

XGBoost and the Gaussian mixture model (GMM) to 

forecast streamflow data. The GMM-XGBoost model 

showed the best performance. Tao, et al. [8] were evaluated 

the effects of various machine learning algorithms and 

three data divisions, (train-test: 70%–30%, 80–20%, and 

90%–10%), to predict streamflows in the semi-arid region 

of Iraq. As a result of the study, the genetic algorithm and 

support vector regression hybrid model established using 

90% training-10% testing rates showed the best monthly 

river flow estimation performance. Al-Juboori [9] 

combined KNN and RF algorithms to generate monthly 

flow data for a river from annual flow data. Dornpunya, et 

al. [10] used the XGBoost algorithm and three different 

data divisions to estimate the daily and monthly reservoir 

inflow values of Sirikit Dam in Thailand. As a result of the 

study, the results of the appropriate estimation were 

obtained in the case of the training and testing ratio of 

80:20. Tyralis, et al. [11] estimated daily stream flows with 

various models such as extremely randomized trees, 

XGBoost, random forests, MARS, lasso, support vector 

regression, ARIMA. Adnan, et al. [12] used bio-inspired 

algorithms and various machine learning models for flow 

prediction in Pakistan. Meshram, et al. [13] applied 

ANFIS, GP and ANN to predict streamflow in the Shakkar 

watershed, India. Katipoğlu [14] modeled the monthly 

average stream flows of the Karasu river, 2154 no, with 

ANN. In the model setup, the data were separated as 70% 

train, 15% test, and 15% validation. As a result, successful 

predictions were obtained. 

The main objectives of this study are: 

• Comparison of the performances of XGBoost and K-NN 

algorithms from the estimation of monthly flows 

• Evaluation of the effect of data division ratios on the 

performance of machine learning models. 

 

Extreme gradient boosting (XGBoost) 

XGBoost is a widely applied machine learning algorithm 

for tree boosting proposed by Chen and Guestrin [15]. 

XGBoost is a faster and better-performing variant of 

gradient-assisted decision trees. Gradient boosting 

establishes new models to predict previous model errors. 

The latest model combines all installed models. In this 

algorithm, the tree ensemble model has trained additively 

until the stopping criteria are met. Xgboost is based on the 

Classification and Regression Tree (CART) and uses the 

minimization of the loss function to reveal partition 

attributes. XGBoost minimizes the loss function via 

Equation (1) to detect the most suitable feature. 

            Obj⁡(𝜃) = ∑  𝑛
𝑖=1 𝐿(𝑦𝑖 , 𝑦̂𝑖) + ∑  𝐾

𝑘=1 Ω(𝑓𝑘)            (1) 

Where  𝐿(𝑦𝑖 , 𝑦̂𝑖) shows the training error [16]. 

 

K-Nearest Neighbours (KNN) 

It is an algorithm that makes classification based on the 

distance between the data of a problem. The logic of this 

classification is expressed by the distance between the 

samples from the same class or from different classes 

according to their similarities. In the variable estimation of 

the KNN algorithm, it applies an input from the training 

data by comparing it with the value of the nearest 

neighbors. First, classification is done by the proximity of 

a selected feature to its closest feature. Then, the distances 

between the objects are calculated using Equation (2) [17]. 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡d(i, j) = √∑  
𝑝
𝑘=1 (𝑋𝑖𝑘 − 𝑋𝑗𝑘)

2
                    (2) 

 

Material and Methods 

Study area and data 

The mean annual flow of the Euphrates is roughly 32 000 

m3, and 80% of this amount is located in the upper basin to 

the north of the Keban Dam. The maximum flow in April 

and May corresponds to 42% of the total annual flow. Flow 

values in the Euphrates River basin vary between 200 and 

2000 m3/s. The lowest flows are observed in the winter, 

while the highest flows occur in the spring [18]. 

 

Figure 1. Digital elevation model of Euphrates basin. 

The data used in the study were taken from the streamflow 

observation yearbooks organized by the general directorate 

of electric power resources survey and development 

administration (EIEI). These data cover the years 1970 to 

2009 (40 years). The location map of the streamflow 

observation station used in the study is presented in Fig. 1. 

In Table A1, some statistical properties of the stream flows 

of the Göksu river numbered 2115 are given. The stream 
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flow station is located at 38o 9’ 26’’ East - 37o 29’ 36’’ 

North coordinates and 397 m altitude. In addition, the 

precipitation area of the basin is 185,000 km2. 

Performance criteria 

Root mean square error (RMSE) gives the standard 

deviation of the best fit, which shows the closeness of the 

data to the best fit line. The mean of the absolute errors in 

a set of predictions is expressed as the mean absolute error 

(MAE). Having RMSE and MAE values close to zero will 

show the model's success. The coefficient of determination 

(R2) expresses how well the estimated and actual data 

represent the regression line. R2 value close to 1 indicates 

the model's success [19]. The R2 value measures the linear 

relationship between actual and predicted values. Henseler, 

et al. [20] stated that 0.75, 0.50 and 0.25 values for R2, 

respectively, indicate significant, moderate and poor fit. 

The statistical indicators are calculated with Equations (3, 

4, 5). 

⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡RMSE = √
1

𝑁
∑  

𝑁

𝑖=1

(𝑄𝑖 − 𝑄̂𝑖)
2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡MAE =
∑  𝑁
𝑖=1 |𝑄̂𝑖 − 𝑄𝑖|

𝑁
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅2 = 1 −
(𝑄𝑖 − 𝑄̂𝑖)

2

(𝑄𝑖 − 𝑄̅)2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5)

 

where N, Qi, 𝑄̂𝑖 , and 𝑄̅ show the sample's length, real 

value, predicted value, and the mean of the real values, 

respectively. 

 

Results and Discussion 

This study used KNN and Xgboost algorithms to estimate 

monthly flows. In addition, the effects of data division 

ratios on model success were investigated in flow 

estimation. For machine learning models' setup, 

autocorrelation (ACF) and partial autocorrelation (PACF) 

graphs of flow data were obtained. Lagged streamflow 

values with an autocorrelation above 95% limits in the 

graphs were chosen as inputs to the ML models (Fig. 2). 

 

 

Figure 2. a) ACF, b) PACF graphs. 

Fig. 2 shows the ACF and PACF graphs of the 2115 flow 

observation station. According to the ACF and PACF 

graphs, the flow values showing the highest intrinsic 

dependency were used as inputs to the machine learning 

models for flow estimation. According to the graphs, it was 

decided to estimate the flow values using the data of the 

past eight months. 

Established model: f(Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), 

Q(t-6), Q(t-7), Q(t-8)) = Q(t) 

The data division rates tried are shown in Table 2. Here, 

the most commonly used data rates for establishing ML 

models in the literature are tested and how the performance 

of ML models changes is analyzed. 

Table 2. Data division combinations 

Model Train Test 

M1 %60 %40 

M2 %70 %30 

M3 %80 %20 

M4 %90 %10 
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Figure 3 Selection of the optimum k parameter of the KNN model. 

In Fig. 3, the change of k parameters of the KNN model is shown. To optimize the KNN model, the model with the lowest 

error rate was selected as the best model by being tested between k = 1:20. Accordingly, a regression model was 

established with 10, 16, 20 and 15 nearest neighbor values in M1, M2, M3 and M4 models, respectively.

Table 3. Test results of KNN and Xgboost models in various data divisions 

 KNN  Xgboost  

 RMSE R2 MAE 
Total 

Rank 
RMSE R2 MAE 

Total 

Rank 

M1 

Rank 

28.240 

3 

0.559 

3 

18.733 

3 
9 

25.602 

3 

0.639 

4 

16.060 

3 
10 

M2 

Rank 

33.374 

2 

0.582 

4 

19.276 

2 
8 

30.296 

2 

0.627 

3 

16.754 

2 
7 

M3 

Rank 

34.348 

1 

0.517 

2 

20.141 

1 
4 

32.743 

1 

0.539 

1 

18.618 

1 

 

3 

 

M4 

Rank 

24.584 

4 

0.482 

1 

16.158 

4 
9 

23.049 

4 

0.571 

2 

13.252 

4 
10 

Note: Bold characters indicate best model and data division 
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Figure 4. Scatter diagrams of test data of Xgboost models. 

 

Table 3 shows the performances of Xgboost and KNN 

algorithms in estimating monthly flows using various data 

division ratios. According to the total rank values, the most 

successful data divisions are 60-40% and 90-10%. 

However, when the estimation results obtained with the 90-

10% data rates of the KNN model are examined, it has been 

determined that the rate of 60-40% is better in the flow 

estimation since the R2 value is below the acceptable value 

of 0.5. In addition, it has been determined that the most 

successful algorithm in monthly flow estimation is 

Xgboost. In the established XGBoost model, parameters 

nrounds = 1000, max_depth = 6, eta = 0.01, gamma = 0, 

colsample_bytree = 1, min_child_weight = 1, subsample = 

0.5 are used.  

Fig. 4 shows the scatter diagrams obtained for various data 

rates of the Xgboost models. Scattering diagrams show the 

relationship between actual and predicted current values. It 

has been determined that the Xgboost model, established 

using the M1 data division ratio (60-40%), performs the 

best because the actual and predicted data are distributed 

around a 45° line.  

 

Figure 5. Scatter diagrams of test data of best model. 

The flow line of the XGBoost model installed with the M1 

combination is shown in Figure 5. The fact that the actual 

and estimated current values are compatible with each 

other confirms the high performance of the established 

model. Furthermore, when the figure is examined, the 

established model predicts the monthly average 

streamflow data satisfactorily, except for some maximum 

values. 
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Tao, et al. [8] investigated the effect of data division in 

estimating stream flows, and as a result, the most 

successful results were obtained using 90% training-10% 

testing rates. Katipoğlu [14] estimated monthly flows with 

the ANN model. In designing the model, the data was 

divided into 70% train, 15% test, and 15% validation. As a 

result of the research, realistic estimation results were 

produced. When the literature is evaluated, the data rates 

used in different locations can produce successful output in 

streamflow estimation. For this reason, it is necessary to 

choose the appropriate model by trying various data 

division ratios. 

Ghorbani, et al. [21] revealed that the cascade correlation 

neural network and the random forest algorithm indicated 

high streamflow prediction achievement. Ni, et al. [7] 

determined that XGBoost is better than SVM in streamflow 

prediction. Elkurdy, et al. [22] combine the prediction 

Variational Mode Decomposition (VMD) and XGBoost 

models in daily streamflow in the Bow River (Alberta, 

Canada). As a result, it has been determined that the hybrid 

VMD-XGBoost model exhibits very high prediction 

success. The outputs of the study are largely in line with 

previous studies. In this direction, it can be deduced that 

the XGBoost algorithm has significantly superior features 

in estimating monthly flow data. In addition, it is thought 

that it can be used in other basins and stations. 

 

Conclusion 

This study used machine learning models such as KNN and 

Xgboost to predict monthly flows at the streamflow 

observation station 2115 in the Euphrates basin. In 

addition, the effect of data division ratios on model 

performance in flow estimation was investigated. The main 

outputs of the study are listed as follows: 

• Xgboost algorithm presented the most successful 

result in estimating monthly flows. 

• It has been determined that flows can be predicted 

effectively using data from the past eight months. R2: 

0.639 value indicates that currents can be modeled 

satisfactorily. 

• The best data division is obtained by using training: 

60% and testing 40%. 

• It has been understood that ACF and PACF graphics 

have a remarkable place in the selection of the input 

combination. 

• As a result of the study, streamflow data can be 

predicted effectively with AI methods. When Figure 5 

is examined, while the minimum streamflows can be 

estimated effectively, the maximum streamflows 

deviate significantly from the actual values. This 

proves that the XGBoost algorithm can effectively 

predict low flows and droughts. 

• The study's main limitation is the analysis in a single 

station. Therefore, to develop the results, it is necessary 

to test the models in different climatic regions and 

streams with varying flow regimes. 

• To increase the performance of the flow estimation 

model, it is recommended to try hybrid ML models 

with various preprocessing methods such as empirical 

mode decomposition and Wavelet transform in future 

studies. 
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Appendix 

 

Table A1. Summary statistics of stream flows at station 2115

Statistic October November December January February March April May June July  August September 

Max. 51.10 89.00 106.00 125.00 148.00 247.00 279.00 163.00 67.80 42.00 28.80 25.60 

Min. 7.81 2.70 17.10 16.60 18.60 31.70 25.80 15.60 7.83 3.65 3.60 6.18 

Mean 20.89 28.18 44.80 54.40 67.35 101.37 112.78 71.67 38.40 24.15 17.64 16.03 

Total 818 1091 1758 2143 2662 3978 4432 2831 1537 968 708 641 

Skewness 1.56 2.21 0.84 0.74 0.33 1.77 0.90 0.67 0.11 0.06 -0.08 -0.09 

Kurtosis 3.49 6.85 -0.54 -0.31 -0.01 3.47 0.37 -0.15 -0.92 -0.68 -0.70 -0.76 

Median 19.15 24.95 34.35 51.10 68.00 87.85 92.05 63.45 37.45 24.30 17.20 15.55 

Standart deviation 8.41 15.15 26.29 30.78 29.31 49.26 60.43 34.94 15.25 9.58 6.91 5.59 

Variance 70.65 229.59 691.26 947.42 859.06 2427 3651 1220 232 91.84 47.80 31.22 

 

 

 

 

 

 

 

 

 

 

 

 

 


