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Abstract: Solar energy systems are increasing their capacity in the energy industry day by day by operating with higher 
efficiency in parallel with technological developments. The functional operation of photovoltaic (PV) module contributes 
greatly to the optimal performance of these systems. On the other hand, detection and classification of faults occurring in PV 
modules are of vital importance in the operation and maintenance of solar energy systems. In this study, the classification of 
hotspots, which is one of the most common faults in Photovoltaic (PV) modules, is carried out by deep learning methods. First, 
data augmentation is applied to the images in the training dataset to improve the classification performance. Then, pre-trained 
deep learning models namely AlexNet, GoogLeNet, ShuffleNet, SqueezeNet, ResNet-50, and MobileNet-v2 are compared on 
the same test dataset. According to the obtained experimental results, AlexNet has the best performance with an accuracy value 
of 98.65%, while ResNet-50 provides the worst result with 94.59%. 
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Fotovoltaik Modüllerdeki Sıcak Noktaların Derin Öğrenme Yöntemleriyle Sınıflandırılması 
 
 
Öz: Güneş enerji sistemleri teknolojik gelişmelere paralel olarak daha yüksek verimlilikte çalışarak enerji endüstrisindeki 
kapasitesini her geçen gün arttırmaktadır. Fotovoltaik (PV) modül hücrelerinin işlevsel bir şekilde çalışması bu sistemlerin en 
uygun performansı göstermesine büyük katkı sağlamaktadır. Öte yandan, PV modül hücrelerinde meydana gelen arızaların 
teşhisi ve sınıflandırılması güneş enerji sistemlerinin çalışmasında ve bakımında hayati öneme sahiptir. Bu çalışmada, 
Fotovoltaik (PV) modül hücrelerindeki en yaygın arızalardan biri olan sıcak noktaların sınıflandırılması derin öğrenme 
yöntemleriyle gerçekleştirilmiştir. İlk olarak, sınıflandırma performansını arttırmak için eğitim veri setindeki görüntülere veri 
arttırma işlemi uygulanmıştır. AlexNet, GoogLeNet, ShuffleNet, SqueezeNet, ResNet-50 ve MobileNet-v2 gibi ön eğitimli 
derin öğrenme modelleri aynı test veri seti üzerinde karşılaştırılmıştır. Elde edilen deneysel sonuçlara göre AlexNet %98.65’lik 
bir doğruluk değeri ile en iyi performansa sahipken ResNet-50 ise %94.59 ile en kötü sonucu sağlamıştır.  
 
Anahtar kelimeler: Sınıflandırma, Derin öğrenme, Sıcak nokta, Fotovoltaik modül 
 
 
1. Introduction 
 

In the last decade, renewable energy sources have started to attract increasing interest, with the consumption 
of fossil fuels causing severe diseases and environmental pollution [1,2]. Among these renewable energy source 
types, one of the remarkable clean and reliable energy sources is photovoltaic (PV) based energy systems [3,4]. 
PV energy systems come to the fore with many advantages such as silent operation, global availability, easy 
installation, low cost, and pollution-free. However, the PV panels may be influenced by different types of 
anomalies that impress the credibility and safety of the system operation [5,6]. In addition, Uneven increases in 
the temperature of their cells, known as PV hotspots, can occur. Hotspot defects appear as highlighted areas in 
infrared images captured by the thermal Infrared (IR) imaging camera. In hotspot conditions, the affected cells 
begin to dissipate heat energy instead of generating electrical energy [7,8]. Therefore, early and automated hotspot 
detection is a crucial defect to provide the reliability of the panels. 

Recently, the literature has focused on the detection and classification of hotspots. Le et al. [6] developed a 
hybrid feature-based support vector machine (SVM) model using infrared thermography technique for hotspots 
detection and classification of PV panels. They analyzed the PV panels into three different classes as healthy, non-
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faulty hotspot, and faulty. Their method achieved 92% testing accuracy with low computational complexity 
structure. Cipriani et al. [9] proposed a convolutional neural network (CNN) model to classify the losses related 
to PV systems using thermographic non-destructive tests. They achieved an accuracy of 98% in tests that last a 
couple of minutes. In another study, Ali et al. [7] introduced an early hotspot detection using red-green scale-
invariant feature transform descriptor with k-nearest neighbor (KNN) method. In this method, the thermographic 
is divided into non-overlapping regions and then color image descriptors are calculated for the regions. Their 
method outperformed all other image descriptors and machine learning combinations with 98.7% accuracy. 
Dhimish [10] analyzed the machine learning algorithms to early detect PV hotspots. four effective machine 
learning classifiers as decision tree (DT), SVM, KNN, and discriminant classifiers (DC) were used. The highest 
detection accuracy was obtained with DC as 98%. Su et al. [11] also proposed a deep learning- based hotspot 
defect detection method for PV farms. In the model, a residual channel wise attention gate network was designed 
and distinctive features were extracted. The global average pooling and multilayer perceptron (MLP) were used to 
dimension reduction of the extracted features. Their method was validated through a real defect detection system 
and the recall of the hotspot defects reached to 97.06%. Manno et al. [12] introduced a CNN model for use in the 
effective classification of thermographic images. To decrease image noise, various pre-processing strategies were 
assessed and they reached an accuracy of 99%. Oliveira et al. [13] presented an aerial infrared thermography 
analysis for four utility-scale PV plants in the northeast of Brazil. The flight campaign applied different techniques 
and sensors for each PV power plant. As a result, automated early hotspot defect detection and classification 
methods have been still studied by designing effective and robust approaches, and also their accuracy performance 
may still be increased. 

This paper presents a comprehensive study on the classification of PV panel hotspot defects using pre-trained 
deep learning models on infrared thermographic images. These models with two-class classification are applied to 
define which model reaches a higher hotspot detection accuracy from PV modules. The used dataset is one of the 
publicly available datasets and it was collected from various large-scale PV farms. In addition, effective offline 
augmentation methods are utilized to increase and balance the class distribution. In the experimental studies, the 
metric results are compared and the effectiveness of the deep networks are evaluated. The rest of the paper is 
presented as: Section 2 descripts the classification approach and collected the dataset. In Section 3, the general 
structures of pre-trained deep learning models are given in detail. Section 4 presents experimental studies and 
results. Finally, the results obtained from experimental studies are evaluated in Section 5. 
 
2. Classification Approach and Dataset 

 
The scheme of the developed method for the classification of hotspot faults in PV modules is shown in Figure 

1. As can be seen in Figure 1, the hotspot and No-Anomaly images are obtained and data augmentation is 
performed. The obtained dataset is divided into training, validation, and testing dataset. Comparison studies are 
realized using the most widely used pre-trained deep learning models and metric results are obtained. 

 

 

Figure 1. Overview of classification approach used in this study 
 
A publicly available dataset is used in this study [14]. The dataset is obtained from the Raptor Maps Inc team 

using infrared camera modules [14]. The dataset contains a total of 10,495 images representing 495 hotspot class 
and 10,000 No-Anomaly class. The each of image in the dataset has 24x40 pixels. The general information about 
the classes in the dataset is presented in Table 1. As can be seen from Table 1, there is an imbalance in the dataset, 
which is directly related to the classification performance. The data augmentation is made to deal with this 
imbalance problem [14].   
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Table 1. Description of classes in dataset 

Class Number of images Description 
Hotspot 495 Hotspot and multiple hotspots on a thin-film modules 

No-Anomaly 10,000 Functional solar module 
Total 10,495 Total number of images 

 
First of all, 70% of the hotspot images are divided to training, and the rest equally to validation and testing 

dataset. The reversing, filtering and sharpening processes are applied to images in the hotspot class. After data 
augmentation process, a total of 1041 synthetic hotspot images are obtained. The sample images of the data 
augmentation process are shown in Figure 2. Furthermore, 1388 images are obtained for the hotspot class. In the 
reversing, the hotspot images are rotated 180° counter clockwise. In the filtering process, two-dimensional 
Gaussian filtering is used. In sharpening process, a Gaussian low-pass filter with a standard deviation of 1.5 is 
determined. 

 

 

Figure 2. The sample images obtained from data augmentation 
 
In order to eliminate the imbalance in the dataset, the number of images in the No-Anomaly class is equalized 

to the number of images in the Hot-Spot class, providing a total of 2776 images for the training dataset. In Figure 
3, the samples of the dataset divided into training, validation, and testing are presented. 

 

 
Figure 3. The images of training, validation, and testing in the dataset 
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3. Deep Learning Models 
 

The deep learning models are widely used in many image processing problems. In this study, deep learning 
models commonly used in the literature such as AlexNet [15], ShuffleNet [16], SqueezeNet [17], ResNet-50 [18], 
GoogLeNet [19], and MobileNet-v2 [20] are selected. In this section, the brief information about the general 
features of pre-trained deep learning models is presented. The structures of the pre-trained deep models used in 
this study are presented in detail in Figures 4-9. 

 

 

Figure 4. The general structure of AlexNet 
 

AlexNet was proposed by Alex Krizhevsky [15] in 2012 and has features such as superior generalization 
ability, fast training time and high stability. AlexNet basically includes five convolution layers and three fully 
connected layers. The input of the AlexNet is 227×227×3 with RGB depth and the size of each input image is 
resized according to the input of the network. The convolutions in AlexNet have filters of 96 kernels of size 11×11, 
48 kernels of size 5×5, 384 kernels of size 3×3, 384 kernels of size 3×3, and 256 kernels of size 3×3, respectively. 
While the first two fully-connected layers have 4096 neurons, the last one has 1000 neurons. AlexNet performs 
3×3 max-pooling with a stride of 2 after convolution-1, convolution-2, and convolution-5. 

 

 

Figure 5. The general structure of SqueezeNet 
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The general structure of SqueezeNet consists of fire modules [16]. SqueezeNet is a small-sized alternative 
deep learning model developed to achieve the same level of success with large-sized and complex deep 
architectures in image processing problems. The input of the network is 224×224. Each fire module contains 
squeeze convolution layers with 1×1 filters and expand convolution layers with 3×3 filters. SqueezeNet starts with 
convolution, relu, and max pooling layer, then continues with 8 fire modules.  

The outputs of the firing layers are concatenated in the channel dimension. A relu activation function follows the 
convolution layers except for the fire modules. SqueezeNet has 3×3 max-pooling with a stride of 2. Dropout with 
a ratio of 50% is used after the 9th fire module of the network. The batch normalization layer is not used to reduce 
the computational cost of the network. In addition, global average pooling is used instead of the fully-connected 
layer before the softmax layer. 

 

 

Figure 6. The general structure of GoogLeNet  
 

GoogLeNet has twenty-two layers [17]. In the structure of the network, there are inception modules. The 
inception modules provide to find out how an optimal local sparse structure in a convolutional vision network can 
be approached and covered by ready-made dense components. The image input of the network is 224×224×3 with 
RGB depth. There are 1×1, 3×3, and 5×5 filters in the convolutions of these modules. The relu activation function 
is connected after the convolutions. The max-pooling layers with 5×5 filter size and stride 1 are used in the last 
column of inception modules. Furthermore, the max-pooling layers with stride 2 are used to halve the resolution 
of the network after inception modules. At the end of the network, there are fully connected, softmax, and classifier 
layers. 
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Figure 7. The general structure of ShuffleNet 
 
ShuffleNet was developed for the use of mobile devices with very limited computing power [18]. ShuffleNet 

performs two operations such as pointwise group convolution and channel shuffle simultaneously to decrease the 
network computation cost. Through the channel shuffle process used in the network, more durable structures can 
be obtained with many convolution layers. The input image size of the ShuffleNet is 224×224 and it has fifty 
layers. The filter sizes of the grouped convolutions in the structure of the network are set as 1×1, 3×3, and 1×1, 
respectively. The 3×3 average pooling with stride 2 is added in parallel to some units of the network. 

 

 
Figure 8. The general structure of ResNet-50 

 
It is known that ResNet-50 has fifty layers [19]. The input image size of the ResNet-50 is 224×224. The batch 

normalization layer is used after each convolution and before relu activation.  There is a convolution with a kernel 
size of 7×7 with a stride of 2 at the input of the network. After adding batch normalization and relu to this 
convolution, the maximum pooling layer with a stride size of 2 is connected. The 1×1, 3×3 and 1×1 filters are used 
in convolutions in a building blocks. An average pooling, a fully connected layer and a softmax function are used 
at the end of the network. 
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Figure 9. The general structure of MobileNet-v2 

 
MobileNet-v2 is known as a new network developed for mobile and resource-constrained environments [20]. 

The network is designed to have a new module through the inverted residual with linear bottleneck. This module 
provides the network with a low-dimensional compressed representation feature that is expanded to high-
dimensionality and filtered with a slight depth-based convolution. The input of the network is 224×224×3 with 
RGB depth. While the 3×3 filter sizes are used in grouped convolutions in the network, the 1×1 filter sizes are 
used in others. MobileNet-v2 has only one global average pooling. Some parameters of the deep learning models 
used in this study are compared in Table 2. As can be seen from the Table 2, while AlexNet has the most parameters 
among models, SqueezeNet has about 50 times fewer parameters. 

Table 2. Comparison of pre-trained deep learning models 

Models Input Size No. of Layers Parameters 
ResNet-50 224x224 50 25.6M 
SqueezeNet 227x227 18 1.24M 
GoogLeNet 224x224 22 7M 
ShuffleNet 224x224 50 1.4M 

MobileNet-v2 224x224 53 3.5M 
AlexNet 227x227 8 61M 

 
AlexNet is the first main deep learning model to use GPUs for training. Since AlexNet has less depth, it needs 
more computation time to learn the features of the images in the dataset. ShuffleNet has less computational cost 
and comparatively better performance. Although GoogLeNet has relatively few parameters thanks to inception 
modules, it may not guarantee satisfactory results. Among the deep learning models used in this study, SqueezeNet 
has the least parameter. MobileNet-V2 with about 3.5M parameters can be considered as a lightweight network 
which has the deep separable convolution, which increases the computation cost. ResNet-50, which has relatively 
more parameters, uses residual blocks for better results. 
 
4. Experimental Studies and Results 
 

In this section, the experimental comparison studies are carried out for the classification of hotspots in 
photovoltaic modules. In these studies, AlexNet, ShuffleNet, SqueezeNet, ResNet-50, GoogLeNet, and 
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MobileNet-v2, which are commonly used pre-trained deep learning models, are preferred. The same training, 
validation, and test datasets are applied to each deep learning model. All of our models and studies are carried out 
on a computer with an Intel (R) i7-10750H CPU @2.60 GHz, NVIDIA Quadro P620 GPU, and 16 GB RAM. 
Experimental studies are carried out with the help of the R2022a version of Matlab. The stochastic gradient descent 
with momentum (SGDM) optimizer is used for error minimization with a learning rate of 1e-3. All pre-trained 
deep learning models are trained for 40 epochs. During training, MiniBatch size is selected as 32.  

In order to statistically evaluate the obtained classification results, some performance metric values such as 
Accuracy, Precision, Sensitivity, Specificity, and F1-score are calculated. These metric values can be expressed 
mathematically as follows. 

 
Accuracy = !"#!$

!"#!$#%"#%$
  (1) 

Precision = !"
!"#%"

   (2) 

Sensitivity = !"
!"#%$

  (3) 

Specificity = !$
!$#%"

  (4) 
 

F1_score = 2 ∗ &'()*+*,*+-∗"/'0*)*1(
&'()*+*,*+-#"/'0*)*1(

  (5) 
 
In the equations, expressions such as True Positive, True Negative, False Positive, and False Negative are 

symbolized as TP, TN, FP, and FN, respectively. Where, TP and TN represent numbers that are actually positive 
and actually negative, and are correctly predicted, respectively. FP and FN show the numbers that are actually in 
the negative and positive classes, and that is incorrectly predicted, respectively. 

The main target of this study is effectively the classification of hotspots in PV modules. For this purpose, the 
comparison studies are carried out by deep learning models. First, all deep learning models are trained with the 
same training dataset and then tested. From these results, the confusion matrix is obtained. The confusion matrices 
of all deep learning models are presented in Figure 10. As can be clearly seen from Figure 10, AlexNet 
misclassifies only two images while MobileNet-v2, and ShuffleNet, GoogLeNet, SqueezeNet, and ResNet-50 
misclassify 4, 4, 6, 7 and 8 images, respectively. 

 

 

Figure 10. The confusion matrices 
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To highlight the classification performance of deep learning models, statistical evaluation metrics are 

calculated. The obtained results are listed in Table 3. Moreover, the bar graphs are presented in Figure 11 to better 
analyze the results in table 3. When the metric results in Table 3 are analyzed in terms of accuracy values, AlexNet 
provides the best result with 0.9865 among all deep learning models, while ResNet-50 gives the worst result with 
0.9459. The accuracy values of SqueezeNet, GoogLeNet, ShuffleNet, and MobileNet-v2 are calculated as being 
0.9527, 0.9595, 0.9730, and 0.9730, respectively. The AlexNet achieves 1.39%, 1.39%, 2.81%, 3.55%, and 4.29% 
improvement in accuracy compared to MobileNet-v2, ShuffleNet, GoogLeNet, SqueezeNet, and ResNet-50, 
respectively. 

 
Table 3. The metric value comparison of deep learning models 

Models Accuracy Precision Sensitivity Specificity F1-score 
ResNet-50 0.9459 0.9459 0.9459 0.9459 0.9459 
SqueezeNet 0.9527 0.9351 0.9730 0.9324 0.9536 
GoogLeNet 0.9595 0.9595 0.9595 0.9595 0.9595 
ShuffleNet 0.9730 0.9605 0.9865 0.9595 0.9733 

MobileNet-v2 0.9730 0.9861 0.9595 0.9865 0.9726 
AlexNet 0.9865 0.9737 1.00 0.9730 0.9867 

 
When deep learning models are compared in terms of error, the MobileNet-v2 achieves 0.9861 value. Those 

of AlexNet, ShuffleNet, GoogLeNet, SqueezeNet, and ResNet-50 are 0.9737, 0.9605, 0.9595, 0.9351, and 0.9459, 
respectively. Moreover, the MobileNet-v2 shows that the performance improvement of 1.27%, 2.66%, 2.77%, 
5.45%, and 4.25% in precision than the AlexNet, ShuffleNet, GoogLeNet, SqueezeNet, and ResNet-50 
respectively. Table 3 compares the sensitivity values of deep learning models. As can be seen, AlexNet 
outperforms other models with a value of 1.00. While ShuffleNet gives the best-second result with 0.9865, ResNet-
50 has the worst value, which is 0.9459. The sensitivity values of SqueezeNet, GoogLeNet, and MobileNet-v2 are 
0.9730, 0.9595, 0.9595, respectively.   

 

 
Figure 11. Comparison results of metric values for each deep learning models 

 
When deep learning models are compared in terms of specificity values, when deep learning models are 

compared in terms of specificity values, MobileNet-v2 provides the best performance among all models. While 
AlexNet reaches the second-best result with a value of 0.9730, ResNet-50 shows the worst result with 0.9459. the 
MobileNet-v2 has an increase of approximately 1.39%–4.29% in terms of specificity compared to other models. 
When deep learning models are analyzed in terms of F1-score, AlexNet reaches the highest result with 0.9867. 
This result shows that the AlexNet is feasible. Those of MobileNet-v2, ShuffleNet, GoogLeNet, SqueezeNet, and 
ResNet-50 are calculated as being 0.9726, 0.9733, 0.9595, 0.9536, and 0.9459, respectively.  
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Figure 12. ROC curves of deep learning models 

 
To get a better understanding and visualizing of the classification performances of deep learning models, 

Receiver Operating Characteristic (ROC) curves are given in Figure 12. As can be seen from Figure 11, AlexNet 
not only shows better classification ability, but also guarantees more effective results. 
 
5. Conclusion 
 

The fault-free operation of the PV modules directly affects the efficiency of the whole system. Although it is 
known that there are many fault classes in these modules, the most common fault class is the hotspot, which has 
an active role in the energy production of that module. For this reason, the detection and classification of hotspots 
in PV modules is considered as an important task. In recent years, deep learning, which is widely used in almost 
every sector and gives satisfactory results, has also taken its place in the solar energy sector. In this study, deep 
learning models namely AlexNet, MobileNet-v2, ShuffleNet, GoogLeNet, SqueezeNet, and ResNet-50 are used 
to classify hotspots in PV modules. All models are applied to the training dataset using the pre-trained model in 
the Matlab environment. The comparison studies are carried out by obtaining the values of performance evaluation 
metrics through experimental studies. AlexNet provides the highest accuracy, precision, and F1-score values, 
which are 0.9865, 1.00, and 0.9867, respectively. MobileNet-v2 reaches the highest precision and specificity 
values with 0.9861, and 0.9864, respectively. In future study, it is aimed to achieve better results by developing 
lightweight deep learning methods with different structures. 
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