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Abstract: This paper presents some important classes of the continuous functions defined from the set of

real numbers to the space of complex intervals. These function spaces have an algebraic structure named

as a quasilinear space which is suggested by Aseev in 1986. In this work, we analysis the quasilinear

structure on the classes of the continuous and complex interval-valued functions. Further, we show that

these spaces are the normed Ω -spaces. Finally, we examine the dimension of these function spaces.
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1. Introduction

As is known the Fourier transform is the main building block of many application areas, especially

in the electrical engineering. This transform that is used for analyzing the signals in the frekans

domain has a wide range of applications in the digital signal processing.

Many real world problems may contain uncertainties due to environmental factors, especially

in signal processing [7–9, 14]. Such problems are modelled with intervals. For this reason there has

been increasing interest in interval-valued functions [1, 2, 4]. We need the space of the continuous

functions defined from R to the set of complex intervals to analyzes the signals with inexact data.

An interval x is the compact-convex subset of real numbers and x is denoted by x = [x, x]

where x and x are the left and right endpoints of x , respectively [13]. Further, if x = x , then

we say that x is a degenerate interval and it can be shown by {x} or [x, x] . The set of all real

intervals is denoted by IR .

To get a comprehensive and healthy interval-valued signal processing we need the notion of

the complex interval. Therefore, we defined the space IC which is the set of all complex intervals
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in [11]. A complex interval is defined by

u =
[
ur, ur

]
+ i

[
us, us

]
,

where
[
ur, ur

]
and

[
us, us

]
are real intervals and i =

√
−1 is the complex unit.

[
ur, ur

]
and[

us, us

]
are called real and imaginary part of u, respectively. Unfortunately, both IR and IC have

an algebraic structure which is not linear space which is called as a “quasilinear space”by Aseev

in 1986 (for details, see [3]). The most popular examples are Ω(E) and ΩC(E) which are defined

as the sets of all nonempty closed bounded and nonempty convex closed bounded subsets of any

normed linear space E, respectively. Both are a quasilinear space with the inclusion relation “⊆”,

the algebraic sum operation

A+B = {a+ b : a ∈ A, b ∈ B},

where the closure is taken on the norm topology of E . The real-scalar multiplication

λA = {λa : a ∈ A} .

Especially, IR is a quasilinear space with the Minkowski sum and scalar multiplication

operations are defined by

x+ y = [x, x] +
[
y, y

]
= [x+ y, x+ y]

and

λx =

{
[λx, λx]
[λx, λx]

,
,

λ ≥ 0
λ < 0,

x, y ∈ IR and λ ∈ R , respectively.

The Minkowski sum and scalar multiplication on IC are defined by

u+ v =
[
ur, ur

]
+ i

[
us, us

]
+

[
vr, vr

]
+ i

[
vs, vs

]
=

[
ur + vr, ur + vr

]
+ i

[
us + vs, us + vs

]
=

{
a+ ib : a ∈

[
ur + vr, ur + vr

]
, b ∈

[
us + vs, us + vs

]}
and

λu = λ
[
ur, ur

]
+ i

(
λ
[
us, us

])
=

{
λa+ iλb : a ∈

[
ur, ur

]
, b ∈

[
us, us

]}
on IC , where i =

√
−1 and λ ∈ C . Further, the relation

u ≼ v iff
[
ur, ur

]
⊆

[
vr, vr

]
and

[
us, us

]
⊆

[
vs, vs

]
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is a partial order relation on IC . Thus, IC is a quasilinear space.

This article is organized as follows: In Section 2, we present some definitions and theorems

with respect to the normed quasilinear spaces. In Section 3, we introduce some the classes of the

continuous complex interval-valued functions defined from R to IC . Further, we prove that these

function spaces are the consolidate spaces and we investigate the dimensions of these spaces.

2. Preliminaries
We will start by giving some main definitions and notions.

Suppose that X is a quasilinear space and Y ⊆ X . Then Y is called a subspace of X

whenever Y is a quasilinear space with the same partial order and the restriction to Y of the

operations on X . Y is subspace of a quasilinear space X if and only if for every x, y ∈ Y and

α, β ∈ K, αx+βy ∈ Y . Proof of this theorem is quite similar to its classical linear space analogue.

Let Y be a subspace of a quasilinear space X and suppose each element x in Y has an inverse in

Y. Then the partial order on Y is determined by the equality. In this case, Y is a linear subspace

of X [16].

An element x in a quasilinear space X is said to be symmetric if −x = x and Xsym denotes

the set of all symmetric elements. Also, Xr stands for the set of all regular elements of X while

Xs stands for the sets of all singular elements and zero in X . Further, it can be easily shown that

Xr, Xsym and Xs are subspaces of X. They are called regular, symmetric and singular subspaces

of X, respectively. Furthermore, it isn’t hard to prove that summation of a regular element with

a singular element is a singular element and the regular subspace of X is a linear space while the

singular one is nonlinear at all. Further, IC is a closed subspace of Ω(C) [6].

A real-valued function ∥.∥ on the quasilinear space X is called a norm if the following

conditions hold;

∥x∥ > 0 if x ̸= 0, (1)

∥x+ y∥ ≤ ∥x∥+ ∥y∥ , (2)

∥αx∥ = |α| ∥x∥ , (3)

if x ≼ y, then ∥x∥ ≤ ∥y∥ , (4)

if for any ε > 0 there exists an element xε ∈ X such that (5)

x ≼ y + xε and ∥xε∥ ≤ ε, then x ≼ y,

here x, y, xε are arbitrary element in X and α is any scalar. A quasilinear space X with a norm

defined on it, is called normed quasilinear space [3].
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For a normed linear space E, a norm on Ω(E) is defined by

∥A∥Ω = sup
a∈A

∥a∥E .

Hence ΩC(E) and Ω(E) are normed quasilinear spaces. A norm on IR is defined by

∥x∥ = ∥[x, x]∥ = sup
t∈[x,x]

|t| .

Moreover, IC is a normed quasilinear space with the norm

∥X∥IC = sup {|z| : z ∈ X}

= sup{|a+ ib| : a ∈
[
xr, xr

]
, b ∈

[
xs, xs

]
}

for X =
[
xr, xr

]
+ i

[
xs, xs

]
[15].

Now we will give the notion of consolidate quasilinear space defined in [15]. Thanks to this

definition, we were able to give a representation to every element in a quasilinear space and we

were able to define an inner-product quasilinear space.

Definition 2.1 [15] Let X be a quasilinear space and y ∈ X. The floor of y is the set of

all regular elements y of X such that x ≼ y . It is denoted by FX
y and FX

y ⊂ X. Hence

FX
y = {x ∈ Xr : x ≼ y}.

For example, [3, 7] is an element of (IR)s and hence of IR since (IR)s ⊂ IR. The floor of

[3, 7] in (IR)s is empty set, that is,

F
(IR)s
[3,7] = {x ∈ ((IR)s)r : x ⊆ [3, 7]} = {x ∈ {0} : x ⊆ [3, 7]} = ∅

since ((IR)s)r = {0} . But, the floor of [3, 7] in IR is

F IR
[3,7] = {x ∈ (IR)r : x ⊆ [3, 7]} ≡ [3, 7]

since (IR)r ≡ R .

Definition 2.2 [15] A quasilinear space X is called consolidate or Solid-Floored whenever

sup
≼

{x ∈ Xr : x ≼ y} = sup
≼

FX
y

exists and
y = sup

≼
{x ∈ Xr : x ≼ y}

for each y ∈ X. Otherwise, X is called a nonconsolidate QLS, or briefly, a nc-QLS.
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From above example immediately we can see that IR is consolidate while (IR)s is not.

Analogous results are also true for the spaces IC and (IC)s .

3. Main Results
In this section, we present some important class of the continuous functions defined from R to IC

and we show that these sets are the normed quasilinear spaces.

Definition 3.1 The support of the set-valued function F : R → IC is the smallest closed set

outside which the function is equal to zero:

suppF = {x ∈ R : F (x) ̸= {0}}.

If suppF is a bounded set, then we say that F has compact support.

Definition 3.2 (Classes of Continuous Set-Valued Functions) Consider a set-valued function

F : R → IC .

(i) The set Cc(R, IC) consists of all continuous set-valued functions having compact support:

Cc(R, IC) = {F : R → IC | F is continuous and has compact support }.

(ii) The set C0(R, IC) consists of all continuous set-valued functions that F (x) → {0} with respect

to Hausdorff metric on IC as x → ±∞ :

C0(R, IC) = {F : R → IC | F is continuous and F (x) → {0} as x → ±∞}.

Example 3.3 Consider the complex interval-valued functions F,G : R → IC given by

F (t) =

{
{i}
{0}

,
,

for t ∈ [0, 1];
otherwise

and

G(t) =

{
[0, 1]
{0}

,
,

for t ∈ [−1, 1);
otherwise,

respectively. Since F and G are continuous and suppF = [0, 1] , suppG = [−1, 1] we say that

F,G ∈ Cc(R, IC) . In fact, F is a regular element of Cc(R, IC) while G is a singular element of

Cc(R, IC) .

Theorem 3.4 C0(R, IC) is a quasilinear space with the operations of algebraic sum, multiplication

by complex numbers and partial order relation are defined as follows;

(F1 + F2)(x) = F1(x) + F2(x),
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(αF ) = αF (x)

and
F1 4 F2 ⇔ F1(x) ⊆ F2(x) for any x ∈ R.

Proof Verification of first five axioms to be a quasilinear space is to straighforward. Further,

the function F = {0} is the identity element of the addition. Obviously, 1.F = F and 0.F = 0 ,

for 1, 0 ∈ C and F ∈ C0(R, IC) , easily see that α(βF ) = (αβ)F and α(F + G) = αF + αG for

α, β ∈ C and F,G ∈ C0(R, IC) . For any x ∈ R ,

((α+ β)F )(x) = (α+ β)F (x) ⊆ αF (x) + βF (x) = (αF )(x) + (βF )(x)

and so (α + β)F 4 αF + βF . If F1 4 F2 and F3 4 F4 , then F1(x) ≼ F2(x) and F3(x) ≼ F4(x)

for any x ∈ R . Since F1(x), F2(x), F3(x), F4(x) ∈ IC , we write F1(x) + F3(x) ≼ F2(x) + F4(x) .

This means F1 + F3 4 F2 + F4 . Suppose that F1 4 F2 . Then αF1(x) ≼ αF2(x) for any x ∈ R ,

α ∈ C since IC is a quasilinear space. Thus, we have αF1 4 αF2. 2

Lemma 3.5 Cc(R, IC) is a subspace of the quasilinear space C0(R, IC) .

Proof It is not hard to see that Cc(R, IC) ⊂ C0(R, IC) . Suppose that λ1, λ2 ∈ C and

F,G ∈ Cc(R, IC) . Let us take an arbitrary y ∈ A = {x ∈ R : λ1F (x) + λ2G(x) ̸= 0} . Then

we say that λ1F (y) + λ2G(y) ̸= 0 . In this case it is either λ1F (y) ̸= 0 or λ2G(y) ̸= 0 . If

λ1F (y) ̸= 0 , then y ∈ B = {x ∈ R : F (x) ̸= 0} . This means A ⊆ B. Thus,

Ā = supp(λ1F + λ2G) ⊆ B̄ = suppF.

Further, there exists at least an interval [a, b] such that suppF ⊆ [a, b] since F ∈ Cc(R, IC) .

Consequently, we say that supp(λ1F+λ2G) ⊆ [a, b] and so λ1F+λ2G ∈ Cc(R, IC) . If λ2G(y) ̸= 0 ,

then the proof is similar. Now suppose that both λ1F (y) ̸= 0 and λ2G(y) ̸= 0 are satisfied. Then

we have that

{x ∈ R : λ1F (x) + λ2G(x) ̸= 0} ⊆ {x ∈ R : F (x) ̸= 0} ∩ {x ∈ R : G(x) ̸= 0}

since y ∈ {x ∈ R : λ1F (x) + λ2G(x) ̸= 0} . This implies A ⊆ B . Because of the fact that

Ā ⊂ B̄ we write Ā =supp(λ1F + λ2G) ⊆ B̄ =suppF . Thus, supp(λ1F + λ2G) is bounded and

λ1F + λ2G ∈ Cc(R, IC) . 2

Theorem 3.6 The expression

∥F∥∞ = max
x∈R

∥F (x)∥IC

defines a norm on C0(R, IC) and this space is a normed quasilinear space.
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Proof It is obvious that the above equality is well-defined. It can be shown similarly to the

classical analysis that the first three conditions of norm are satisfied. Let us only verify the last

two conditions. Let F1 and F2 be arbitrary elements of C0(R, IC) . If F1 4 F2 , then F1(x) ≼ F2(x)

for every x ∈ R . This implies ∥F1(x)∥IC ≤ ∥F2(x)∥IC and so ∥F1∥∞ = max
x∈R

∥F1(x)∥IC ≤

max
x∈R

∥F2(x)∥IC = ∥F2∥∞ . For the last condition of the norm, let ε > 0 be arbitrary and there

exists an element Fε ∈ C0(R, IC) such that F 4 G + Fε and ∥Fε∥∞ = max
x∈R

∥Fε(x)∥IC ≤ ε . By

the assumption, we write that F (x) ≼ G(x) + Fε(x) and ∥Fε(x)∥IC ≤ ε . By the last condition of

norm on IC we say that F (x) ≼ G(x) for every x ∈ R . Thus, we obtain that F 4 G. 2

Now we will show that Cc(R, IC) and C0(R, IC) are consolidate spaces. Thus, we can give

a representation to every element in these spaces.

Lemma 3.7 Cc(R, IC) and C0(R, IC) are the consolidate quasilinear spaces.

Proof We will give only the proof for the space Cc(R, IC) since a similar proof can be made for

C0(R, IC) . Let us take an arbitrary g ∈ Cc(R, IC) . Because of the fact that IC is consolidate, we

write for t ∈ R

sup
≼

{x ∈ (IC)r : x ≼ G(t)} = sup
≼

F IC
G(t) = G(t) = [Gr(t), Gr(t)] + i[Gs(t), Gs(t)].

Now let us choose an element {xGr(t)}+ i{xGs(t)} ∈ IC for each t ∈ R such that let be

{xGr(t)}+ i{xGs(t)} ≼ [Gr(t), Gr(t)] + i[Gs(t), Gs(t)]. (6)

Consider the function h : R → (IC)r given by

h(t) = {xGr(t)}+ i{xGs(t)}, (7)

where {xGr(t)} + i{xGs(t)} is the regular element of IC that satisfies the condition (6). Now we

will prove that supF
Cc(R,IC)
G = G , i.e.,

sup
≼

{h ∈ Cc(R, IC)r : h(t) ≼ G(t), ∀t ∈ R}.

First we have h 4 G since h(t) = {xGr(t)} + i{xGs(t)} ≼ G(t) . This means F
Cc(R,IC)
G ̸= ∅ .

Further, the set F
Cc(R,IC)
G is the upper bounded since h 4 G for h ∈ F

Cc(R,IC)
G . Suppose that

the function F is another upper bound of the set F
Cc(R,IC)
G . Now let us assume that G � F .

Then there exists an element t0 ∈ R such that G(t0) � F (t0) . This implies that it is either
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[Gr(t0), Gr(t0)] * [Fr(t0), Fr(t0)] or [Gs(t0), Gs(t0)] * [Fs(t0), Fs(t0)] . If [Gr(t0), Gr(t0)] *

[Fr(t0), Fr(t0)] , then there exists the singleton {xGr(t0)} such that {xGr(t0)} ⊆ [Gr(t0), Gr(t0)]

while {xGr(t0)} * [Fr(t0), Fr(t0)] . Further, we have that {xGr(t0)} + i{xGs(t0)} ≼ G(t0) and

{xGr(t0)} + i{xGs(t0)} � F (t0) . Thus, we write that h(t0) ≼ G(t0) while h(t0) � F (t0) for the

function h defined in (7). Therefore, h � F . This is a contradiction. If [Gs(t0), Gs(t0)] *

[Fs(t0), Fs(t0)] , then the proof is given in a similar way. Consequently, the proof is complete. 2

Now we will examine the dimension of the quasilinear spaces Cc(R, IC) and C0(R, IC) . For

this purpose, firstly let us give some algebraic definitions in a quasilinear space (for details, see

[5]). Let X be a quasilinear space and {xk}nk=1 be a subset of X , where n is a positive integer.

A (linear) combination of the set{xk}nk=1 is an element z of X in the form

α1x1 + α2x2 + ...+ αnxn = z,

where the coefficients α1, α2, ..., αn are real scalars. On the other hand, a quasilinear combination

of the set {xk}nk=1 is an element z ∈ X such that

α1x1 + α2x2 + ...+ αnxn ≼ z

for some real scalars α1, α2, ..., αn . Hence,the quasilinear combination, briefly ql-combination, is

defined by the partial order relation on X. Further, for any nonempty subset A of a quasilinear

space X, span of A is given by following known definition

SpA = {
n∑

k=1

αkxk : x1, x2, ..., xn ∈ A, α1, α2, ..., αn ∈ R, n ∈ N}.

However, QspA, the quasispan (q-span, for short) of A, is defined by the set of all possible

quasilinear combinations of A, that is,

QspA = {x ∈ X :

n∑
k=1

αkxk ≼ x, x1, x2, ..., xn ∈ A, α1, α2, ..., αn ∈ R, n ∈ N}.

A given set A = {x1, x2, ..., xn} in a quasilinear space X is called quasilinear independent

(ql-independent, briefly) whenever the inequality

θ ≼ λ1x1 + λ2x2 + ...+ λnxn (8)

holds if and only if λ1 = λ2 = ... = λn = 0 . Otherwise, A is called quasilinear dependent (ql-

dependent, briefly). A ql-independent subset A of a quasilinear space X which q-spans X is called

a basis (or Hamel basis) for X .
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Let S be a ql-independent subset of a quasilinear space X . S is called maximal ql-

independent subset of X whenever S is ql-independent, but any superset of S is ql-dependent.

Definition 3.8 [5] Regular (Singular) dimension of any quasilinear space X is the cardinality of

any maximal ql-independent subsets of Xr(Xs) . If this number is finite then X is said to be finite

regular (singular)-dimensional, otherwise; is said to be infinite regular (singular)-dimensional.

Regular dimension is denoted by r -dimX and singular dimension is denoted by s-dimX . If

r -dimX = a and s-dimX = b , then we say that X is an (ar, bs)-dimensional quasilinear space.

Using these information we can give the following theorem.

Theorem 3.9 The quasilinear spaces Cc(R, IC) and C0(R, IC) are the (∞r,∞s) -dimensional
spaces.

Proof Consider the functions xn : R → IC given by

xn(t) =

{
{tn}
{0}

,
,

for t ∈ [−1, 1];
otherwise

for n = 0, 1, ... and the set M = {x0, x1, ...} . It is obvious that M is a subset of the regular

subspace of Cc(R, IC) . Now we will prove that M is ql-independent. Let us take an arbitrary and

finite subset {xk1
, xk2

, ..., xkn
} of M . Suppose that

ck1
xk1

+ ck2
xk2

+ ...+ ckn
xkn

= 0

for ck1
, ck2

, ..., ckn
∈ C . Then we write

ck1
{tk1}+ ck2

{tk2}+ ...+ ckn
{tkn} = {0}

and so ck1
tk1 + ck2

tk2 + ... + ckn
tkn = 0 . This implies that ck1

= ck2
= ... = ckn

= 0 . Thus, we

say that r -dimCc(R, IC) = ∞ . Further, s -dimCc(R, IC) = ∞ since Cc(R, IC) is a consolidate

quasilinear space. Furthermore, we can say that r -dimC0(R, IC) = s − dimC0(R, IC) = 0 since

C0(R, IC) is a subspace of Cc(R, IC). 2
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