
TÜİK, İstatistik Araştırma Dergisi, Temmuz 2008
TurkStat, Journal of Statistical Research, July 2008

�

BAYESIAN INFERENCE OF THE COMPLEX 
MAPK PATHWAY UNDER THE STRUCTURAL 

DEPENDENCY

Vilda PURUTÇUO�LU*          Ernst WIT**

ABSTRACT 

The MAPK pathway is one of the main signal transaction system in all 
eukaryotes which regulates the cellular growth control. Because of its vital 
role, the regulation of the pathway is conducted via many proteins, thereby 
constitutes a complex structure. In inference of this system via MCMC 
techniques based on  the Euler approximation, we have observed that there 
are many proteins which indicate high structural dependencies on other 
proteins and these species have caused singular diffusion matrices, hereby 
resulted in infeasible acceptance probabilities. Therefore, we have discarded 
these problematic substrates at the beginning of the inference and estimated 
the parameters by using merely linearly independent species in the system. 
However in that case,  the accuracy of the estimation has been highly affected 
by the underlying exclusion, particularly, when the number of dependent 
species was big. The elimination of those proteins has led to a significant rise 
in the number of current missing components in MCMC. In this study, we 
implicitly include these proteins in our computation via an alternative 
approach which simulates dependent terms as a linear combination of linearly 
independent species.  In that way, we can add the effect of dependent species 
in the calculation of acceptance probabilities of reaction rates and states. 
From the analysis,  we conclude that the highlighted innovation decreases the 
average error of estimates and suggests less computational cost in inference 
of the MAPK pathway. 

Keywords: Bayesian inference, Diffusion approximation, MAPK pathway. 

1. INTRODUCTION 

All cellular activations are regulated by various signal transduction pathways. The 
MAPK (mitogen-activated protein kinase) pathway is one of the main pathway structure 
which regulates the growth control in all eukaryotes, i.e. the organisms whose cells 
contain a nucleus, thereby it is the system of interest, particularly, in oncogene 
researches (Kolch, 2005; Orton et al., 2005). 

Coming from the importance of the pathway in the cellular life cycle from the cell 
proliferation, i.e. the reproduction of the cell, to the apoptosis, i.e. the cell death, the 
activation of the MAPK pathway uses a number of proteins whose main components are 
Ras, Raf, MEK, and ERK proteins (Figure 1). This activation begins by an external 
stimulus which causes the binding of the signal to the Epidermal Growth Factor (EGF) 
receptor and is ended up by the production of the target c-Fos gene after a sequence of 
recruitments, phosphorylations, and inhibitions. 
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Figure 1.  Main components of the MAPK pathway (Kolch, 2005) 

In this study, we estimate the stochastic rate constants of quasi reactions of the MAPK 
pathway which is described by 51 proteins and 66 reactions (Purutçuo�lu and Wit, 2006  
and 2008b). In the inference of the model parameters, i.e. reaction rates, from a 
simulated dataset, we implement the discretized version of the diffusion approximation 
known as the Euler-Maruyama approximation (Eraker, 2001; Golightly and Wilkinson, 
2005).

In the estimation via the Euler technique, we overcome the problems of the missing data 
and sparse measurements, which are typical challenges in complex systems, by using 
the MCMC (Markov Chain Monte Carlo) framework. Accordingly we choose the 
Metropolis-within-Gibbs algorithm with the data augmentation technique (Golightly 
and Wilkinson, 2005; Purutçuo�lu and Wit, 2008a and 2008b) for the computation. 
From our previous analysis (Purutçuo�lu and Wit, 2008a and 2008b), we have seen that 
although the underlying MCMC methods are promising to estimate the reaction rates, 
the dependency between proteins causes singular diffusion matrices in implementations.  
Therefore, we have eliminated the proteins which lead to singularities and the 
algorithms have run by merely linearly independent terms. However, when the total 
number of excluded species became bigger, the estimation had to be conducted under a 
large number of missing information. In this study, to unravel the challenges caused by 
those large missing data, we develop an innovation in the current scheme such that the 
new plan uses these problematic substrates in the estimation.  

We present a brief explanation about biochemical reactions and the diffusion 
approximation in Section 2. The details of MCMC updates and the new plan are given 
in Section 3.1 and Section 3.2, respectively. We evaluate the performance of the 
algorithm in Section 4 by comparing our outcomes with previous findings. Finally 
Section 5 concludes the results and discusses possible extensions.

2. BIOCHEMICAL PROCESS AND STOCHASTIC MODELLING 

A biochemical reaction is a quantitative and qualitative description of a biochemical 
process. If we have r number of equations which explain a biochemical activation, this 
set of reactions presents a system. A simple biochemical system can be described as the 
following:
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Reaction 1: nn
c

nn YsYsYsYmYmYm 12121121212111 ...... 1 ���������

Reaction 2: nn
c

nn YsYsYsYmYmYm 22221222222121 ...... 2 ���������
����

            Reaction r: nrnrr
c

nrnrr YsYsYsYmYmYm r ��������� ...... 22122211                (1)

In that expression, ),...,( 1 nYYY � denotes the n-dimensional vector of current states of 
the system and n indicates the total number of species. The coefficients jim  and jis
display the stoichiometric coefficients associated with the ith reactant of the jth reaction
and the ith product of the jth reaction, respectively, for ni ,...,1�  and .,...,1 rj �  Finally 

jc  is the reaction rate constant which denotes the speed of the reaction dependent on the 
temperature of the system and physical properties of reactants.  

Equation (1)  can be also shown by a matrix form such that SYMY �  where,
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are the (rxn) - dimensional matrix of stoichiometries of reactants and the (rxn) -
dimensional matrix of stoichiometries of products, respectively. The interpretation of 
this description is that when the rth reaction occurs, the number of molecules of 

iY ),...,1( ni �  decreases by rim  and increases by ris  amount. As a result the molecular 
transfer causes a net change in the system with ririri msV ��  where MSV ��  is 
called the (rxn) - dimensional matrix of net effects and jiV  is the corresponding net 
chance of the ith species after the execution of the rth reaction. More details about the 
formulation of biochemical processes and the network structure can be found in 
Wilkinson (2006) and Bower and Bolouri (2001). On the other side, the implementation 
of this description in a prokaryotic autoregulation gene network and in the MAPK 
pathway are given in Golightly and Wilkinson (2005) and Purutçuo�lu and Wit (2008b), 
respectively.  

There are several approaches in order to capture the stochastic behaviour of the 
biochemical system (Gillespie, 1977; Gibson and Bruck, 2000; Turner et al., 2004). The 
Gillespie algorithm (Gillespie, 1977; Gillespie, 1992) is the most common exact method 
to simulate a biochemical network, whereas, it is computationally inefficient in 
inference of the realistic complexity (Golightly and Wilkinson, 2005; Wilkinson, 2006; 
Boys et al., 2008). The diffusion approximation is an efficient technique as an 
alternative estimation in place of Gillespie (Golightly and Wilkinson, 2005). In this 
research, we use the discretized version of the diffusion approximation, known as the 
Euler-Maruyama approximation, since the observed measurements are collected in 
discrete time. The Euler method explaines the change of states at time t by the following 
equation.

tttt WYtYY ����� ),(),( 2
1

����                                                                         (2) 
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here tY�  stands for the change in state )...,,( 21 nYYYY �  at time t to ][ tt �� .
),...,,( 21 rccc�� represents the parameter vector while n and r are the total number of 

substrates and the total number of reactions in the system, respectively, as mentioned 
beforehand. ),( �� tY  displays an n-dimensional mean or drift vector and is computed by 

),(),( ��� tt YhVY �� .  On the other hand, ),( �� tY  shows an (nxn) diffusion or variance 
matrix and is found via .)},({),( VYhdiagVY tt ��� ��  Both �  and �  terms are the 
functions of Y and � , and are calculated from the hazard ),( �tYh  as well as the net 
effect matrix V  in which V � implies the transpose of V. )},({ �tYhdiag  in �  is an (rxr)
dimensional matrix whose diagonal terms set to ),( �tYh  and off-diagonals are equated 
to zero (Wilkinson, 2006). Finally tW�  denotes an n-dimensional independent 
identically distributed Brownian random vector generated from the normal distribution 
with mean zero and covariance-variance as the product of the identity matrix I and the 
discrete time interval t� , i.e. ),0(~ tINWt �� .

3. INFERENCE OF THE SYSTEM 

In the inference of the reaction rates, we consider that the observation matrix Y is
composed of both observed and unobserved measurements as used in the studies of 
Eraker (2001); Golightly and Wilkinson (2005). We denote observed and unobserved 
terms by n-dimensional X and Z vectors, respectively. Moreover in order to get more 
precise estimates from the Euler, we use the data augmentation by putting latent states 
within each pair of time-course measurements. More details about the implementation 
of the data augmentation can be found in Roberts and Stramer (2001) and Elerian et al. 
(2001). So every time state of the system iY ( Ti ,...,1� ), where 1�i  indicates the initial 
time point and Ti �  is the final time point after the data augmentation, is presented as 

.),( �� iii ZXY  Here )( �A  stands for the transpose of any vector (A). If the state has 
observed measurements, then iX  is set to ix , which means the observed data by 
observed components. 

In the update of the system via MCMC techniques we implement the Gibbs sampling 
seeing that the number of unobservable values, i.e. the number of reaction rates and 
missing data, are large. However as the dimension of the system for every time point is 
high and each state iY  is updated via a different Gibbs sampler given the previous 1�iY
and the next 1�iY  state, we use the Metropolis-within-Gibbs (M-W-G) algorithm. 
Accordingly the candidate value for the ith state *

iY  is proposed from the following 
multivariate normal distribution .N  In this expression ),( 1 �� �iY displays the diffusion 
matrix of the previous state 1�iY  for the given .�
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Eraker (2001) shows that the transiton kernel, ),,|( 11 ��� iii YYYq , formulated in Equation 
(3) converges to the true distribution of iY , ),,|( 11 �� �� iii YYY , when .0��t  If the state 
has additional observed measurements ix , we consider to generate merely the candidate 

iZ , *
iZ , by further conditioning *

iY  on ii xX �  since each *
iY  can be decomposed as  
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Y                                                                                                            (4) 

Then for each state, the acceptance probability is computed for the candidate *
iY  by
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Here ),,|( 11 ��� iii YYYp  is directly proportional to ).,,|( 11 �� �� iii YYY  More details about 
candidate generators and associated acceptance probabilities can be found in Golightly 
and Wilkinson (2005).   

Once the updates of missing states are completed, the system executes the updates of 
reaction rates by the random walk algorithm. In this method the candidate rates are 
generated from the normal distribution and the acceptance probability is calculated by 
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in which  
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In Equation (7), *�  indicates the proposal rates which are produced via jjj ��� ��*

( rj ,...,1� ) where ).,0(~ jj N ��  The variance of each rate j�  is called the “tuning 
parameter” and significantly affects the mixing property of the algorithm (Golightly and 
Wilkinson, 2005). For a good mixing in univariate random walk chains it is suggested 
that an acceptance ratio p of around 24% is optimal (Roberts et al., 1997). On the other 
hand for the multivariate inference, the optimal p is found as 0.574 (Roberts and 
Rosenthal, 1998). However, when the complexity of the network structure increases, 
very low ratios such as 5% can be tolerable since it is difficult to produce a candidate 
value for particular reaction rates. Thus, in our estimation to get a sensible value for the 
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variance of each rate j� , we define j�  adaptively during the burn-in period of MCMC 
runs. We multiply j�  by 1.1 if the acceptance ratio p at every 100th iteration in the 
burn-in is greater than 60% and we divide j�  by 1.1 if p is less than 5%. Whereas if  p
lies between 5% and 60%, we keep the current .j�  At the end of the burn-in, the final 
set of � ’s is taken as constants and used until the end of the inference.  

Indeed, apart from these highlighted optimal acceptance ratios, there are a number of 
other methods which can assess the convergence of the chain. For instance the sample 
autocorrelation function (Golightly and Wilkinson, 2005 and 2006b) and the  posterior 
density of each parameter (Gelman et al., 2004), the potential scale reduction (Gelman 
et al., 2004), and the value of the convergence diagnostic (Geweke, 1992) are some of 
the methods used for monitoring the convergence. In Section 4 to control the 
convergence of our estimates, we choose the autocorrelation function and the posterior 
density besides the evaluation of results via acceptance ratios. 

On the other hand )(��  in Equation (8) shows the prior distribution of reaction rates 
which is taken as exponential with rate 1 seeing that it satisfies the positivity condition 
of our model parameters and ),|( 1 ��ii YYf  displays the transition density of the ith state
given the previous state and reaction rates. Therefore )|( YL �  in Equation (8) can be 
formulated as  
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Further discussion about the updates of rates can be found in Purutçuo�lu and Wit 
(2008b).

3.1 MCMC Steps for the MAPK Pathway 

In the update of the system via MCMC algorithms and data augmentation schemes, we 
observe that the singularity of diffusion matrices and the dependency between substrates 
are the main challenges. In order to unravel the first problem, we suggest to work with 
only nonsingular matrices. Therefore, in every stage of updates we check the 
corresponding candidate diffusion terms whether they would cause singularities in the 
system if they are accepted. If the candidate generator leads to singular diffusions, then 
we simply reject the candidate states and rates without computing the acceptance 
probability .�  Otherwise, �  is calculated in order to decide on the next step. We call 
this kind of dependency the “incidental dependence” (Purutçuo�lu and Wit, 2008b). The 
second problem, on the other side, is originated from the dependency of V matrix where 
V is the (rxn) - dimensional net effect matrix. In that case, the substrates are dependent 
on each other from the description of the system since V is directly produced from the 
quasi list of systems’ reactions. We name this dependency as the “structural 
dependence”. In the update of the system under the structural dependence, we can 
exclude the problematic species at the beginning of MCMC algorithms (Purutçuo�lu 
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and Wit, 2008b). Because any linear dependence in this matrix, V, affects the rank of 
,VV �  which is used in the computation of ),( �� tY  as stated in Section 2 and leads to 

singular diffusions. On the other hand, this elimination implies that we lose some of the 
observed X and unobserved Z components. Thus the exclusion can rise the average 
errors of estimates as the number of dependent substrates increases. For the MAPK 
pathway the number of structurally dependent proteins is 17 over 51 proteins, which 
correspond to a large proportion (around 33%) with respect to the total number of 
substrates in the system.  

As an alternative approach for the elimination of these species, we consider to include 
them implicitly in our computation. We suggest that if we preserve the linear 
relationships between dependent and independent proteins, these relations can be used 
to generate dependent substrates after the updates of linearly independent terms. Then if 
these values are added in the calculations of diffusion and drift terms, then the system 
can be updated under both incidental and structural dependencies. Indeed we have 
implemented this idea in the simulation of the complex MAPK pathway via the 
diffusion approximation and we have observed that the method successfully deals with 
the singularity, which is particularly seen in the steady-state phase of the simulation 
(Purutçuo�lu and Wit, 2006). Therefore, we develop a new updating scheme for the 
inference which is based on that implicit computation. We list the steps of the 
underlying plan as follows: 

1. The system is initialized by assigning values for missing states and reaction rates 
and the counter of iterations g is set to zero. 

2. After the initialization, all n columns of V are checked from left to right whether 
there is any linearly dependent column, denoted as s, which indicates 
structurally dependent species. For simplicity we assume that we have totally |s|
dependent columns, thereby (n-|s|) independent proteins. Then for each 
dependent species, the vector, which displays the coefficients of the linear 
relationship between dependent and independent substrates, jl�  ( sj�  and  

||,...,1 snl �� ), is preserved. 
3. The system begins the updates from the states, whose substrates are linearly 

independent, indep
iY  ( Ti ,...,1� ). The candidate value of ,indep

iY  ,*indep
iY  is 

generated from the multivariate normal distribution given in Equation (3) and 
Equation (4). If the proposal state maintains the singularity of the candidate 
diffusion matrix ,*

i�  that is the incidental dependence is not observed in ,*
i�  as 

well as the positivity of the state is satisfied, then it is accepted as the generator 
for the linearly dependent proteins. Here as the candidate generators (Equation 
(3) and Equation (4)) are used for the linearly independent terms, which do not 
indicate neither the incidental nor structural dependence, the transiton kernels 
given in the study of Eraker (2001) and performed in our research still maintain 
the convergent properties to the true distribution. Indeed, from our reference 
study of Golightly and Wilkinson (2005), we also observe a structural 
dependence in the net effect matrix of a small prokaryotic autoregulation 
system. In order to unravel the singularity of the diffusion term, that particular 
dependent subsrate is excluded from the beginning of the estimation and the 
generators are produced  from the remaining linearly independent species. With 
respect to that system of interest, our network is significantly complex, 
accordingly, the dependency is observed very often. Although we believe that 
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the missing data and the underlying high dependency between species can lead 
to biased estimates, the problems of inaccuracies of estimates can be improved 
by alternative approaches. More details about the possible solutions of the 
problems by using the same transition kernels of Eraker (2001) can be found in 
Section 5 and Purutçuo�lu and Wit (2008b). On the other hand, other alternative 
solutions to decline the dependency on the estimates can be seen in the studies 
of Golightly and Wilkinson (2006a and 2006b). In those works, basically, they 
suggest to update the missing data in block of random size and to implement the 
method of particle filterings. 

4. To produce totally |s| linearly dependent species, initially (n-|s|) increments �
are generated from the Brownian motion, i.e. the normal distribution with mean 
zero and variance t� . These increments are multiplied by the square root of the 
diffusion term obtained from the previous time step 2/1

1�i�  of linearly independent 
species. Therefore, our computed 2/1

1�i�  matrix has the dimension of (n-|s|)x(n-
|s|). In that way, we get the error term 2/1

1�� i���  for linearly independent 
substrates which corresponds to WtYt �),(2/1 ��  in Equation (2). Then the 
change in the state of new dependent substrates from ti �  to tti ���  is 
simulated via ��� ���� � tYY indep

i
dep

i ),( 1
*  similar to Equation (2) in which 

),( 1 �� indep
iY �  refers to the (n-|s|)-dimensional drift vector of the previous state 

whose substrates are linearly independent. Hence, *dep
iY�  gives an (n-|s|) -

dimensional vector. Accordingly the candidate state for dependent species,

,*dep
iY is generated as �

�

��

���
||

,

* *
sn

jlsl
jl

dep
l

dep Y �  and *
1

* depdep
i

dep
i YY ��� �  when sj� ,

sl� , and ||,...,1 snl �� . *dep�  corresponds to an |s|-dimensional vector and 
represents the change in the state *dep

iY that is computed by the linear relation 
within dependent and independent proteins. On the other hand, dep

iY 1�  stands for 
the updated state Y at time 1�� it , whose proteins are linearly dependent. 
Finally, a complete proposal state *

iY  is produced by combining *indep
iY  with 

*dep
iY  as a vectoral form.  

5. The drift i�  and the diffusion i�  of the updated state are computed from the 
hazard function of each reaction based on *

iY , i.e. ),( * �iYh . If we do not observe 
a new inner dependence between linearly dependent substrates from the 
computation of the recent i� , in other words, if we do not write any of the 
linearly dependent substrate in terms of other linearly dependent substrates, then 
the acceptance probability )|( *

ii YY�  is calculated by (nxn) - dimensional 
diffusion matrices of 1�iY  and *

iY . 1�iY  shows the updated state at time 1�� it .
Otherwise, )|( *

ii YY�  is found from only linearly independent species. For the 
MAPK pathway, since we riddle with an inner linear dependence within linearly 
dependent substrates, �  is derived from lower dimensional diffusion matrices 
whose components are linearly independent proteins. Whereas the computation 
of hazards is executed on both dependent and independent species as described 
beforehand.
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6. From the result of )|( *
ii YY� , if the move is accepted, *)(

i
g

i YY �  at the gth
iteration. Otherwise, the system preserves the current state. Then we return to 
Step 3 to update the )1( �i th state by M-W-G algorithm and repeat the process 
until 1�� Ti . In the final column, i.e. when Ti � , we perform the Gibbs 
sampling in place of M-W-G and directly accept the proposal state *

TY  without 
computing  )|( *

TT YY� .
7. The model parameters of the system, i.e. reaction rates, are updated via the 

random walk algorithm by d-dimensional blocks. The d-number of deviance 
terms is generated from the normal distribution with mean zero and variance j�

( rj ,...,1� )  and is added to the current �  to produce a candidate � , .*�  The 
new *�  for each d-dimensional group is controlled whether it causes a new 
source of incidental dependences when it is used in the diffusions of iY
( Ti ,...,1� ). If *� does not lead to any singularity, the acceptance probability 
given in Equation (7), )|,( * Y��� , is computed. If the candidate reaction rates 
increase the likelihood, the move is accepted and *)( �� �g  at the gth iteration, 
otherwise, the chain does not move. On the other hand, if *�  results in an 
incidental dependence, then a new *�  is proposed until the nonsingularity of all 
diffusion terms is satisfied for every state. 

8. When all states and reaction rates are updated, the counter of the algorithm goes 
from g to )1( �g . The algorithm is repeated from Step 2 until the system 
converges to the stationary distribution.

4. APPLICATION OF THE METHOD 

In order to evaluate the performance of MCMC algorithms, we use a simulated dataset 
which we previously applied in our analysis (Purutçuo�lu and Wit, 2008b). This dataset 
is generated from the Gillespie algorithm and has 28 observed and linearly independent 
substrates, and 23 unobserved substrates in which 6 of them are linearly independent 
and the remaining 17 terms are dependent species. We choose 50 time points from the 
underlying data and accept that these are our time-course measurements. Then we 
extent the dataset by adding 3 augmented states between each pair of 50 time points. 
Therefore, we generate an observation matrix Y which has 197 instead of 50 columns, 
i.e. .197,...,1�i  The complete list of observed and unobserved substrates and more 
details about the simulated data can be found in Purutçuo�lu and Wit (2008b).   

In this study, all the computational work is carried out in the programme language R 
and our codes are executed on Dual Core Xeon 3.00 GHz processor. To estimate the 
reaction rates of the MAPK pathway, we iterate the algorithm 200,000 times and take 
the mean of the last 50,000 MCMC outputs as the estimated values of our model 
parameters. The lists of estimated rates with true values are presented in Table 1 and 
Table 2.  The first table shows the results from the new algorithm and the second one 
illustrates the outputs obtained by MCMC algorithms which are conducted by merely 
linearly independent substrates.  From both tables, it is found that most of the 
acceptance ratios of estimated values lie between 0.05 and 0.60 which display good 
mixing properties in the inference. Figure 2 and Figure 3 are drawn as an example from 
the posterior distributions of selected reaction rate constants and their autocorrelation 
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functions after the burn-in. From the figures it is seen that the selected parameters 
indicate convergent distributions supporting their acceptance ratios given in Table 1 and 
Table 2. But the new plan typically offers lower acceptance ratios than the old plan 
produces. On the other side, from the comparison of the average error of each estimate 
calculated by the following Equation (10), 

Average error = |True value-Estimated value| / True value                              (10) 

we observe that the new algorithm considerably decreases the error (Table 3). 
Moreover, from the evaluation of the CPU (Central Processing Unit) time, it is seen that 
the new scheme also offers a less computational cost (Table 3). Indeed, with respect to 
the complexity of algorithms, the new scheme has more computational steps, thereby it 
is expected that this scheme should be computationally more demanding. From our 
results although, at first sense it seems to be a contradiction, we explain this situation as 
follows: As stated in Section 3.1, the MAPK pathway can use the dependent substrates 
solely in the calculation of hazards functions, rather than during the calculation of 
acceptance probabilities of both rates and states. Hence, the complete computation of 
dependent substrates according to the new plan cannot be performed in our system. In 
other words, the steps of both the new and previous algorithms are run for  (n-|s|) terms  

Table 1. Posterior means (� ), standard deviations (� ), and acceptance ratios ( p ) of estimated 
reaction rate constants found by the MCMC plan which includes structurally dependent substrates  

Reaction True rate � � p Reaction True rate � � p
c2 0.010 0.020 0.000 0.291 c35 0.010 4.853 0.255 0.450 
c3 0.010 0.051 0.007 0.303 c36 0.010 0.235 0.002 0.468 
c4 0.010 0.130 0.002 0.271 c37 0.010 0.576 0.004 0.510 
c5 1.000 0.596 0.007 0.294 c38 1.000 0.130 0.002 0.476 
c6 1.000 0.996 0.001 0.029 c39 1.000 0.130 0.002 0.456 
c7 1.000 1.001 0.001 0.021 c40 1.000 0.015 0.000 0.499 
c8 1.000 1.028 0.001 0.021 c41 1.000 0.001 0.000 0.014 
c9 0.010 0.001 0.000 0.029 c42 0.010 0.000 0.000 0.014 
c10 0.010 0.000 0.000 0.029 c43 0.010 0.252 0.005 0.014 
c11 1.000 2.761 0.060 0.548 c44 1.000 0.257 0.001 0.014 
c12 0.015 1.619 0.077 0.554 c45 0.015 0.354 0.006 0.014 
c13 0.010 0.060 0.001 0.574 c46 0.010 0.002 0.000 0.058 
c14 0.010 0.082 0.001 0.595 c47 0.010 0.024 0.006 0.058 
c15 0.010 0.083 0.001 0.613 c48 0.010 0.319 0.040 0.058 
c16 0.010 4.456 0.117 0.820 c49 0.010 0.119 0.039 0.058 
c17 1.000 0.294 0.004 0.776 c50 1.000 0.001 0.000 0.058 
c18 0.010 5.404 0.175 0.848 c51 0.010 3.643 0.100 0.782 
c19 1.000 0.337 0.006 0.817 c52 1.000 0.126 0.001 0.533 
c20 1.000 3.334 0.224 0.866 c53 1.000 0.097 0.001 0.821 
c21 0.010 0.041 0.004 0.426 c54 0.010 0.078 0.003 0.850 
c22 0.010 4.913 0.235 0.420 c55 0.010 3.875 0.130 0.801 
c23 0.015 1.264 0.007 0.283 c56 0.015 0.013 0.000 0.019 
c24 0.010 0.010 0.000 0.390 c57 0.010 0.000 0.000 0.020 
c25 0.010 0.066 0.001 0.420 c58 0.010 0.004 0.000 0.019 
c26 0.010 0.003 0.000 0.345 c59 0.010 0.637 0.007 0.019 
c27 0.010 0.416 0.002 0.324 c60 0.010 0.000 0.000 0.020 
c28 0.010 0.058 0.001 0.355 c61 0.010 0.000 0.000 0.428 
c29 0.010 0.090 0.001 0.353 c62 0.010 0.004 0.000 0.422 
c30 0.010 0.016 0.000 0.333 c63 0.010 1.028 0.011 0.317 
c31 0.010 0.014 0.010 0.461 c64 0.010 0.705 0.034 0.420 
c32 0.010 0.019 0.000 0.415 c65 0.010 0.418 0.006 0.404 
c33 1.000 0.223    0.003   0.415 c66 1.000 9.448 0.484 0.775 
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Table 2. Posterior means (� ), standard deviations (� ), and acceptance ratios ( p ) of 
estimated reaction rate constants found by the MCMC plan which excludes 
structurally dependent substrates 

Reaction True rate � � p Reaction True rate � � p
c2 0.010 0.050 0.001 0.540 c35 0.010 2.465 0.096 0.489 
c3 0.010 0.040 0.001 0.535 c36 0.010 0.269 0.004 0.457 
c4 0.010 0.031 0.001 0.547 c37 0.010 0.422 0.006 0.478 
c5 1.000 5.228 0.187 0.541 c38 1.000 0.720 0.019 0.492 
c6 1.000 1.350 0.034 0.247 c39 1.000 1.011 0.015 0.410 
c7 1.000 1.245 0.020 0.232 c40 1.000 0.019 0.000 0.460 
c8 1.000 0.956 0.017 0.265 c41 1.000 0.002 0.000 0.153 
c9 0.010 0.252 0.005 0.257 c42 0.010 0.002 0.004 0.156 
c10 0.010 0.000 0.000 0.273 c43 0.010 0.008 0.005 0.156 
c11 1.000 2.165 0.040 0.532 c44 1.000 0.483 0.003 0.149 
c12 0.015 1.120 0.045 0.544 c45 0.015 1.053 0.007 0.125 
c13 0.010 4.719 0.168 0.597 c46 0.010 0.890 0.034 0.779 
c14 0.010 0.040 0.000 0.582 c47 0.010 0.052 0.002 0.777 
c15 0.010 0.056 0.001 0.593 c48 0.010 9.416 0.205 0.761 
c16 0.010 3.723 0.140 0.807 c49 0.010 5.577 0.308 0.773 
c17 1.000 0.266 0.004 0.730 c50 1.000 1.155 0.016 0.572 
c18 0.010 3.589 0.139 0.816 c51 0.010 7.070 0.280 0.803 
c19 1.000 0.288 0.004 0.773 c52 1.000 0.160 0.006 0.671 
c20 1.000 1.789 0.090 0.790 c53 1.000 0.175 0.003 0.673 
c21 0.010 0.003 0.002 0.437 c54 0.010 0.217 0.005 0.738 
c22 0.010 1.317 0.044 0.381 c55 0.010 4.301 0.209 0.794 
c23 0.015 0.638 0.004 0.403 c56 0.015 0.014 0.001 0.228 
c24 0.010 0.004 0.000 0.424 c57 0.010 1.968 0.053 0.220 
c25 0.010 0.181 0.006 0.380 c58 0.010 1.964 0.008 0.188 
c26 0.010 4.244 0.151 0.459 c59 0.010 0.239 0.016 0.229 
c27 0.010 0.449 0.004 0.433 c60 0.010 0.000 0.000 0.232 
c28 0.010 0.070 0.001 0.467 c61 0.010 0.033 0.032 0.578 
c29 0.010 0.116 0.002 0.412 c62 0.010 0.012 0.001 0.535 
c30 0.010 0.008 0.000 0.459 c63 0.010 1.198 0.010 0.368 
c31 0.010 0.008 0.005 0.526 c64 0.010 0.632 0.039 0.570 
c32 0.010 0.008 0.000 0.506 c65 0.010 1.119 0.010 0.374 
c33 1.000 4.102 0.065 0.473 c66 1.000 9.286 0.475 0.796 

Table 3. Mean and standard deviation of average errors of results presented in Table 1 
and Table 2  and corresponding CPU used in inference 

Mean of average 
errors

Standard deviation of 
average errors 

CPU

Including structurally 
dependent proteins 

60.848 144.652 404.74 

Excluding tructurally 
dependent proteins 

90.572 185.176 549.38 

in place of n species for the new plan and (n-|s|) subsrates for the previous scheme. On 
the other hand, the inclusion of dependent species in hazards enables to produce more 
sensible drift and diffusion terms in the updates of rates and missing states. Thus, as 
understood from the findings, these highlighted improvements in hazards cause less 
number of singularities in the system, hereby accelerates the speed of computations by 
the new plan.
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As a result, we consider that our innovated algorithm is more advantageous in the 
inference of complex systems in terms of the accuracy of estimates. However, it cannot 
be seen as a better algorithm regarding to the computational cost in the estimation of 
every complex structure, rather it can be evaluated as a computationally efficient 
method for the network having an inner dependence like the MAPK pathway. 

5. CONCLUSION AND DISCUSSION 

We have presented a new MCMC scheme which includes structurally dependent 
substrates in the estimation of reaction rates of a complex biochemical system. In the 
inference, we have implemented Bayesian methods based on the Euler approximation 
and data augmentation techniques due to the fact that the former is computationally 
more efficient than the exact algorithm and the latter can decrease the bias on estimates 
caused by the discretization of the diffusion approximation via the Euler method.  

In our new algorithm, we have generated candidate values of structurally dependent 
substrates by using their linear relationships with linearly independent proteins. To 
capture the underlying linear links, we have investigated the singularity of the net effect 
matrix.  

In our system, since we have observed an additional structural dependency within 
linearly dependent substrates, we have used all proteins in the calculation of hazard 
functions which are the base components of drifts and diffusion terms. Whereas all 
acceptance probabilities �  have been computed solely by linearly independent terms, 
because of the fact that the highlighted inner-structural dependence within dependent 
substrates has led to infeasible likelihoods in .�  However, this is a particular problem 
in the MAPK description. Therefore, we suggest that indeed thanks to this new 
algorithm, the calculation of �  can be easily implemented by dividing it into two parts. 
In the first part of the calculation, we can compute the likelihood of linearly 
independent proteins and in the second part, we can only consider the likelihood found 
by linearly dependent proteins. Then we can multiply these two terms since the 
application of our new plan enables to factorize the likelihood. This process can be 
performed for both the update of reaction rates and missing states.  
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Figure 2. Posterior distributions and autocorrelation functions (ACF) of 
reaction rate constants 32 and 60 after burn-in via the MCMC plan which 

includes structurally dependent substrates

As an extension of our study, seeing that we have investigated an inner dependence 
within structurally dependent species, we propose to develop a sub-algorithm for merely 
linearly dependent substrates. In that plan, our new scheme can be repeated within these 
terms iteratively until each linearly dependent protein can be generated in terms of its 
associated linearly independent species within that particular group. Under this 
condition the complete likelihood is factorized as a number of independent parts, and 
thereby can be computed as the product of underlying independent pieces of 
information. We consider that such an iterative calculation can further improve the 
accuracy of estimates even though it can also increase the computational cost of the 
inference. However, we believe that this additional computational demand can 
considerably decline if the codes are executed on an efficient programme language. 
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Figure 3. Posterior distributions and autocorrelation functions (ACF) of 
reaction rate constants 32 and 60 after burn-in via the MCMC plan which 

excludes structurally dependent substrates 
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YAPISAL BA�IMLILIK ALTINDA KARMA�IK
MAPK YOLUNUN BAYESC� TAHM�N�

ÖZET

MAPK yolu, tüm ökaryotlarda bulunan hücresel büyüme kontrolünü 
düzenleyen ba�l�ca sinyal iletim sistemlerinden biridir. Hayati görevinden 
dolay� sistemin idaresi çok say�da protein vas�tas�yla yürütülür, buna ba�l�
olarak karma��k bir yap� olu�turur. Çal��mada, Euler yakla��m�na dayal�
MCMC teknikleriyle bu sistemin tahmininde di�er proteinlerle yüksek yap�sal 
ba��ml�l�klar gösteren bir çok proteinin varoldu�u gözlenmi�tir. Bu proteinler 
kabul edilme olas�l�klar�n� imkans�z yapan tekil difüzyon/varyans  matrislerine 
neden olmu�lard�r. Bu nedenle bu sorunlu proteinler tahmin hesab�n�n
ba��nda ç�kar�lm�� ve parametreler sadece sistemdeki do�rusal ba��ms�z
türler kullanarak tahmin edilmi�tir. Ancak bu durumda da  özellikle ba��ml�
türlerin say�s� artt�kça, tahminin do�rulu�u bahsedilen eliminasyondan 
oldukça etkilenmektedir. Bu proteinlerin elenmesi MCMC’deki mevcut kay�p
terim say�s�n�n belirgin derecede artmas�na neden olmaktad�r. Bu çal��mada 
dolayl� yoldan bu proteinler, ba��ml� terimlerin ba��ms�z türlerin do�rusal 
kombinasyonu �eklinde simülasyon eden alternatif bir yakla��mla 
hesaplamalar�n içine kat�lmaktad�r. Bu �ekilde reaksiyon oranlar�n�n ve 
durumlar�n�n kabul edilme olas�l�klar�n� hesaplamada ba��ml� türlerin etkileri 
ilave edilebilmektedir. Analizlerden, bahsedilen yenili�in  tahminlerin 
ortalama hatalar�n� azaltt��� ve MAPK yolunun tahmininde daha az 
hesaplama maliyeti önerdi�i  sonucuna var�lm��t�r.

Anahtar Kelimeler: Bayesci tahmin, Difüzyon yakla��m�, MAPK yolu. 




