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THE PERFORMANCE EVALUATION OF 
ROBUST PAIRWISE COVARIANCE 
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ABSTRACT 

Multivariate analysis and multidimensional outlier detection techniques 
necessitate using robust high breakdown covariance estimators, which have 
time saving algorithms in the presence of outliers in high dimensional data. 
The preference for robust estimators arises from the distortion effect of 
outliers when classical estimators are used. Orthogonalized Gnanadesikan-
Kettering (OGK) estimator (Maronna and Zamar, 2002) was devised in 
order to address the computational challenge of high breakdown estimators. 
In this study the focus is on the evaluation of some covariance estimators in 
Principal Component Analysis (PCA). A comparison of the performance of 
OGK in PCA and Robust Principal Component Analysis (ROBPCA) (Hubert 
et al, 2005) has been carried out by way of simulations and with real data 
sets.

Key Words: Fast minimum covariance determinant estimator, Orthogonalized Gnanadesikan-
Kettering estimator, Outliers, Principal components analysis, Robust principal component analysis. 

1. INTRODUCTION 

As is commonly known, the covariance matrix is one of the fundamental instruments of 
statistical analysis that is widely used for obtaining correlation coefficients between 
variables, reducing the number of variables and diagnosing multivariate outliers. 

An observation whose pattern differs from the majority of data is generally called an 
outlier. Outliers may cause misleading estimations when classical empirical covariance 
matrices are used; therefore, statisticians directed their attention to robust techniques 
and different robust methods have been invented to estimate the covariance matrix. If 
there are some outliers in the data, the classical (maximum likelihood) estimator of the 
covariance matrix may not prevent masking (case when analysis suggests that one or 
more outliers are in fact good cases) and swamping (case when analysis suggests that 
one or more good cases are outliers) effects. For this reason it is much safer to use 
robust estimators instead.  
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Here some estimators are defined briefly; throughout the definitions nxpX notation is 
used which stands for nxp  data matrices, where n indicates the number of objects and p 
indicates the number of variables.  

OGK is a robust covariance matrix estimator for high dimensional data sets which has 
been proposed by Maronna and Zamar (2002) as an alternative to Fast Minimum 
Covariance Determinant (FMCD) estimator. FMCD (Rousseeuw and Van Driessen, 
1999) is a high breakdown robust estimator, an improved form of the Minimum 
Covariance Determinant (MCD) high breakdown estimator. It has been stressed by 
Maronna and Zamar (2002) that the increase of cases (n) diminishes the high 
breakdown property of FMCD and it also has been emphasized that the increase of the 
dimension (p) requires immense computational time for FMCD although it is the 
quicker alternative of MCD.  

Underlying purposes of the study are firstly using OGK covariance matrix in one of the 
dimension reduction technique PCA, secondly comparing and evaluating some 
properties of robust and classical matrices with several data sets and simulations. 
Through the comparison and evaluation step a matlab Library for Robust Analysis 
(LIBRA) was used and besides codes for OGK estimator were written in Matlab (See, 
Appendix-2).

2. PROPERTIES OF ROBUST ESTIMATORS 

The properties of robust covariance estimator can be summarized as breakdown value, 
positive definiteness and affine equivariance. These properties allow a characterization 
of estimators as low breakdown, high breakdown, affine and not affine. 

Breakdown value is a maximum amount of contamination that an estimator can carry. 
This value also measures the robustness of an estimator. As can be inferred from the 
following notations,

�̂   : Covariance matrix estimator 
X  : Data matrix,  

'X : Matrix obtained by replacing m points out of X
the breakdown value, *

n� , is the largest eigenvalue of �̂  driven to � or the smallest 

eigenvalue of �̂  driven to zero: 
max( ')*

'
min( ')

ˆ( , ) min sup X
n x

X

mX
n

�
�

�
� �� �� � � �� �
� �� �

Conventional wisdom tells that the covariance matrix yields multivariate scatter of data 
which is represented by an ellipsoid. The affine equivariance and positive definiteness 
properties that were mentioned above are strongly related to this ellipsoid because the 
eigenvectors of a covariance matrix determine the axes of an ellipsoid and the 
eigenvalues of this covariance matrix are equal to the length of these axes. Given this 
geometrical concept, the positive definiteness of a covariance matrix can be easily 
perceived.
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Generally the location and scale estimators are expected to be affine equivariant, which 
means that after a linear transformation of the data the estimators will be transformed 
accordingly. If pxpA  is an orthogonal matrix ( 1'A A�� ) and the data matrix is 
transformed as ' 1nXA v� , then the center ˆ

x
� and the loading matrix ,p kP  of CPCA or 

ROBPCA are equal to ˆ xA v� �  and AP respectively. The eigenvalues of the defined 
ellipsoid and the scores remain the same under this transformation for CPCA and 
ROBPCA. If an orthogonal transformation is applied to the data as 'XA  and an 
estimator rotates accordingly, this estimator can be defined as an orthogonal 
equivariant. From the above it can be deduced that CPCA and ROBPCA estimators are 
location and orthogonal equivariant but, as will become clear from the simulation study, 
OGK is not. This can be rated as a disadvantage of OGK because the absence of the 
equivariance property makes it hard to predict the behavior of the OGK against outliers 
on rotated data. 

3. ADVANCES ON ROBUST COVARIANCE ESTIMATORS 

In the statistical literature, a substantial number of studies have been proposed about 
robust scatter matrix estimation. The M estimator is the initial robust scatter matrix 
estimator which was suggested by Hampel in 1973, then studied by Maronna (1976) 
and Huber (1981). This estimator is positive definite and affine equivariant, but its 
breakdown point, 1/p, is not satisfactory. 

Subsequently, high breakdown affine equivariant and positive definite estimators have 
been studied.  These are the Stahel-Donoho (SD) estimator by Stahel-Donoho (1981) 
and studied by Maronna and Yohai (1995), the Minimum Volume Estimator (MVE) and 
the Minimum Covariance Determinant (MCD) by Rousseeuw (1987, 254). Due to the 
efficiency in high dimensions Croux and Haesbroek recommend to use MCD instead of 
MVE (2000). 

MCD is a highly robust estimator of multivariate location and scatter. Its objective is to 
find h observations out of n whose classical covariance matrix has the lowest 
determinant where h is defined as a default value (n+p+1)/2. The value for h is
� � / 2n p h n� � � . The estimation of MCD is time-consuming and therefore limited to a 
few hundred objects in a few dimensions since the exact solution has to be found among 
all possible subsets of n observations taken in h dimensional subgroups.

FMCD (Rousseeuw and Van Driesen, 1999) has been developed to address this 
shortcoming; the algorithm of this estimator is set up on a re-sampling scheme which is 
called the C-step. But it has to be stressed that FMCD still requires substantial 
computation time when n is large (Alqallaf et al, 2002). 
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4. OGK ESTIMATOR 

As a result of giving up the requirements of affine equivariance and positive 
definiteness, one can get estimates much faster. A straightforward estimator for 
multivariate location is a coordinatewise one which can be calculated from a robust 
location estimator for each variable in the data. Similarly for a multivariate covariance 
matrix, pairwise estimators can be used by applying a robust covariance estimate to 
each pair of variables.  

Because of the computational burden of affine equivariant and high breakdown 
estimators, Marrona and Zamar (2002) dropped the affine equivariance property and 
introduced the OGK estimator. OGK is based on the Gnanadesikan-Kettenring (G-K) 
robust pairwise covariance matrix estimate. The G-K estimator,

2 21cov( , ) ( ( ) ( ) )
4

X Y X Y X Y� �� � � � ,

was suggested by Gnanadesikan and Kettenring (1972). This estimator is not guaranteed 
to be positive definite whereas the OGK pairwise estimator preserves positive 
definiteness.

Before explaining the steps of the algorithm, some notations have to be defined as 
jX refers to the columns of X data matrix where j is 1,.....j p� and '

ix refers to the rows 
where i is 1,...i n� .

� For each variable MAD values and iw  weights are calculated. MAD 
stands for the median absolute deviation from the median and iw
values are obtained from ( )cW x function.

0 ( ) ( 1 ( ) )j j j n jMAD X med X med X� � � �

� �1 0( 1 ( )) /j c j n j jW W x med X �� � , � �� �22( ) 1 / ( )cW x x c I x c� � �      (1)

 and I (.) is the indicator function. 

� Location and scale statistics are obtained from 

( ) /j ij i j ij
i i

X x w w� �� �       and 

� �2

2 2 2
0 0( ) ( / ) ( ( )) /j j c ij j j

i
X n x X� � � � �� ��                      (2)         

where
2c�  can be obtained from 2 2( ) min( , )c x x c� � .

Maronna and Zamar (2002) proposed to use 1 4.5c �  and 2 3c �  for combining the 
robustness and efficiency. 

� A new diagonal matrix is defined by means of scale statistics that were 
obtained in the previous step

D = diag( 1( ),...., ( )pX X� � );   using the inverse of D with the 
columns of  jX a new variable,   
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1 'Y D X�� ,              (3) 
Y is defined. 

This step makes the estimator scale equivariant.  

� U=[ jku ] correlation matrix is computed by applying v to the columns 
of Y.

                  
2 21 ( ( ) ( ) )

( , ) 4
1

j k j k
jk j k

X Y X Y
U v Y Y

� �� � � ��� � �
��

      
�
�

j k
j k

        (4) 

� The eigenvalues j�  and the eigenvectors je  of U ( 1,....j p� ) are 
obtained and new matrices are defined as 1( ,.., )pdiag � �� �  and E 
whose columns are the je ’s. Then U is decomposed as 'U E E� � .

A DE� , and 1( ' ') ' ( ') 'Z E Y A X�� �   are defined.          (5) 

� After the extraction of 2 2
1( ( ) ,....., ( ) )pdiag Z Z� �� � , the seeking 

Orthogonolized Gnanadesikan-Kettenring estimators ( ) 'V X A A� �
and ( )t X A�� , where   and 

1( ( ),...., ( )) 'pZ Z� � ��  are found.                   (6) 

� Maronna and Zamar (2002) suggested using an improvement for the 
resulting estimator by a reweighting procedure. 

              /wj i j i
i i

t w X w�� �  ,      [ ( 1 )( 1 ) '] /wj i j n w j n w j i
i i

V w X t X t w� � �� �   (7)         

The weight function W, 0( ) ( )W d I d d� � , can be extracted from, 

� �2
( ( )) / ( )i ij j j

j
d z Z Z� �� ��  and 2 2

0 1( ) ( ,.., ) / (.5)p n pd med d d� � ��

This resulting estimator is called R-OGK (Reweighted Orthogonolized Gnanadesikan-
Kettenring) estimator. 

Maronna and Zamar discussed different �  values with respect to their simulation 
results and they mentioned that � =0.90 generally yielded the best results. Also the R-
OGK procedure can be iterated by replacing U in step 5 by 'E E�  until convergence but 
authors warned not to iterate beyond the second iteration. 
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5. CLASSICAL AND ROBUST PCA 

Principal Component Analysis is a technique for explaining the covariance structure of 
the data by forming new orthogonal variables which are linear combinations of the 
original variables. These new variables are referred to as principal components which 
correspond to the eigenvectors of the covariance matrix. The first principal component 
accounts for the maximum variance of projected data points on it. The second principal 
component accounts for the maximum variance that has not been accounted for by the 
first principal component. The procedure continues in this way and it is expected to use 
few principal components for most of the variance in the data. 

But as the principal components are the eigenvectors of classical covariance matrix, it is 
possible that the components have been adversely influenced by outliers.  In this case it 
is preferable to use robust principal component approaches which can prevent outlier 
effects. These approaches can be categorized into three different groups:

� replacing classical covariance matrix with robust covariance matrix 
� using projection pursuit method 
� combining projecting pursuit and robust covariance matrix 

Campbell (1980) used M estimators of covariance matrices but they are not resistant 
against many outliers. Croux and Haesbroeck (2000) used MCD by replacing the 
classical covariance matrix. However this method is limited to small, moderate samples. 
In this study, the OGK covariance matrix was replaced with the classical covariance 
matrix in a similar way and the results are presented through simulation and real data 
sets.

Li and Chen (1985) and Hubert et all (2002) used the projection pursuit method for 
obtaining robust PCA.

Hubert, Rousseeuw and Vanden Branden (2005) proposed ROBPCA method which is a 
combination of the projection pursuit method and the MCD estimator. 

6. EVALUATION OF THE ESTIMATORS’ PERFORMANCE 

The assessment of breakdown point and computational time of CPCA, ROBPCA, PCA 
with OGK and R-OGK were carried out on real data sets and with simulations. 

Before illustrating the methods on real data sets, it is necessary to mention the kind of 
outliers that can occur and their diagnostic plot. Here the definitions are given briefly. A 
satisfactory explanation with a visual plot can be found in ROBPCA (Hubert et al, 
2005).

� Good leverage points: These points lie close to the PCA space but far from the 
major homogenous data group. 

� Orthogonal outliers: These observations have large orthogonal distances to the 
PCA space; only their projections can be seen on the PCA space. 
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� Bad leverage points: This type of observations has a large orthogonal distance 
and its projections on the PCA space are far from typical projections. 

The classification of observations can be identified from a diagnostic plot. The 
horizontal axis of the diagnostic plot consists of the score distance and the vertical axis 
of the diagnostic plot consists of the orthogonal distance. 

� Score distance is calculated for each observation with  

2

1
( / )

k

i ij j
j

SD t l
�

� �
where the ijt  pca scores are obtained from '

, , ,ˆ( 1 )n k n p n p kT X P�� � . Here, 1,... kl l  stands 

for the eigenvalues and ,p kP  represents the matrix which consists of eigenvectors. 

� Orthogonal distance is defined for each observation as 
'

,ˆi i p k iOD x P t�� � �

For classifying observations two cut-off lines are drawn. The cut off value on the 
horizontal axis is 2

,0.975k� . There are several approaches for the distribution of the cut-
off value on the vertical axis (Hubert et al, 2005). According to the Wilson-Hilferty 
approach orthogonal distances to the power 2/3 are normally distributed. Estimations of 
the mean and the variance of this distribution were found by means of univariate MCD 
in ROBPCA paper, in a similar way the �̂  and 2�̂  for OGK and R-OGK were found by 
univariate OGK and univariate R-OGK. Then, the cut-off value on the vertical axis is 
defined as 3/ 2

0.975ˆ ˆ( )z� �� .

6.1 Real Data 

CPCA, ROBPCA, OGK and R-OGK methods were applied on two data sets* which are 
commonly used in robust studies.

6.1.1 Car data 

The first example is the low dimensional car data set which contains 111 cars and 11 
different characteristics of cars. From the Figure 1 observations 25, 30, 32, 34, 36 are 
seen as good leverage points and observations 103-108, 110 are seen as orthogonal 
outliers. However the diagnostic plots of ROBPCA (Figure 2) and R-OGK (Figure 3) 
identifies this orthogonal outlier group and observations 106, 108 and 110 as bad 
leverage points. OGK (Figure 4) also converts those cases to bad leverage points but 
with a difference. As it seen from the Figure 2 they are very close to boundary.

*Data were provided by Karlien Vanden Branden



TÜİK, İstatistik Araştırma Dergisi, Temmuz 2008
TurkStat, Journal of Statistical Research, July 2008

2�

Özlem YORULMAZ

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

5

10

15

20

25

30

35

Score distance (2 LV)

O
rth

og
on

al
 d

is
ta

nc
e

108

 16
 39

104

 37

105

  5

103

 20
 75

  2

 43
 22  99

 98  7
 17

100

  6
 96

 30
 32

 34 36

 25

CPCA

0 2 4 6 8 10 12 14

0

5

10

15

20

25

30

35

40

45

50

Score distance (2 LV)

O
rth

og
on

al
 d

is
ta

nc
e

 39
 24
 37  7
 40
 17100
 96 22

  2

 44   6

106

110108

 30
 32

 36
 34  25

ROBPCA

     Figure 1. Diagnostic plot of car data set   Figure 2. Diagnostic plot of car data set based  
based on two CPCA Principal Components        on two ROBPCA Principal Components 
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           Figure 3. Diagnostic plot of car data set               Figure 4. Diagnostic plot of car data set  
based on two OGK PCA Principal Components   based on two R-OGK PCA Principal Components 

6.1.2 Octane data 

The second example is the Octane high dimensional data set which consists of 226 
variables and 39 gasoline samples. In this data set, six samples contain (25, 26, 36-39) 
added alcohol. 

It is obvious from Figure 5 that CPCA can detect only outlying 26 as a bad leverage 
point. In contrast, ROBPCA (Figure 6), OGK (Figure 7) and ROBPCA (Figure 8) find 
all outlying points. This shows that ROBPCA, OGK and R-OGK methods do not 
contain outliers in their estimated subspaces. 
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     Figure 5. Diagnostic plot of octane data set    Figure 6. Diagnostic plot of octane data set 
based on two CPCA Principal Components based on two ROBPCA Principal Components 

0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Score distance (2 LV)

O
rth

og
on

al
  d

is
ta

nc
e

12 16

17
 8  9

34 23

25
37

36
39

38

26

OGK

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

Score distance (2 LV)

O
rth

og
on

al
  d

is
ta

nc
e

35

12

21

20

18
 6 34

25
37

39
36

38

26
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 Figure 7. Diagnostic plot of octane data set             Figure 8. Diagnostic plot of octane data set 
based on two OGK PCA Principal Components  based on two R-OGK PCA Principal  Components 

Contrary to the car data, this time OGK on high dimensional data showed similarity to 
ROBPCA and R-OGK. 

6.2 Simulation

In this section a simulation study is performed to compare the performances of CPCA, 
ROBPCA, OGK and R-OGK on low and high dimensional data sets. 
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While generating the data, the following contaminated model construction is used 
(1 ) (0, ) ( , )p pN N� � �� � � ���

with different values for epsilon and different sizes of the data matrix. ��  represents the 
center of outliers and is adjusted to obtain bad leverage points as will become apparent 
in the following.  

For each setting 100 data sets were constructed and two different assessment criteria, 
MAXSUB and MSE, were used to gain insights about their performance. MAXSUB is 
the maximal angle between the space spanned by the estimated principal components 
and kE , where kE is the subspace spanned by the k dominant eigenvectors of� .

The MAXSUB measure is defined as (Hubert et al, 2005) ' '
, , , ,k p p k k p p kI P P I

MAXSUB arccos( )k��  where k�  is the smallest eigenvalue of  ' '
, , , ,k p p k k p p kI P P I . This 

gives the largest angle between a vector in kE and the vector most parallel to it in the 
estimated PCA subspace. MAXSUB provides the best values when it is close to 0.  

The second criterion, MSE, is the mean squared error of k largest eigenvalues and 
defined as: 

              MSE( ˆ
j� )

100
( ) 2

1

1 ˆ( )
100

l
j j

l
� �

�

� ��
Due to their lacking the orthogonal equivariance property, the performance of OGK and 
R-OGK estimators has also been evaluated on a rotated data matrix which has been 
obtained by multiplying the original data matrix with an orthogonal matrix.  

6.2.1 Simulation study when 0.20� � and 0.10� �  in low dimension 

These are the assigned values of parameters that used for generating low dimensional 
settings:
n=150, p=5, diag(12,8,6,0.20,0.05)� � , k=3. It has been decided to assign a value of 3 

to k, because three components explain 99% of the data ( 
3 5

1 1
( ) /( ) 0.9905i i

i i
� �

� �

�� � ).

As can be seen from Figure 9 and Figure 10 the worst MAXSUB value pertains to 
CPCA; it is close to 1 when 20% contamination is added to the data. ROBPCA gives 
the best result and R-OGK pursuits ROBPCA. The most striking result here is that R-
OGK is much more equivariant than OGK after rotation, the estimations of R-OGK on 
rotated data matrix are approximately equivariant. In case of a 10% contamination of 
the data, OGK is very much in line with the other estimators. Tables 3, 4 give exact 
values of MAXSUB. 
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Figure 11.  Boxplot of 20% contaminated low                   Figure 12.  Boxplot of 10% contaminated low 
dimensional data set based on MSE of eigenvalues           dimensional data set based on MSE of eigenvalues 

Figures 11 and 12 just enable to evaluate the first eigenvalues but Tables 7, 8 provide 
detailed information for the MSE of three eigenvalues from which it becomes evident 
that ROBCPA gives the best results and R-OGK is next in ranking. 

6.2.2 Simulation study when 0.20� � and 0.10� �  in high dimension 

In high dimensional simulation studies the following parameter values were used:  
p=100, n=50, (6,8,10,12,14,16,0,0....0)� �� , (12,8,6,5,3,0.1,0.099,0.098.....0.006)� �
and k=5. The first five eigenvalues explain 87% of the data      

(
5 100

1 1
( ) /( ) 0.8710i i

i i
� �

� �

�� � ).
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For high dimensional data, MAXSUB values of OGK give surprising results which are 
evident from Figure 13 and Figure 14. Contrary to what is deduced from the MAXSUB 
values, the MSE of the eigenvalues indicates that OGK fails like CPCA. R-OGK and 
ROBPCA, however, give similar and best results for both criteria (Figure15, 16).

Based on the MAXSUB values, OGK on rotated data matrix breaks down. This is in 
contrast to the MSE of the eigenvalues which tells that the worst outcome is pertained 
with OGK (See, Appendix Table 5, 6 and Table 9, 10). So there is a serious 
contradiction between the MAXSUB and MSE values for OGK. When the results of 
two criteria (MAXSUB and MSE of eigenvalues) are compared, it has to be noticed that 
except OGK and OGK on rotated X, all the other estimators give coherent results with 
each other. 
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  Figure 13.  Boxplots of 20% contaminated high     Figure 14.  Boxplots of 10% contaminated high 
 dimensional dataset based on MAXSUB values       dimensional dataset based on MAXSUB values 
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          Figure 15.  Boxplot of 20% contaminated high          Figure 16.  Boxplot of 10% contaminated high 
  dimensional data set based on MSE of eigenvalues          dimensional data set based on MSE of eigenvalues 
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6.2.3 Simulation study when 0� �  in high and low dimension 

For uncontaminated data in the high and low dimensional case CPCA and OGK give 
the best results, with OGK even performing slightly better than CPCA. Although the 
MAXSUB results show very similar performances with respect to those of the 
ROBPCA and the R-OGK estimators, the MSE results indicate that ROBPCA is better. 
ROBPCA and R-OGK yield higher MAXSUB and MSE values in comparison with 
lower dimension. OGK and R-OGK estimates on rotated data matrix do not perform 
extremely different from the original data matrix. The visual and numerical illustrations 
are provided in the tables (See Appendix-1, Table 1, 2) and below figure 17, 18, and 19,  
20.
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  Figure 17. Boxplots of uncontaminated low   Figure 18.  Boxplots of uncontaminated  high 
dimensional dataset based on MAXSUB values        dimensional dataset based on MAXSUB values
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            Figure 19.  Boxplot of uncontaminated  low            Figure 20.  Boxplot of uncontaminated high 
       dimensional data set based on MSE of eigenvalues      dimensional data set based on MSE of eigenvalues 
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7. CONCLUSION 

As a general result of simulation it can be said that, when there is contamination in the 
data, ROBPCA and R-OGK give very similar results, they are both superior to CPCA 
and OGK but in low dimension ROBPCA slightly comes into prominence whereas in 
high dimension R-OGK comes into prominence. So, when high dimension is the 
subject, it can be preferred to use R-OGK since it's computationally easier than 
ROBPCA. Furthermore, compared to OGK, R-OGK is more equivariant. 

Nevertheless when there is no contamination in the data, CPCA and OGK yield best 
results. In this case inequivariance of OGK does not seem to be an important issue. 

Another point, which should be stressed here, is that OGK shows the worst performance 
of robust estimators in contaminated data sets according to MSE criteria. But in contrast 
to MSE values, MAXSUB values specify the OGK estimator surprisingly as the best 
estimator especially in high dimensional data sets. The striking but inevitably 
incoherent differences between MSE and MAXSUB values of OGK can be seen in 
appendix–1.
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GÜÇLÜ �K�L� KOVARYANS TAHM�NC�S�N�N
PERFORMANS DE�ERLEND�RMES�

ÖZET

Yüksek boyutlu veri kümelerinde ayk�r� gözlemlerin varl��� halinde, çok 
de�i�kenli analiz ve çok boyutlu ayk�r� gözlem te�his teknikleri, zaman� etkin 
kullanan,  k�r�lma noktas� yüksek güçlü kovaryans tahmincilerin kullan�m�n�
zorunlu k�lar. Klasik tahmincilerin ayk�r� gözlemler kar��s�nda bozulmas�,
güçlü tahmincilerin kullan�mn�� gerektirir. FMCD k�r�lma noktas� yüksek, 
yüksek boyutlu verilerde kullan�m� uygun olan bir tahmincidir, fakat 
Maronna ve Zamar (2002), gözlem say�s�n�n artmas�yla FMCD’nin önemli 
zaman ald���n� ve yüksek k�r�lma noktas�na sahip olma özelli�ini yitirdi�ini 
vurgular. OGK tahmincisi,  yüksek k�r�lma noktas�na sahip güçlü 
tahmincilerin i�lem süresinin uzunlu�u problemine yan�t vermek için 
(Maronna, Zamar, 2002) önerilmi�tir. Bu çal��mada OGK tahmincisi ile 
çe�itli kovaryans tahmincilerinin performans� Temel Bile�enler Analizi (TBA) 
ile de�erlendirilmi�tir.

Anahtar Kelimeler: Ayk�r� gözlemler, Güçlü temel bile�enler analizi, Minimum kovaryans 
Determinat tahmincisi, Ortogonal Gnanadesikan-Kettering  tahmincisi, Temel bile�enler analizi.
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Appendix-1

Table 1. Simulation results of MAXSUB when            Table 2. Simulation results of MAXSUB when 
there is no contamination in low dimension                   there is no contamination in high dimension 

Table 3. Simulation results of MAXSUB when            Table 4. Simulation results of MAXSUB when 
there is 20% contamination in low dimension             there is 10% contamination in low dimension 

 Mean Median Error 

CPCA  0.6760 0.6732 0.0025 

ROBPCA          0.0263 0.0241 0.0011 

OGK                 0.0809 0.0641 0.0057 

R-OGK             0.0282 0.0257 0.0012 

Rot.OGK          0.5669 0.5635 0.0031 

Rot.R-OGK      0.0598 0.0310 0.0099 

Table 5. Simulation results of MAXSUB when            Table 6. Simulation results of MAXSUB when 
there is 20% contamination in high dimension            there is 10% contamination in high dimension

 Mean Median Error 

CPCA 0.6736 0.6604 0.0049 

ROBPCA 0.2471 0.2413 0.0034 

OGK 0.2131 0.1983 0.0074 

ROGK 0.2677 0.2638 0.0036 

rot.OGK 0.8036 0.7473 0.0178 

rot.R-OGK 0.2797 0.2701 0.0046 

 Mean Median Error 

CPCA 0.021 0.0204 8.04E-04 

ROBPCA 0.0266 0.0251 0.001 

OGK 0.0209 0.0206 7.78E-04 

R-OGK 0.0264 0.0253 9.42E-04 

rot.OGK 0.0232 0.0222 9.55E-04 

rot.R-OGK 0.0264 0.0246 9.85E-04 

 Mean Median Error 

CPCA 0.2136 0.2103 0.0024 

ROBPCA 0.2569 0.2503 0.0035 

OGK 0.2111 0.2095 0.0024 

ROGK 0.2457 0.2390 0.0037 

Rot.OGK 0.2190 0.2171 0.0026 

      rot.R-OGK 0.2480 0.2410 0.0034 

 Mean Median Error 

CPCA 0.6348 0.6297 0.0033 

ROBPCA 0.0259 0.0244 9.4153e-004 

OGK 0.0300 0.0283 0.0016 

R-OGK 0.0266 0.0255 0.0010 

Rot.OGK 0.3977 0.4015 0.0051 

Rot.R-OGK 0.0319 0.0297 0.0011 

 Mean Median Error 

CPCA 0.6719 0.6675 0.0050 

ROBPCA 0.2567 0.2517 0.0035 

OGK 0.1441 0.1437 0.0019 

rOGK 0.2508 0.2514 0.0030 

rot.OGK 0.6530 0.6356 0.0098 

rot.R-OGK 0.2629 0.2575 0.0036 
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         Table 7. Simulation results for MSE of eigenvalues when there is 20% contamination in low dimensional data set 

        Mean      Median     Error   

CPCA  23.6913 0.1231 0.0208 23.7911 0.1120 0.0134 0.2771 0.0078 0.0022 

ROBPCA 0.0219 0.0081 0.0059 0.0080 0.0046 0.0028 0.0033 0.0010 0.0008 

OGK 8.1342 4.5081 1.593 8.2647 4.75 0.7506 0.397  0.311   0.1845 

R-OGK 0.0416 0.0169 0.0139 0.0302 0.0096 0.0093 0.0042 0.0024 0.0014 

rot.OGK 7.3213 0.1334 0.0181 7.1625 0.1200 0.0106 0.2825 0.0102 0.0018 

rot.R-OGK  0.0708 0.0301 0.0163 0.0326 0.0210 0.0127 0.0160 0.0027 0.0014 

       Table 8. Simulation results for MSE of eigenvalues when there is 10% contamination in low dimensional data set 

                   Mean                  Median                    Error 

CPCA  5.9608     0.1181     0.0191       5.8622     0.0985     0.0120       0.1304     0.0082     0.0022 

ROBPCA 0.0184     0.0102     0.0078     0.0089     0.0049     0.0034       0.0026     0.0013     0.0009 

OGK     0.8031     0.6472     0.3513      0.6913     0.5975     0.3104       0.0482     0.0357     0.0268 

R-OGK 0.0453     0.0198     0.0147       0.0279     0.0125     0.0083       0.0049     0.0021     0.0014 

Rot.OGK 0.6555     0.1342     0.0400       0.6208     0.1129     0.0199       0.0429     0.0099     0.0042 

Rot.R-OGK 0.0619     0.0399     0.0260    0.0383     0.0313     0.0229       0.0065     0.0033     0.0019 
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Table 9. Simulation results for MSE of eigenvalues when there is 20% contamination in high dimensional data set 

Mean Median Error 
CPCA 151,618 0,249 0,052 0,007 0,006 150,766 0,169 0,03 0,003 0,003 1,498 0,023 0,006 0,001 0,0007 

ROBPCA 0,0948 0,029 0,008 0,013 0,004 0,0208 0,012 0,004 0,009 0,003 0,015 0,004 0,001 0,001 0,0006 

OGK 29,8717 1,388 0,769 0,394 0,213 23,4209 1,194 0,716 0,35 0,171 2,086 0,072 0,04 0,022 0,0147 

ROGK 0,0801 0,028 0,01 0,018 0,006 0,0267 0,011 0,005 0,014 0,004 0,013 0,005 0,001 0,002 0,0007 

rot,OGK 1,3674 0,306 0,103 0,031 0,029 0,4098 0,245 0,071 0,021 0,021 0,231 0,025 0,009 0,003 0,0027 

rot,rOGK 0,0515 0,031 0,016 0,025 0,009 0,0262 0,016 0,011 0,021 0,006 0,007 0,006 0,002 0,002 0,0009 

Table 10. Simulation results for MSE of eigenvalues when there is 10% contamination in high dimensional data set 

Mean Median Error 

CPCA 43,677 0,243 0,045 0,008 0,006 43,426 0,183 0,029 0,003 0,003 0,768 0,02 0,006 0,001 0,0008 

ROBPCA 0,0652 0,02 0,012 0,023 0,009 0,0235 0,012 0,006 0,018 0,006 0,009 0,002 0,001 0,002 0,0009 

OGK 4,0256 0,906 0,526 0,318 0,256 3,4681 0,848 0,491 0,305 0,23 0,242 0,046 0,026 0,015 0,0166 

ROGK 0,0807 0,02 0,01 0,017 0,006 0,0284 0,013 0,006 0,011 0,005 0,012 0,002 0,001 0,002 0,0006 

rot,OGK 1,4375 0,493 0,115 0,023 0,008 0,9977 0,348 0,068 0,01 0,003 0,147 0,045 0,015 0,003 0,0014 

rot,rOGK 0,0615 0,024 0,017 0,028 0,008 0,0282 0,014 0,012 0,023 0,006 0,008 0,003 0,002 0,002 0,0007 
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Appendix-2
     MATLAB CODE       NOTES 
function [var,mu]=deviation(x) 
med=median(x);     
md=mad(x);      # Here, it is also possible to use ‘madc’ function instead of ‘mad’ 
s=size(x); 
Median=(ones(s(1),1))*med;
Mad=(ones(s(1),1))*md; 
W=(x-Median)./(Mad);
W=(1 - (W./4.5).^2).^2.*(abs(W)<=4.5);
mu=sum(x.*W)./sum(W); 
Mu=(ones(s(1),1))*mu; 
rho=((x-Mu)./Mad).^2;    # First and second steps of the  algorithm 
var=((md.^2).*(sum(min(rho,9))))/s(1); 
function result =ogk(x)  
s=size(x); 
[var1,mu1]=deviation(x);   
D=diag(sqrt(var1));
y=(inv(D)*x')';    #Third step of the algorithm 
vv=combntns(1:s(2),2); 
ss=size(vv);    
for i=1:ss(1) 
bb{i}=y(:,vv(i,:)); 
end
for i=1:ss(1) 
t(:,i)=bb{i}(:,1)+bb{i}(:,2); 
tt(:,i)=bb{i}(:,1)-bb{i}(:,2);  
end
[var2,mu2]=deviation(t); 
[var3,mu3]=deviation(tt); 
U=(var2-var3)/4;   #Fourth step of the algorithm 
UU=zeros(s(2));       
for i=1:ss(1) 
UU(vv(i,1,:),vv(i,2,:))=U(i); 
end
UU=eye(s(2))+UU+UU'; 
[E,T]=eig(UU); 
A=D*E;
z=E'*y'; 
Z=z';                                         # Fifth step of the algorithm 
[var,mu]=deviation(Z); 
RO=diag(var);
 v=A*RO*A'; 
 m=A*mu'; 
d=sum((((Z-(ones(s(1),1)*mu))./sqrt(ones(s(1),1)*var)).^2)');  # Sixth step,    OGK 
estimators 
do=(chi2inv(0.9,s(2))*median(d))/chi2inv(0.50,s(2)); 
 w=((d<=do)*1); 
 rm=(x'*w')/sum(w); 
 dif=x-(ones(s(1),1)*rm'); 
 rv=(dif'*(diag(w))*dif)/sum(w); 
 result=struct('m',{m},'v',{v},'rm',{rm},'rv',{rv});          #Seventh step, R-OGK estimators 




