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ABSTRACT 

 
We propose a pretest, bootstrap Kolmogorov-Smirnov test, to differentiate between weak 

and nearly-weak asymptotics. This is based on bootstrapping Wald Continuous Updating 

Estimator (CUE) based test. Since Wald CUE test has different limits under weak and 

nearly-weak cases this can be used in a pretest. We also conduct some simulations and 

show that some of the asset pricing models conform to nearly-weak asymptotics.  
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1. INTRODUCTION 

 

In Generalized Method of Moments (GMM) and its Continuous Updated Estimator (CUE) 

version when the moment conditions at true value of the parameters are zero we deem that 

system as strongly identified. If the moment conditions decay to zero at square root T rate, 

then the system is called weakly identified by Stock and Wright (2000). Then, if the moment 

conditions decay to zero slower than root T rate, the system is called nearly weak by Hahn 

and Kuersteiner (2002). CUE is only different from GMM with its weight matrix. The 

parameters in the weight are optimized with sample moment functions in one step unlike 

GMM.  

 

Stock and Wright (2000) in a seminal paper show that in the case of weak instruments, the 

GMM estimator is inconsistent. Furthermore, even in large samples, the Wald test is not 

pivotal. Hence we cannot benefit from standard asymptotic theory. An important assumption 

of Stock and Wright (2000) is the correlation between the instruments and the orthogonality 

restrictions decline at rate of square root T. So in large samples, identification of the 

parameters is not possible.  

 

In an important recent paper; Hahn and Kuersteiner (2002) analyzed the “nearly-weak” 

instruments in a linear IV structure. In their setup, the correlation between instruments and the 

orthogonality restrictions decline at a slower rate than root T. This results in consistent 

estimates but slower rate of convergence than square root T with normal limits. They also 

carefully examine two-stage least squares estimators in higher order expansions. So there is a 

distinction between the weak and nearly-weak cases in terms of large sample theory. In the 

nearly-weak case the two-stage least squares estimators have the same limit as in the standard 

strong two stage-least squares estimators. In the weak case, the limit consists of several 

nuisance parameters and it is non normal distributed (Stock and Wright, 2000).  
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Caner (2010) recently show that in the case of nearly-weak GMM, the GMM estimators are 

consistent and Wald tests based on CUE are asymptotically chi-square distributed. The only 

difference between the standard GMM asymptotics and the nearly-weak GMM is that the 

estimator converges to normal limits slower in the nearly-weak case. Then this brings us to a 

very important question. All the framework in the weak instruments case benefit from 

Anderson and Rubin (1949), and Kleibergen (2005) tests mainly. These tests have very 

limited power and most importantly only work with a grid search of the possible null values 

of the parameters. So testing multiple parameters is very problematic and also we cannot test 

anything else except the simple null. However, if the truth is not weak instruments, then we 

can still estimate the parameters consistently and conduct inference with Wald test. It is then 

essential to distinguish between nearly-weak and weak cases if we want to test restrictions. 

 

Note that in the nearly-weak case, the limit is χ
2
 for Wald test, unlike weak case. We propose 

a pretest for differentiating between nearly-weak and weak identification cases. This is a 

bootstrap version of Kolmogorov-Smirnov test. This test uses empirical distribution function 

of bootstrap Wald test in CUE form and compares it with χ
2
 distribution. If the reality is 

nearly-weak asymptotics, we do not reject the null of nearly-weak asymptotics, otherwise 

(weak identification) there is a large discrepancy and we reject the null. Using bootstrap to 

understand whether the finite sample behavior accords with limit theory is proposed in GMM 

context by Hall and Horowitz (1996). 

 

We conduct a simulation exercise and show that some of the asset pricing models may be 

explained by nearly-weak asymptotics. We benefit from Wald CUE test since this test has 

different limits under weak and nearly-weak moments cases.  

 

Section 2 provides the model and assumptions. Section 3 conducts some simulations and 

introduces a simple pretest. Section 4 concludes. 

 

2. THE MODEL AND ASSUMPTIONS 

 

We benefit largely from the framework of Stock and Wright (2000). Let θ be a p-dimensional 

parameter vector, and θ0 represents the population value which is in the interior of the 

compact parameter space Θ⊂R
p
. The population orthogonality conditions are of G dimension: 

 0)],([ 0  tYE   (2.1) 

 

The data is {(Yt) : t = 1,2,…,T }. 

 

If moment is exactly zero in finite samples at only the true value, strong identification holds. 

If moment declines to zero at rate T
1/2

 then weak identification holds. If it declines to zero at a 

slower rate T
κ
, 0 < κ < 1/2, then nearly weak identification holds. 

 

Definition 2.1. If  

(i) (Weak Identification) the moment conditions follow 
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then the parameters θ are weakly identified. 
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then the parameters θ are near-weakly identified.  

 

For the near-weakly identified parameters we see that moment function again decays to zero 

but at a slower rate of T
κ
 than T

1/2
 of Stock and Wright (2000), 0 < κ < 1/2. We consider 

basically a system with nearly-weak/strong instruments. Note that when κ = 0, the parameters 

are strongly identified.  

 

We use the term “nearly-weak” instruments for 0 ≤ κ < 1/2. The term “nearly-weak” is 

introduced by Hahn and Kuersteiner (2002). 

 

Now we can supply the assumptions. 

 

Assumption 2.1. For 0 ≤ κ < 1/2;  
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m1T(θ)→m1(θ) uniformly in θ, m1(θ)=0 if and only if θ = θ0. m1(θ) is continuous. Furthermore, 

ψt(.) is continuously differentiable in θ in N, a neighborhood of θ0, and 
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uniformly in N, R(θ0) is of full column rank. R(θ) is G×p matrix. Note that R(θ) is continuous. 

 

Assumption 2.2.  
(i). ψt(θ) is m-dependent. 

(ii).  
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for some δ > ∞.  

 

Define the empirical process as  
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Under Assumption 2.2 we obtain the following result via Andrews (1994) 

 )()(  T   (2.3) 

 

where Ψ(θ) is a Gaussian stochastic process on Θ with mean zero and covariance function 

EΨ(θ1)Ψ(θ2)´ = Ωθ
1
,θ

2
. 

 

Both Antoine and Renault (2007), and Caner (2010), independently show that in nearly-weak 

instruments case, the estimators are consistent. Furthermore, in a case of all nearly-weak 

instruments the limit is asymptotically normal. Nearly-weak case combines both the elements 

of strong and weak cases. Loosely speaking, like the weak instruments case the correlation 

between instruments and the orthogonality conditions goes to zero in large samples. However, 
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since this is not decaying as fast as the weak instruments case we still have consistency as 

strong instruments case. 

 

Assumption 2.3. Let  
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Then uniformly in θ 
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For efficient CUE the weight matrix is: WT(θ̄(θ)) = V̂θ,θ(θ)
−1

. Variance covariance matrix 

estimators and result (3) at θ0, can be extended to more general weakly dependent data. 

 

Definition 2.2. The efficient CUE estimator θ̂ minimizes the following over Θ 
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We define Wald test in CUE case. First we test the following null:  

 H0: a(θ0) = 0,  

where a(.) is r×1 dimensional.   

 

We need the following variant of Assumption 2.1 for partial derivative matrix estimation and 

identification in GMM estimates.  

 

The following puts some structure on restrictions. 

 

Assumption 2.4. a(θ) is continuously differentiable with A(θ) = ∂a(θ)/∂θ´, A(θ0) is of full 

rank r, where A(θ0) = A is r×p. First we give theory for the Wald test. 

 

Definition 2.3. The Wald test at efficient CUE estimator θ̂ is defined as follows 
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VT(θ̂) represents the consistent estimate of the variance-covariance matrix in efficient CUE 

and can be seen in equation (2.4). 

 

Corollary 1 of Caner (2010) shows under Assumptions 2.1-2.2 
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Then under Assumptions 2.1-2.4, Theorem 4 of Caner (2010) shows that 
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Note that in the case of weak instruments, Theorem 1 and Corollary 4 of Stock and Wright 

(2000) shows that GMM estimators are inconsistent, and Wald test is not pivotal, and we 

cannot tabulate the critical values in any possible way. Note that the limits in Stock and 



International Econometric Review (IER) 

17 

 

Wright (2000) are complicated and full of nuisance parameters and non-normal. For details, 

please see Theorem 1 of Stock and Wright (2000)  

 

Both Antoine and Renault (2007), and Caner (2010) show that the Wald test converges in 

distribution to χ
2
r distribution under Assumptions 2.1-2.4. 

 

3. PRETEST AND SIMULATIONS 

 

This section proposes a pretest to differentiate between nearly-weak and weak cases, and 

conducts some simulation exercises. We show that we can better approximate finite sample 

properties in asset pricing models with nearly-weak instruments asymptotics. We explain the 

reasons behind this at the end of simulation exercise. In this respect, we consider the 

following model with constant relative risk aversion (CRRA) preferences 
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where θ = (d, f)´, d is a time discount and f is the risk aversion parameter. Zt represents the 

instruments a G2×1 vector. Rt+1 is a G1×1 vector of asset returns. Ct is consumption at time t, 

ιG1 
is G1×1 vector of ones, G1∗G2 = G. The parameters are assumed to be bounded by          

dmin ≤ d ≤ dmax, fmin ≤ d ≤ fmax. This setup is both used in Stock and Wright (2000), and 

Kleibergen (2005). Unlike Stock and Wright (2000) who use two-step GMM or coefficient 

estimates in CUE and their empirical cumulative distribution functions we use Wald test in 

CUE format, WCUE. We specifically test the null of θ = θ0. χ
2
 asymptotics is shown to be 

working well for the small sample behavior of WCUE in spite of low correlation between the 

instruments and the moment equations (Hansen et.al, 1996, Figures 7-9). In the same figures 

we see that finite sample behavior of Wald test in two-step GMM format are not well 

approximated by χ
2
 asymptotics. 

 

We now want to see whether the assumptions for WCUE in testing are satisfied in our case. 

These are Assumptions 2.1, 2.2, 2.3 and 2.4. First, (Ct+1/Ct), Rt+1, Zt are m-dependent by 

design that is described below. Assumption 2.2(i) is then satisfied. Then E(Rt+1⊗Zt)
5
 < ∞, and 

E(exp{5(fmax + 1)|ct+1|}) < ∞, where ct+1 = ln(Ct+1/Ct). These imply Assumption 2.2(ii), 2.2(iii). 

Assumption 2.3 is satisfied if (Ct+1/Ct), Rt+1, Zt have enough moments. Assumption 2.4 is 

satisfied in our case since we test H0: θ = θ0. The remaining Assumption 2.1 is arbitrary, but 

the key point there is whether (Ct+1/Ct)
−f

 has a low correlation with instruments. Again by the 

simulation design there is low correlation, this can be seen in (3.5). There is low correlation 

between the consumption ratio and their lagged values. This is a well known simulation 

design in this literature. We can deem “f” as nearly weakly or weakly identified and “d” as 

strongly identified. Unlike Stock and Wright (2000) we set “f” as possible nearly-weak or 

weak rather than weak. We can see in simulation exercises which scenario will be more 

plausible for “f” weak or nearly-weak. Now we explain the specifics in designs. The errors are 

martingale difference sequences at true values so correction for autocorrelation is not used. 

There are no overlapping data as well. The designs in the Monte Carlo are due to Hansen et 

al. (1996). Four designs are described in Table 3.1. Their method fits a VAR(1) to 

approximate consumption and dividend growth. Let ct be the log growth rate of US per capita 

real annual consumption and dt the log growth rate of real annual dividends on the S&P 500. 

This is given by
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where var dt = 0.014, var ct = 0.0012, cov(ct,dt) = 0.00177. This is the setup for Table 3.1. 

 
Design γ0 δ0 Assets Instruments 

1 1.3 0.97 r
s
t 1, r

s
t-1, ct-1 

2 13.7 1.139 r
s
t 1, r

s
t-1, ct-1 

3 1.3 0.97 r
f
t, r

s
t 1, ct-1 

4 1.3 0.97 r
f
t, r

s
t 1, r

s
t-1, r

f
t-1, ct-1 

Table 3.1 Monte Carlo Design. 

Notes: ct = ln(Ct/Ct−1), r
f
t, r

s
t represent consumption growth, the risk free rate, and the stock returns respectively. 

The program for Monte Carlo study can be obtained from the author on request. 

 

We conduct the following simulation. First, we compute actual p-values of WCUE under these 

four designs and whether they are close to their nominal level (for 10%, 5%). Various 

nominal levels are also analyzed but since 10% and 5% gave the worst results we display 

them. We also calculate Kolmogorov-Smirnov test and look at the maximal difference 

between the empirical distribution function of WCUE and asymptotic distribution of χ
2
2. Then 

we also consider bootstrap p-values of WCUE and see how they differ from nominal levels. 

Both these analysis give ideas to us whether these four designs come from a nearly-weak case 

or weakly identified one. If these actual, and bootstrap p-values are near theoretical 

distribution (χ
2
2) and Kolmogorov-Smirnov test statistic shows small discrepancy between the 

large sample distribution in nearly-weak case and empirical distribution function of WCUE, 

then these designs have nearly-weak identification problem rather than weak identification. 

Since in the case of weak instruments asymptotics, the limit of WCUE is not χ
2
2 and not pivotal 

we expect large differences between actual, bootstrap p-values and nearly weak asymptotic 

limit (χ
2
2) if the truth is indeed the weak instrument asymptotics. As suggested by Phillips and 

Park (1988), and Hall and Horowitz (1996) we use bootstrap approximation to critical values 

as a tool for analyzing the accuracy of asymptotic approximations. Note that if the asymptotic 

approximation is correct, the bootstrap should not deviate from asymptotics that much in this 

case. Bootstrap in regular GMM is consistent as shown in Hall and Horowitz (1996). CUE in 

nearly-weak case has the same limits as strong case, we should expect bootstrap here to 

estimate consistently χ
2
2 if the truth is nearly-weak identification. 

 

We introduce a bootstrap version of Kolmogorov-Smirnov test. This is new and can be used 

as a pretest. In this way we can compare bootstrap empirical distribution function with 

asymptotics (χ
2
2). If these are very different from each other then we do have weak 

identification. Otherwise we have nearly-weak or standard asymptotics. 

 

Now we give details of the simulation and the pretest idea that we propose. In the simulations 

we set T = 100. For obtaining the actual p-values for WCUE we run 1000 iterations for each 

given design in Table 3.1. Then substitute χ
2
2 critical values (upper 10%, 5%) into the 

empirical distribution found from 1000 iterations, the record the number of rejections. 

Kolmogorov-Smirnov test is also found by comparing empirical distribution function of WCUE 

with χ
2
2 distribution. 

 

In the case of bootstrap exercise, we use bootstrap critical values rather than χ
2
2 ones. We 

calculate bootstrap critical values by using 1000 bootstrap iterations (bootstrap sample), then 

compare actual WCUE from the original sample with 90% and 95% percentiles of the bootstrap 

empirical distribution function and then record whether we reject it or not. Then iterate this 

process 1000 times and sum the number of rejections at each level and calculate that as a 

percentage. To get the bootstrap empirical distribution function in the first step we withdraw a 

bootstrap sample from the original sample with replacement and then compute CUE estimator 
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from this bootstrap sample θ̂bc and compute WCUE at θ̂bc. Repeat this 1000 times and sort it to 

get the bootstrap empirical distribution function. We follow the advice in Hall and Horowitz 

(1996) and demean each bootstrap sample moment. The Wald test that uses bootstrap sample 

is, where θ̂ is the efficient CUE estimator 
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The results of these exercises are in Table 3.2.  

 

The pretest bootstrap Kolmogorov-Smirnov test is calculated in a way that we can use in an 

empirical study.  

 

From any given data set, have 1000 bootstrap iterations and obtain the bootstrap empirical 

distribution function and compare with any asymptotic limit that we want to measure against. 

 )()(sup2/1 xFxFTBKS nb
x

    

where Fnb represents the cumulative distribution function of bootstrap and F is the cumulative 

distribution function of chi-square distribution with 2 degrees of freedom.  

 

Here we again benefit from designs 1-4, we simulate each design once and then have 1000 

bootstrap iterations and measure against χ
2
2. The results are in Table 3.3. 

 

This reflects the characteristic of an empirical study. We use again bootstrap empirical 

distribution function of WCUE. This is done because it has better finite sample properties than 

say Wald two-stage least squares estimator and its limit is different in the case of nearly-weak 

and weak cases. So this approach can differentiate between two cases. We can not use 

Anderson and Rubin (1949), and Kleibergen (2005) type of tests since their limits are the 

same regardless of nearly-weak and weak cases. This is observed in Antoine and Renault 

(2007), and Caner (2010). 

 
 Actual p-values Bootstrap p-value KS 

 10% 5% 10% 5%  

D1  

D2  

D3  

D4 

3.1  

70.8  

83.2  

97.6 

3.0  

69.5  

80.8  

96.9 

9.9  

54.0  

36.9  

35.9 

6.3  

52.2  

33.7  

35.3 

7.7  

6.5  

7.6  

9.2 

Table 3.2 Analysis of Designs 1-4. 

Notes: D1-D4 represent four designs that we use in Table 3.1. KS is the Kolmogorov-Smirnov test. 

 

As can be seen from Table 3.2, Design 1 is more in line with χ
2
2 asymptotics, however Design 

2 clearly shows that it is not coming from χ
2
2. We see large discrepancies in the case of Design 

2 between bootstrap p-values and actual p-values from their nominal levels. Kolmogorov-

Smirnov test also points that χ
2
2 asymptotics is not doing a good job in approximating finite 

sample distribution of simulations from Design 2. Designs 3 and 4 use more orthogonality 

restrictions than Designs 1 and 2, and it is clear from Table 3.2 that their behavior is different 

than χ
2
2 asymptotics. 
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Designs KS test 

D1 2.8 

D2 9.5 

D3 9.3 

D4 9.5 

Table 3.3 Pretest with Bootstrap KS test. 

Notes: KS represents Kolmogorov-Smirnov test. In this case we compare bootstrap empirical distribution 

function with asymptotic limit. 

 

Table 3.3, compares bootstrap empirical distribution function with χ
2
2 distribution. The same 

null is tested with WCUE. This is not a regular simulation as in Table 3.2. We only select one 

draw from each design and then try to understand whether the data conforms to the limit. To 

compare the results in Table 3.3 with critical value of KS test at 5% level (1.36), (Mood et al., 

1974:511). All designs in Table 3.3, seem to follow weak instrument asymptotics, but the 

bootstrap p-value for Design 1 is very close to true values for a χ
2
2 distribution in Table 3.2. So 

we think that except from Design 1, looking at Tables 3.2 and 3.3 jointly, Designs 2-4 

conform to weak instrument asymptotics. 

 

Note that Stock and Wright (2000) show that Designs 1-4 belong to weak instrument 

asymptotics. However, in the case of Design 1 we see that using two stage least squares and 

just analyzing estimators (not a specific test) might have caused Stock and Wright (2000) to 

think that they also could have come from weak instrument asymptotics. Even though, the 

instruments have low correlation with moment equations, in Design 1 we see that it can be 

explained by nearly-weak identification rather than weak identification. Simulating weak 

instrument asymptotics limits are not a good idea, since these contain nuisance parameters, 

and may give a different results in different simulations. 

 

4. CONCLUSION 

 

We propose a bootstrap pretest to differentiate between nearly-weak and weak identification. 

This seems to work in certain asset pricing examples in our simulations. 
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