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ABSTRACT

In this paper a comparative study is conducted/éduate the out-of-sample performance
of mean-variance portfolios when three differeniarace models are considered. We use
the common framework of orthogonal factors to dyebie conditional covariance matrix
structure. A key advantage of this approach is timatestimated factors can be modeled
as univariate GARCH processes so that we can cemeiddels for which multivariate
extensions are not available. We, therefore, coetptire Integrated GARCH (IGARCH)
with the Exponential GARCH (EGARCH) and Fractiogalntegrated Exponential
GARCH (FIEGARCH) factor models on the basis ofistaial diagnostics, and found the
EGARCH model superior when fitted with heavy tailtidtributions. We also evaluated
out-of sample portfolio performances in terms dfcegnt frontiers, prediction intervals
and turnover, and concluded that the EGARCH andGRIECH models provide
comparable outcomes which are overall superiohéolGARCH performance. Looking
jointly at statistical and economic criterions wanclude that fitting a FIEGARCH model
with heavy tailed distributions can generally imgEo out-of-sample portfolio
performances.

Key words: Mean-Variance Portfolios, GARCH Processes, ForeagsiTurnover
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1. INTRODUCTION

Portfolio selection is the process by which an stee decides how to allocate the wealth
among a universe of financial assets. Asset parfotan be classified in two categories
according to the purpose of their selection andisequently, the different type of assets
included. We can distinguish between:

» Asset allocation portfolios: typically include matkindices as indicators of financial
markets behavior. Their aim is to determine thdnagit investment sharing among
different markets;

e Equity portfolios: usually include a large numbéregjuities from a certain market.
Their aim is to select the optimal combinationiofyte assets within a given market.

The two selection strategies are complementaryfitieone establishes investment sharing
between several markets, while the second stegtsedguities within each market. The
statistical approach to this selection problem ttreasset prices and returns as random
variables and the investor perception of preferensausually formalized defining a utility
scale. Most of the approaches to portfolio selectiepend on the expected utility of the final
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wealth, which is maximized to determine an optimat of weights. This expectation is
typically taken over the multivariate probabilityisttibution of the asset returns.
Maximization of the expected utility, thereforeadls to a criterion that depends on the
parameters of the underlying probability distribatiof returns. If multivariate normally
distributed returns are assumed, these parametethea vector of expected returns and the
variance-covariance (VC) matrix. Even in the caseam-Gaussian returns, the VC matrix is
important in a portfolio selection process and setw be estimated or forecasted. Since
temporal dependence is often observed in returstskdition, a conditional approach can be
appropriate to estimate and forecast the mean wvectd the VC matrix as inputs in the
portfolio selection process. For this purpose,ube of GARCH predictions is very popular in
the quantitative finance literature. As a recerdareple, Hawkes and Date (2007) compare
several GARCH forecasts using statistical measumesontrast to the large body of literature
on statistical comparison of GARCH-type predictiomst many studies consider comparisons
that directly evaluate portfolio performances. Altigh it is well known that portfolio
selection is more sensitive to estimation erragxpected returns (Chopra and Ziemba, 1993),
portfolio weights and subsequent portfolio perfonoea are also sensitive to the VC matrix
estimation. In practice, the most important portfadelection application is to ensure the
optimal portfolio prediction over a certain horizon

The aim of this paper is to assess the sensitofitportfolio out-of-sample performances
using measures from statistics and quantitativex@oics. In particular, we will investigate
the relative merits of some VC matrix time seriessddl estimation and forecasting
approaches. In a number of studies (see Adcock4)2@ use of factor models has been
associated with the skewed Normal distribution todel asset returns. Some investigation
has been conducted using Orthogonal GARCH factoenalyze the asset covariance matrix
(Bystrom, 2004), but these analyses have not ileclwlaluation of portfolio performances.
Our paper links various aspects of the aforemeatiditerature. We conduct an empirical
investigation of portfolios by means of factor misdeMoreover, we explicitly consider
skewed GARCH evolution for orthogonal factors andhleate the relative merits of
incorporating heavy tails and long memory.

The paper is structured as follow. Section 2 regi¢he conditional mean-variance portfolio
selection, deriving the mean-variance efficiennfrer and introducing the relevant notation.
Section 3 reviews the definition of Orthogonal GAR@actors for conditional VC matrix
estimation and forecasting. This description alsduides a review of univariate GARCH
specifications that will be compared in the follogrianalyses. Section 4 contains an empirical
analysis which includes estimation of orthogonaliarece factors, along with the fitting of
three competing GARCH model specifications andrtls¢éatistical diagnostics. Section 5
compares the out-of-sample portfolio performandasioned by considering different factor
models. We mainly look at the empirical size ofdicgon intervals and at portfolio turnover
as measure of risk management cost. We show thests according to an increasing scale
of risk appetite. Section 6 concludes and outlthesdirection for future research.

2. MEAN-VARIANCE PORTFOLIOS

The classical portfolio selection method — also wmoas mean-variance approach
(Markowitz, 1952) — has been widely used by thariitial community and is, in principle,

not strictly related to the maximized expecteditytiHowever, under certain conditions and
assuming a quadratic utility function, mean-vareuselection can be viewed as optimal in
terms of investor's preferences. A simple way tmmearize asset return's distribution (both
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analytically and graphically) is to represent palitfs in the mean-variance plan. The
portfolio mean is thus assumed to be a measurgpsficeed gain while the portfolio variance
is considered as a measure of risk. In its origusaikion this is a static model based on the
following assumptions:

* The distribution of asset returns (and linear fegjtds time invariant so that no time
dependence is involved in moments estimation;

e The selection problem is viewed as one-period agfiso at the end of each period
the selection has to be updated.

Typically, the return's distribution is not timevariant and out-of-sample evaluations require
a conditional approach, so that the portfolio dedacwill be performed using all information
available up to a certain time. However, even iis tmore general setup, the selection
problem is, in principle, viewed as one-period oi. In practice the costs of renegotiating a
new portfolio need to be compared with the expeatecease of wealth, so the weights are
not always conveniently updated. In other words; always statistical and economical
optimality coincide. This will lead us to considesth aspects in our comparative study. As
shown in previous studies (Best and Grauer, 199i#),portfolio selection can be directly
formulated as a Quadratic Programming Problem (QP&)r > 0, settingu =t + 7, when a
single budget constraint (imposing weights summipde unity) is considered, a closed form
solution is available and is given by
Wiuq = argmax {gpiuw —¥av' X wil' w = 1}
= EE,lu:uat,u + q[zilu (Mt — 1by/acy)], (2.1)
wherex, is a vector op asset returns at time> t, P =E(Xy[Q), Teu= Var(x Q), a= 1'E01
andby, = 'S, 1. The constany represents thesk appetiteparameter, an index upon which
the optimal portfolio solution will depend. Allowgrnthe risk appetitg to vary, we obtain the
set of optimal portfolios previously referred to ef§icient frontier Along the frontier, the
choice of an optimal portfolio depends on the imdlnal preferences, being relevant in terms
of risk appetite/aversion, and represented by thieievof the parametay. The efficient
portfolios mean and variances can therefore béyedsiived. Using vector notation we have
Mg = H{uWtug = fo + 10, (2.2)
for some constangs, 1. The interested reader can refer to Best and &(4981) for further
details concerning this section. Equation (2.2)wshthat the efficient portfolios mean is a
linear function of the risk appetite coefficienta @e other hand
Viug = Wiug ZtuWeug = Yo + 70, (2.3)
for some constants, y1, So that the efficient portfolio variance is a dratic function of the
risk appetite parameter. Solving the equation (a2 and substituting in (2.3), we have the
analytic expression for the conditional efficierdrftier that is
(Mg = Bo) = (Vg — 70)- (2.4)
This is a parabola in mean-variance plan or a tbglarnn mean-standard deviation space.

3. ORTHOGONAL FACTORSVARIANCE (OFV) MODELS

This section reviews the definition of Orthogona\RBCH factors for conditional VC matrix
estimation and forecasting. This description alsduides a review of univariate GARCH
specifications that will be compared in the follogianalyses. The Orthogonal GARCH
model was first proposed in Alexander (2001), andased on Principal Component Analysis
(PCA). A spectral decomposition is conducted ondbigmated covariance matrix returning
linear combinations of log-returns (the so calladgk rfactors) being uncorrelated by
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construction and having their variances represehtetheir eigenvalues. Consequently, the
usual advantages of PCA can be used to facilittee dovariance matrix estimation.
Furthermore, the estimated matrix will be positilefinite by construction, if all factors are
considered. Most importantly, predictions can béawmled by using univariate models. To
introduce the relevant notation, we can considerpgioblem dealt with render diagonal the
full square and symmetric matriX; = Var(x<2;). The corresponding eigensystem can be
written as

Etpt = PtAt ) (35)
where P; is the normalized eigenvector matrix amd is the eigenvalues matrix. By
construction, the first is an orthogonal and puesitlefinite matrix and the second is diagonal
positive semi-definite. The covariance matrix spdctlecomposition is therefore given by
X = PA{PL Omitting the classical details in PCA derivatiave will indicate the principal
components as the vectgy= Pix;., the conditional mean vector &y =g: and the
conditional covariance matrix &&ar(y:|<2;) = A«. The eigenvalues will be in decreasing order
and will represent the proportion of variance ekmd by the orthogonal factors.
Orthogonality allows the use of univariate mod@sfdrecast the factors conditional mean
vector asyy|2) = g:y and the factors covariance matrix\ée(y,|Q:) = A¢u. It follows that we
can define the assets conditional mean vectg as Pg:, and conditional covariance matrix
aSEt,u = PtAt,uP{.

3.1. GARCH Factors

We assume thp orthogonal factors to be modeled yas= /% &i;, whereei; ~ WNO,1) and
i=1,...,p. If Zit=4 V t, this setup would not reproduce variance clussnee the
conditional variance matrix will be time invariarf8ince this feature is clearly detectable in
our data, we will adopt the popular GARCH modelinghree alternative specifications. In
mid eighties the Generalized ARCH or GARCH modekvigtroduced (Bollerslev, 1986).
Accordingly, the conditional volatility was modelad

q p
Ay :a0+zak£t2—k+2ﬂj/1i,t—j' (3.6)
k=1 j=1

For a review of ARCH and GARCH models and theimafinial applications we refer the
reader to the available monographs (Gourieroux,71%9anses and Van Dijk, 2000). A
GARCH (1,1) model is equivalent to an infinite ARQHEpresentation with exponentially
declining weights on the lagged squared errorsitdnoriginal form, this process cannot
reproduce important empirical evidence, such asigtence in variance changes, leverage and
long memory, arising from the analysis of financiallatility. Consequently, we briefly
review three evolutions of this model and theiribasoperties. For a more detailed review of
these models and their Maximum Likelihood estimstave refer the reader to Zivot and
Wang (2003).

Non-stationarity. If the stationarity conditions do not hold, theogess is said to be
integrated GARCH or IGARCH. In the GARCH settingpneastationarity has different
meaning in comparison to the ARMA framework. For RE2H processes, when the sum of
the coefficients is equal to one, the variance imalsounded support, whereas in ARMA
models this implies unbounded support for the meampirically, non-stationarity of
GARCH processes causes high persistence of varsmeks. We can explore the GARCH
non-stationarity substituting in equation (3.6) émlp =g =1) a1 = 1 — 4, so that we have

Ay =0+ U= BELH B, (3.7)
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for a smoothing coefficierg; € (0,1). By iterating the substitution, we have thieresting
result

-

/]it -
’ (1_:81)

+(1- ﬁl)(gtz—l + :81812—2 + 12512_3 + 13€t2_4 +...). (3.8)

When 0o =0 this is equivalent to an infinite Exponentiallyeyhted Moving Average
(EWMA), such as the method used by J.P. Morganhi& RiskMetrics procedure, (see
Longerstaey and Spencer, 1996). This parametenzagduces to a single, exponentially
decaying coefficient that can be easily estimatesheén a multivariate setting. This procedure
has represented the benchmark approach for dddgilty forecasting.

Leverage and Heavy Tails. In classic GARCH models positive and negative khdave the
same effect on determining conditional varianceg¢ssithis variable exclusively depends on
squared residuals. However, a commonly observadrfdmancial volatility is that bad news
(negative shocks) tends to have a larger impaebdatility than good news (positive shocks).
The Exponential GARCH (EGARCH) model has been psedo(Nelson, 1991) to allow for
leverage effect. In this model the conditional aade evolves accordingly to

£ g, P~
+Z k‘tk‘ Viéia Z’Bj/]i’t_j’ (3.9)
|t -1 =

wherel;; = log(li). The response variable is now the log-varianstead of the variance.
This will ensure the positivity of the conditionabriance without needing coefficients
restrictions typically required by classic GARCH aeb Whene. is positive (or there is
good news), the innovation effect is{1;)[e._1|; in contrast, when_ is negative (or there are
bad news), the total effect is €ly)lei—1|. Bad news can now have a larger impact on the
variance, and the value gfwould be expected to be negative. In the follonamglyses we
will exclusively refer to EGARCH(1,1) models. Indar to take into account the occurrence
of large variance realizations, we will fit EGARGHRbdels witht—distributed innovations.

Leverage and Long Memory. The EGARCH approach is very useful in order to meva
robust approach for modeling time series that #encencountered in finance. In fact, it can
reproduce the so callddverage effecand a positive definite conditional variance, wiith
needing to constrain model coefficients. Anothepamant empirical feature characterizing
financial volatility is the slow decay of its autweelation function. This phenomenon is the
so calledlong range dependencaso known adong memory (see Mikosch and &ica,
2003). Incorporating long memory and leverage taaditional volatility modeling lead to
the direct extension of the Nelson’s EGARCH (Ballev and Mikkelsen, 1996). In order to
reproduce these features, a model has been propekete the conditional variance evolves
accordingly to:

@(L)L-L)° )Ti,t = c+i(rj ‘h’t_]. ‘ +yh, ) (3.10)

whereL is the lag operator, (—1L)d Is the fractional difference operator (fibk 1), ¢L) is the
stationary autoregressive polynomial dng= ¢/4;; are the standardized residuals. Bollerslev
and Mikkelsen (1996) proved that this model (tkatammonly called Fractionally Integrated
Exponential GARCH, or FIEGARCH, model) is stationaf 0 <d<1. In the following
analyses we will exclusively refer to FIEGARCH (lLidodels.
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4. ESTIMATING PORTFOLIOS

This section contains some statistical analyseshvhre intended to be preliminary to our
main comparison based on economic criterions. Emuai2.1) shows that the optimal
portfolio weights depend upon the VC matrix throuighinverse. In practice the VC matrix is
unknown and needs to be estimated from data. ioadéolio selection is mainly relevant as
optimal investment prediction, it turns out thataincial operators are interested in calculating
the optimal weights relative to a future period.eTkngth of this period typically depends
upon the investment horizon. Investment Banks ahapste short horizons to recalibrate
their portfolios, while Pension Funds are interéstelonger horizons, since the purpose of
their investment is typically be less speculatiVee predictions are also determined by the
methods and models used to estimate the VC matdxlee vector of expected returns. In the
following sections we will assess and compare #ropmances of three models, evaluating
portfolio sensitivity under both statistical andoromic perspectives. We will adopt the
common framework of OFV models, where the factoes assumed to evolve according to
three alternative GARCH (1,1) specifications. Wdl viirst consider the EWMA model,
deriving from the Integrated GARCH (IGARCH) modslidustrated in Section 3.1.

Figure 4.1 Log return series for five stock indices and fexchange rates observed in the period 4/4/1989 -
2/12/1996.

0 500 1000 1500 2000

| 1 1 1 | 1 1 1 1

Il 1 1
hk.bs jy.bs usd.bs

NIKKFI1500 S.P100 dm.b:

DAX30 ETSE100 o HKSEall
-

0 500 1000 1500 2000 0 500 1000 1500 2000

Notes From the top row, clockwise: HKD/BP, JY/BP, USIBYBNIKKEY 250, S&P 100, GM/BP, DAX 50,
FTSE 100, HKSE all.

We will then consider the so called Exponential GR(EGARCH) model that is capable of
reproducing the negative skewness in returns awotbrfa distribution. Finally, we will
consider the so called Fractionally Integrated Exgmiial GARCH (FIEGARCH) model that
can also reproduce the long range dependence afbserved in financial volatility.
Orthogonal GARCH (OGARCH) models have been largslgd by the financial industry for
long time, and still provide a reliable instrumeaitwide practical application. Despite the
availability of multivariate models (however, widomehow restricted parameterizations),
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OGARCH are still considered a robust framework thederves to be further analyzed for its

predictive ability. We have deliberately choseratadet of strongly correlated asset returns in
order to mimic the way this modeling strategy hasrbadopted in the financial industry. The

following analysis, therefore, should be of majoterest to financial analysts, usually very

interested in computationally robust methodologies.

Several authors note that by considering stronglyetated assets, the OFV models can
provide a good approximation of the optimal faatetermination. The choice of OFV models
will allow us to compare relative merits of the r@imentioned GARCH specifications,
something that is not always possible to attaiednysidering multivariate GARCH, for which
such extensions are often not available. In outlystlog-returns of five stock indices (S&P
100, FTSE 100, NIKKEY 250, HKSE-all-shares and DAB) and four exchange rates (the
exchange rate of British Pound (BP) vs. four cwiest US Dollar (USD), German Mark
(GM), Japanese Yen (JY) and Hong Kong Dollar (HKidye been considered in order to
take into account the correlation between markedsralated currencies.

In addition to statistical diagnostics, performanaé different methods can be reasonably
assessed looking at the consequences on managstraagies. This comparative analysis

will be conducted in Section 5, by fitting our méleither on the fixed sample displayed in

Figure 4.1, and on rolling windows starting wittattsample. In either case, the sample and
the windows will be of size 2000.

Figure 4.2 Scree plot for Orthogonal Variance Factgrs.., yq
risk factors

0.384

Variances

Comp.l Comp.2 Comp.3 Comp4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

4.1. Estimating PCA

In this section we will estimate orthogonal factws the dataset illustrated in Figure 4.1. In
particular, we analyze the covariance matrix u$d@A and represent graphically the most
important loadings. We also look at the eigenamslgbthe sample covariance matrix, so that
the cumulative eigenvalues can be represented assigple scree-plot.

From the scree-plot (Figure 4.2) there is evidahee 5 principal components explain a large
part of the overall variance. Figure 4.3 displalge torresponding principal components

7



CardinaltAn Out-of-sample Analysis of Mean-Variance Poigfolvith Orthogonal GARCH Factors

loadings. The first component explains a large phthe variance (about 38 %) and has been
kept fixed. The other factors are plotted on thetiv®l axes. Figure 4.3 contains clear

evidence that the first principal component caniriierpreted as representing the negative
correlation between market indices and currencidse remaining principal components

loadings are difficult to interpret.

Figure 4.3 Orthogonal Factors Loadings
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Notes In the horizontal axig; is kept fixed for all plots. In the vertical axfspm the top row, clockwisep, ys,
Va4 ¥s. We have evidence thgt represents the negative correlation between statikes and currencies.

4.2. Comparing Fitted Models

The popular EWMA model, which has been widely ubgdhe investment industry, in our
comparative analysis serves as benchmark agairnishwie assess, through the EGARCH
platform, the relative merits of modeling heavyidand long memory. In both latter cases,
the EGARCH model has been chosen since the in-gammplysis has shown significant
leverage effect. We recall that our main aim isagsess the various models through their
portfolio performances. However, in this section eanduct a statistical in-sample analysis
which is preliminary to the out-of sample companisdherefore, in this section we discuss
several evidences arising from fitting the aforetimered models to orthogonal factors as
estimated from our dataset. The first analysis aanginding a convenient heavy tailed
distribution for the EGARCH model to be used in thésequent comparative study. We
considered a Studendistribution, with increasing degrees of freeddéonfind the best fitting
of EGARCH residuals. Figure 4.4 shows quantile pfot the best fitting distribution, which
has six degrees of freedom. We then perform adugheliminary analysis by comparing the
outcome of statistical diagnostics for the threetda models, where the fitted EGARCH
assumes student-t distributed residuals.

We henceforth call this model theeGARCH model. We analyze residuals, obtained from
fitting the three models, by testing the null hypeges about the absence of serial correlation
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and ARCH effects. We use the Ljung-Bpwertmanteautest for the first purpose and the
Breusch-Pagan test to conduct the second analysis. results of the two tests are
summarized in Table 4.1 and Table 4.2, respectively

Figure 4.4 QQ plots between Gaussian EGARCH factor model vadédand Studeritrandom draws with 6
d.o.f.
Student-t QQ-plots for on return residuals
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MODEL I E F
FACTORS LJtest p.wval LJtest pwval LJtest p.val
Vit 115.76¢ 0.13 62.60 1 81.0 0.9
Yot 68.81 0.99 149.27 O 131.1 0.02
Yt 188.88 O 2825 1 365 1
Yat 1980 1 72.89 0.98 80.9 0.92
Vst 46.43 1 6432 1 641 1
Vet 3746 1 89.75 0.76 811 0.9
Y7t 76.88 0.96 117.23 0.11 110.2 0.23
Yai 248.34 0 55.69 1 69.7 0.99
Yor 169.99 0 127.41 0.03 108.3 0.27

Table 4.1 Ljung-Box (LJ) test for the three orthogonal factoodels: the EWMA-IGARCH model (1), the-
EGARCH (E) and FIEGARCH (F).

According to the tables above, none of the threeofamodels is remarkably superior to the
other contenders. However, we have evidence thatRIEGARCH model is somehow
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superior to its competitors in terms of Ljung-Boestt (absence of auto-correlation in
residuals), whereas the EWMA-IGARCH model is somelsuperior to its contenders in
terms of Breusch-Pagan test (absence of ARCH sffeaesiduals).

MODEL I E F
FACTORS BPtest p.val BPtest pwval BPtes p.val
Vit 793 1 16.18 1 68.30 0.99
Yai 9.65 1 1166.8z2 O 97334 0
Y3t 3742 1 046 1 094 1

Yat 036 1 69.36 0.99 7751 0.95
Vst 030 1 5.03 1 987 1
Yot 026 1 582 1 16.84 1

Y71 4451 1 14438 0 106.00 0.3
Vst 69158 O 364 1 912 1
Yo 236 1 286.24 0 313.1¢C O

Table 4.2 Breusch-Pagan (BP) test for the two orthogondbfamodelst-EGARCH (E) and FIEGARCH (F).

5. COMPARATIVE OUT-OF-SAMPLE ANALYSIS

In this section we compare GARCH factor models enmis of out-of-sample portfolio
performances. We will measure portfolio sensititdydifferent approaches for predicting the
conditional covariance matrix and the vector of eotpd returns. More precisely, the
following criteria will be used:

Efficient frontier analysis: this qualitative ansiy will compare how different models
produce out-of-sample efficient frontiers. Based anfixed sample of 2000

observations, for each model four different foréiogshorizons are considered (1
week, 2 weeks, 1 month, 2 months), in order towapthanging in performance due
to different forecasting horizons. We will prefeodels giving a stable estimation of
portfolio mean and variance so that the frontieH wot be too sensitive to the

forecasting horizon.

Turnover: this is an important criterion for asseanagement. In presence of
transaction costs, asset sales or purchases amgedhaf a percentage that decreases
net returns, so we will prefer a model that, gieecertain one-step-ahead forecasting
power, ensures more stable weights requiring alsmaiount of costs to update the

efficient investment. Here we use a measure oflatesturnover given by:
500

A 1
= 1'(Wis1 tq—Wr i1 |), 5.11
4= goc tzzl: (Wtr159— Wig-1q [) (5.11)

wherew 1,14 IS a set of efficient weights relative to a riglpatite level forecasted at
timet for timet + 1. As in the previous exercise, the backtest sammigke is 500. A
previous work where this assessment criterion wdgpted is Gerhard and Hess
(2003). The new aspect of our analysis is in thet measure is now calculated for
different risk appetite levels, and a relation be#w costs (turnover) and risk can be
evaluated for mean-variance portfolios.
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» Forecasted residuals chart: We will use 500 timietppranging from (4/12/96) till
(3/11/98), to build-up a backtest exercise on dep-sahead standardized portfolio
returns. The standardization is conducted by meéfwrecasted conditional portfolio
mean and variances estimated from a rolling winadw2000 observations. For a
model capable to capture the serial dependenceardnce factors, we expect the
standardized portfolio returns (using conditionadéam and variance) to behave as
independent and (Gaussian) identically distributeddom errors. For each risk
appetite level, and for each forecasting horizer 0, we then measure the empirical
size of Gaussian confidence regions (of 95% nomieaél) built-up from these
standardized residuals using the empirical measure:

500

A 1 :ut+r' _rntt+r'

b=t Y| [Hrera Muers

q

50C = || Mg |

wherel(-) is the indicator functiomm..q is the portfolio (at time) conditional mean
forecasted for timé+ r andw.+.q iS the portfoliot conditional variance forecasted for
time t+7. In this formula, each value df=1,...,500 corresponds to a daily
observation within the backtest period.

<196, (5.12)

5.1. Efficient Frontier Portfolios

Looking at the entire frontier, we want to extend oomparative analysis in order to inspect
how different forecasting models perform with regpe different risk levels. In this analysis
we will consider forecasting horizons of 1 and 2ks&and 1 and 2 months. Figure 5.5 shows
the frontier estimated for the EWMA-IGARCH model.

Figure 5.5 Out-of-sample Efficient Frontier for EWMA Factor Mel.
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Portfolio variances

We have evidence that this model delivers port®ohath larger mean and variances, in
comparison to the other models. The figure alsavsh® marked sensitivity of frontiers, with
respect the forecasting horizon. The second fromiél be estimated by the Orthogonal
EGARCH model, fitted using a Studentdistribution. Looking at Figure 5.6 we have
evidence that, also in this case, both mean anthn@ estimations decrease for larger
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horizons, and their magnitude is directly relatedhe risk level. The portfolios appear to be
more stable than in the previous case, and botmsnaad variances lie in smaller ranges.
Figure 5.7 shows the frontier estimated by usirgRlEEGARCH factor model. There is now
a similar behavior to the previous model, althotiyk strategy seems to be characterized by
higher sensitivity to risk and forecasting horiz&ummarizing, all models showed decreasing
estimates for both mean and variance in relatiothéoforecasting horizons. This decrease is
more marked for the EWMA model, but it's also catsnt for the FIEGARCH model. The
t—~-EGARCH model seems to deliver the more stablecastng, in relation to the forecasting
horizons that we have considered.

Figure 5.6 Out-of-sample Efficient Frontier for EGARCH Factdodel.
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Figure 5.7 Out-of-sample Efficient Frontier for FIEGARCH Factdodel
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5.2. Portfolios Turnover

This criterion compares the stability of weights @ sequence of forecasted efficient
portfolios. This measure is relevant in presencérarisaction costs, when it represents the
expected cost for maintaining an efficient investtndn the previous section we have
formalized the measure used in this analysis. T&bB displays the results of estimated
turnovers using the three factor models.

The FIEGARCH model shows the lowest turnover whempgared with the competitive
models. Thet-EGARCH model show lower turnover than the FIEGARQ@kbdel for
minimum variance portfolios, but then increasinginderperform the FIEGARCH for
increasing values of the risk appetite parametene TEWMA-IGARCH uniformly
underperforms both competitive models, except forimmum variance portfolios, for which it
shows superior performance in comparison to botiteswlers. In particular, since minimum
variance portfolio weights do not depend upon tkpeeted portfolio returns, the EWMA
model seems penalized by its inferior forecastipitjtg for this latter quantity.

q EWMA tEGARCH FIEGARCH
0 0.72 1.05 2.39
2 22.20 13.60 11.32
4 34.76 26.37 20.59
6 46.15 39.32 30.00
8 58.25 52.50 39.55

10 70.55 65.82 49.32

Table 5.3 Portfolio absolute turnovej, for the three orthogonal factor models: EWMA (IGBR), t-EGARCH
and FIEGARCH.

5.3 Forecasting Standardized Portfolio Returns
In this analysis we have used up to 500 observattonconstruct out-of-sample charts of

conditional standardized portfolio returns. Table4 Ssummarizes the results of this
experiment, carried out in relation to differentdoasting models and horizons.

q E E F
1w. 2W. im. 2m. w. 2W. im. 2m. 1w. 2W. im. 2m.

.53 .53 .53 .53 .84 .83 .83 .81 .65 .64 .64 .63
.53 .53 .52 .52 .82 .81 .81 79 .68 .68 .68 .67
.52 .52 .52 .52 .81 .80 .80 .78 .69 .69 .68 .68
51 .52 .52 .52 .83 .81 79 g7 .69 .68 .67 .67
.52 .52 .52 .52 .83 .81 79 .78 .70 .70 .69 .67
10 .52 .52 .52 .52 .83 .81 .80 .78 .70 .69 .67 .65

o o M~ N O

Table 5.4 Empirical significance level of prediction intetsd,, for the EWMA-IGARCH (I) and the two
orthogonal factor model$:EGARCH (E) and FIEGARCH (F).

13



CardinaltAn Out-of-sample Analysis of Mean-Variance Poigfolvith Orthogonal GARCH Factors

Looking at Table 5.4, the FIEGARCH model appeary vebust with respect to risk appetite
and to different forecasting horizons. However, tise of a Gaussian distribution causes the
effective interval sizes to be sensibly lower thidwe theoretical level. The Orthogonal
EGARCH model shows the best forecasting performainbe effective significance level is
not much lower than the nominal level, and is v&uperior to the results obtained from the
FIEGARCH model. Instead, the EWMA-IGARCH has thersi@erformance. Summarizing,
we have evidence that both FIEGARCH aftiGARCH provide reasonably good prediction
intervals. The EWMA model provides less reliableefmasting, in relation to the considered
forecasting horizons. This behavior seems to be doeits heavily constrained
parameterization. A word is in order, about thesgerty of these results upon the window
length (2000 time points) that we have used. Thbiltly of the empirical confidence levels
across the forecasting horizons, and the simulattadies conducted in various studies (see
Demos and Kyriakopoulou, 2010) suggest that thispda size is adequate to obtain reliable
estimates of parameter values. In other words, bilas of estimates does not decrease
significantly for increasing sample size. Bias ecations can always be applied, but in most
cases, these provide some improvements for realstmple sizes, of at most 3000
observations. In any cases, given the evidencefarementioned simulation studies, it is
prudent to use samples of at least 500 observations

6. CONCLUSIONS

We conducted a comparative study on the mean-\aigortfolio performances for three
different orthogonal factor variance (OFV) moddike orthogonal factors were estimated by
means of principal component analysis. We theretmesidered univariate GARCH-type
models for predicting variance factors. We inigatonsidered the Orthogonal EWMA-
IGARCH, as benchmark model. This is the generabmatof the popular RiskMetrics
procedure, since it allows the single orthogonatdis to be smoothed individually. We then
compared this popular model with EGARCH factorsewmhthe relative merits of heavy tails
and long memory have been taken into account. Wknmpnarily evaluated these models in
terms of statistical diagnostics and then compagetheans of portfolio performances. These
latter analyses included both qualitative and gtetite out-of-sample comparisons,
conducted in order to assess portfolio performanioesdifferent risk levels. From a
qualitative standpoint, we evaluated out-of-sangffecient mean variance frontiers, in order
to assess the sensitivity of portfolios to risk eitp. For a quantitative analysis we conducted
a backtest exercise with standardized portfoliarret chart, along with a comparison of
portfolio absolute turnovers. It turned out that thwverall best performance was provided by
the EGARCH model, when fitted with a Studerdistribution with 6 degrees of freedom.
Overall, the EGARCH model outperformed the FIEGAR@kbdel, which also showed
reasonable performances along with the EWMA-IGAR@biel. Despite its wide use in the
financial industry, this latter model produced pagportfolio performances in comparison to
the EGARCH-type factors. This shows that, alonchwieavy-tails, the leverage effect also
plays a significant role in the prediction of effiot portfolios. We conclude that the out-of-
sample performances of mean-variance portfoliosnasee positively affected by the use of
heavy- tailed factors rather than the inclusiotoafy memory effects, an important role being
played by the leverage effect. &+ library portfoliOGARCH containing the software used
in our analyses is in preparation and will be ald# from the author upon request.
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