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ABSTRACT 

 
This paper has attempted studying the twin issues of asymmetry/leverage effect and 

excess kurtosis prevalent in India‟s stock returns under alternative volatility specifications 

as well as conditional distributional assumptions. This study has been carried out using 
daily-level data, based on India‟s premier stock index, BSESENSEX, covering India‟s 

post-liberalisation period from January 1996 to December 2010. Apart from lag returns, 

three other variables viz., call money rate, nominal exchange rate and daily dummies 
have been used as explanatory variables for specifying the conditional mean. Three 

alternative models of volatility representing the phenomenon of „leverage effect‟ in 

returns viz., EGARCH, TGARCH and asymmetric PARCH along with standard GARCH 
have been considered for this study. As regards the assumption on conditional 

distribution for the innovations, apart from the Gaussian distribution, two alternative 

conditional distributions viz., standardized Student‟s distribution and standardized GED 

for capturing the leptokurtic property of the return distribution have been considered. 
Further, comparisons across these models have been done using forecast evaluation 

criteria suitable for both in-sample and out-of-sample forecasts. The results indicate that 

the asymmetric PARCH volatility specification performs the best in terms of both in-
sample and out-of-sample forecasts. Also, the assumption of normality for the conditional 

distribution is not quite statistically tenable against the standardized GED and 

standardized Student‟s distribution for all the volatility models considered. 

 
Key words: Leverage Effect, Excess Kurtosis, Volatility Specification, Conditional 

Distribution, Out-Of-Sample Forecasts 

JEL Classifications: G00, G1, C5 

 

 

1. INTRODUCTION AND LITERATURE REVIEW 

 

Asset returns tend to cluster i.e., large (small) changes tend to follow large (small) changes. 

This phenomenon, called volatility clustering, was first observed by Mandelbrot (1963). 

Appropriate modelling of volatility is an essential part of any predictability study on asset 

returns. Moreover, proper estimation of volatility, for example, through the value-at-risk 

methodology, is necessary for portfolio analysis and risk management (Taylor, 2004).  

 

As a consequence of volatility clustering, the hypothesis of normally distributed price 

changes, first noted by Bachelier (1900, see Herwartz, 2004, for details), failed to explain the 
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unconditional distribution of empirical returns. This led to the generation of a vast body of 

literature on time-varying volatility, which began with the seminal contribution by Engle 

(1982). To capture the volatility of asset returns, Engle (1982) proposed the class of 

autoregressive conditional heteroscedastic (ARCH) models. Subsequently, the conclusions of 

most empirical studies indicate that in order to capture the dynamics of conditional variance, 

high orders of ARCH need to be selected. Therefore, to model a persistent movement in 

volatility without allowing for large number of coefficients in the ARCH model, Bollerslev 

(1986) suggested a generalization of this model called the generalized autoregressive 

conditional heteroscedastic (GARCH) model. The GARCH(1,1) model is the most commonly 

used model in the family of GARCH models. As pointed out by Bollerslev et al. (1994), the 

GARCH(1,1) model has indeed proven to be very useful in describing a wide variety of 

financial market data, including Indian Stock Market data (see Sarkar and Mukhopadhyay, 

2005, for details). As evident from the specification of the GARCH model, this class of 

models is symmetric, in that negative and positive shocks have the same effect on volatility. 

Empirical literature on returns of risky assets, however, following Black (1976) and Christie 

(1982), has pointed out that negative shocks have a greater impact on future volatility than 

positive shocks. This asymmetry in equity returns is typically attributed to the „leverage 

effect‟, which basically means that a fall in a firm‟s stock value causes the firm‟s debt to 

equity ratio to rise. This leads shareholders, who bear the residual risk of the firm, to perceive 

their future cash-flow stream as being relatively more risky.  

 

Nelson (1991) extended the usual GARCH model in order to capture the leverage effect 

alongside volatility. This model, known as the exponential GARCH (EGARCH) model, has 

been widely applied in studies concerning stock market returns including a few on Indian 

stock returns. Building on the success of the EGARCH model, some other extensions of 

GARCH have been proposed to represent asymmetric responses in the conditional variance to 

positive and negative shocks. For instance, Glosten et al. (1993) and Zakoian (1994) have 

suggested using the threshold GARCH (TGARCH) model. Taylor (1986) and Schwert (1989) 

introduced the standard deviation GARCH model, where, instead of the variance, the standard 

deviation is modelled. This model, along with several other models, is generalized in Ding et 

al. (1993) with the „power ARCH‟ specification. In the power ARCH (PARCH) model, the 

power parameter of the standard deviation can be estimated rather than imposed, and the 

optional parameters are added to capture asymmetry.  

 

Apart from this issue of asymmetry in equity/stock returns, the issue of appropriate 

(conditional) distributional assumption of returns is also very important for analysing return 

data. Most often, conditional normality is considered to be the distribution, but unfortunately 

this is rarely supported by the volatility exhibited in economic and financial data. In fact, it is 

a widely accepted fact that most financial market data exhibit leptokurtosis and sometimes 

also asymmetry in return distributions (see, for example Kon, 1984; Mills, 1995 and Peiró, 

1999). 

 

As a solution to this problem within the framework of parametric models, alternative 

distributional assumptions allowing for excess kurtosis have been considered. For instance, 

Bollerslev (1987) and Tucker (1992), among others, have advocated evaluating sample log-

likelihood under the assumption that innovations εt follow a standardized Student‟s 

tdistribution. In a similar spirit, Nelson (1991) suggested using a standardized general error 

distribution (GED). 
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 The main objective in this paper is to consider the issues of leptokurtosis and asymmetry 

simultaneously for analysing the time series of returns on the well-known Indian stock market 

index called the Bombay stock exchange sensitive index (BSESENSEX). To the best of our 

knowledge, no such study considering the twin issues of “leverage effect” and excess kurtosis 

has so far been carried out with any Indian stock index or equity data. Only a few studies have 

so far been done on modelling asymmetric volatility alone: notable among these are the ones 

by Batra (2004) and Goudarzi and Ramanarayanan (2011). However, even these two are very 

limited in terms of the asymmetric volatility models considered and the methodology applied.  

 

To that end, we have taken the three asymmetric volatility models mentioned earlier viz., 

EGARCH, TGARCH and asymmetric PARCH models along with the standard symmetric 

GARCH model, and three distributions of which one is the normal distribution and other two 

are the standardized t–distribution and standardized GED which capture excess kurtosis. This 

paper also compares these different volatility models and distributional assumptions in terms 

of forecast performance – both in–sample and out-of–sample -- by using appropriate forecast 

evaluation criteria.  

 

Synthesizing these findings should reveal which volatility specification and distributional 

assumption fit the Indian stock returns best. This study examines daily-level BSESENSEX 

data covering India‟s post-liberalisation period from January 1996 to December 2010, of 

which observations from January 1996 to December 2008 constitute the in-sample period, and 

the remaining two years constitute the out-of-sample period.  

 

This paper has been organized in the following format. The next section presents the 

modelling approach. Empirical results of the various models are discussed in Section 3. 

Section 4 presents the findings on forecast performances of these models. The paper closes 

with some concluding remarks in Section 5. 

 

2. MODELLING APPROACH 

 

In this section, we describe the modelling approach and the tests to be applied in our study. 

Assuming pt to be the logarithm value of stock price index BSESENSEX, Pt, return rt is 

defined as rt
·
=

·
pt

·
–

·
pt–1. We first test the stationarity of rt by applying the augmented Dickey-

Fuller (ADF) test (Said and Dickey, 1984) and the Phillips-Perron test (1988). As the series is 

a long one, we test parameter stability using the Quandt-Andrews unknown breakpoint test, 

considering an autoregressive model of order 1, AR(1), for rt. Along with lag returns and 

daily dummies, we have considered call money rate and daily nominal exchange rate of 

Indian rupee vis-à-vis US dollar as the other explanatory variables in the specification of the 

conditional mean (see, Sarkar and Mukhopadhyay, 2005, for details). We now specify the 

conditional mean model along with the four volatility models considered in this study.  

 

2.1. Alternative Volatility Assumptions  

  

Model for returns with GARCH(1,1) volatility: The specifications of the conditional mean 

and conditional variance of rt are as follows: 
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Where zt is the standardized innovation being independently and identically distributed (i.i.d.) 

with E(zt) = 0 and V(zt) = 1, ht represents the conditional variance at time t, Dj, j = 1,2,…,d , are 

daily dummies, α0 > 0, α1 ≥ 0 and δ ≥ 0, it is the call money rate variable at time point t, xt and 

is the log difference in nominal exchange rate. 

 

Model for returns with TGARCH(1,1) volatility: The TGARCH(1,1) model is a simple 

extension of GARCH(1,1) model with an additional term added to take account of the 

possible leverage effect in the data. Obviously, the conditional mean specification is the same 

as in (2.1). The conditional variance is now specified as:  
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where It–1 is an indicator function defined as: It–1 = 1 if εt–1 < 0 and = 0 otherwise. For leverage 

effect in the returns, one would find γ > 0. The non-negativity restrictions on the other 

parameters are now α0 > 0, α1 ≥ 0, δ > 0 and α1 + γ ≥ 0, and For this model, positive news have 

an impact of α1, while negative news have an impact of (α1 + γ), and thus negative news have a 

greater impact on volatility if γ > 0. 

 

Model for returns with EGARCH(1,1) volatility: In addition to TGARCH model, another 

well-known model designed to capture the asymmetries in the conditional variance is the 

EGARCH model introduced by Nelson (1991). In this model, ht is expressed in the following 

logarithmic transformation:  
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Now, if α
*
1 > 0, the process in (2.4) generates volatility clustering, provided that the quantity 

within the brackets is positive. In addition, in case γ
*
, there will be a negative relationship 

between volatility and returns, which is the leverage effect. The model specified in (2.4) has 

an obvious advantage over the conditional GARCH model in that conditional variance in this 

specification will always be positive irrespective of the sign of the parameters since ht is 

specified in logarithmic scale. However, as pointed out by Engle and Ng (1993), one 

particular drawback of the EGARCH model is that-- owing to the exponential structure of ht -- 

the model may tend to overestimate the impact of outliers on volatility.  

 

Model for returns with asymmetric PARCH(1,1) volatility: In the „power ARCH‟ model, 

the power parameter λ of the conditional standard deviation ζt (= ℎ𝑡) can be estimated rather 

than imposed, and the optional parameter ρ is added to capture asymmetry. The asymmetric 

PARCH(1,1) model is specified as follows: 
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where λ > 0 and |ρ| ≤ 1. The model is symmetric when ρ = 0. Note that if λ = 2 and ρ = 0 then the 

asymmetric PARCH model is simply the standard GARCH model. 

 

2.2. Forecast Evaluation Criteria  

  

Insofar as comparisons amongst the different models in terms of forecasts are concerned, we 

have used both the in-sample and out-of-sample forecast performances of returns, and the 
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usual criteria have been applied, such as, the mean absolute error, mean absolute per cent 

error, the root mean squared error and the Theil‟s inequality (Theil). Further, in recent 

forecasting literature, some studies have been carried out to find an appropriate and accurate 

measure for evaluating different forecasting methods (see for example, Makridakis, 1993; 

Makridakis and Hibon, 1993; Makridakis et al., 2000). To that end, an adjusted form of mean 

absolute per cent error, which satisfies both theoretical and practical concerns while allowing 

for meaningful relative comparisons, has been proposed. The mean absolute error (MAE), 

which measures the average absolute forecast error, is defined as follows:  

 ||
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  (2.6) 

where ft,s is the s-step ahead forecast of returns based on t in-sample observations, n is the total 

sample size i.e., sum of in-sample and out-of-sample sizes, and (n1 + 1) th sample is the first 

out-of-sample forecast observation. The in-sample model estimation initially runs from 

observations 1 to n1, and observations n1 + 1 to n are available for out-of-sample forecasting so 

that the hold-out sample size is n – n1.  

 

The other two standard criteria i.e., the root mean squared error (RMSE) and the mean 

absolute per cent error (MAPE) are defined as:  
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The RMSE is a conventional criterion that clearly weights greater forecast errors more heavily 

than smaller forecast errors in the forecast error penalty. This may, however, also be viewed 

as an advantage, if large errors are not disproportionately more serious, although the same 

critique could also be applied to the so-called least squares methodology. As these statistics in 

(2.6) and (2.7) are unbounded from above, little can be inferred based on the value of RMSE 

or MAE, when taken individually, as to which model would be considered best. Instead, the 

MAE or RMSE from one model should be compared with those of other models for the same 

data and forecast period, and the model with the lowest value of error measure would be 

considered as the better model. On the other hand, the MAPE criterion is scale invariant. As 

regards the Theil inequality coefficient, it always lies between 0 and 1, where zero indicates a 

perfect fit.  

 

Finally, the adjusted MAPE (AMAPE) is defined as: 
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This criterion corrects for the problem of asymmetry between the actual and forecast values. 

 

2.3. Alternative Distributional Assumptions  

  

For all the volatility specifications considered so far, namely, GARCH(1,1), EGARCH(1,1), 

TGARCH(1,1) and asymmetric PARCH(1,1), the parameters in the conditional mean as well 

as in the conditional variance are usually estimated by the maximum likelihood method under 

the assumption of conditional normality, which is more of an ad hoc assumption than one 
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based on any statistical or economic reasoning. It has been found in the empirical literature on 

GARCH model that conditional normality of returns is more of an exception than the rule. 

Therefore, the issues regarding estimation and inference arising out of the distributional 

assumption of conditional non-normality of returns have also become prominent in the 

literature on volatility models. Further, it is worth noting that when the assumption of 

normality is violated, it is no longer possible to provide appropriate forecasting intervals. 

Moreover, maximum likelihood estimation, under misspecification of the (non-Gaussian) 

conditional distribution, may yield inconsistent parameter estimates (Newey and Steigerwald, 

1997).  

 

Under these circumstances, parametric models with other distributional assumptions have 

been suggested. Since excess kurtosis is an important problem with return data, distributions 

capturing excess kurtosis have been proposed. For instance, Bollerslev (1987) has advocated 

that innovations follow the standardized Student‟s t-distribution. On the other hand, Nelson 

(1991) has suggested the standardized general error distribution (GED). The probability 

density functions of these two alternative distributions are given below. 

 

Standardized Student’s t–distribution: The innovation zt is said to follow a standardized 

Student‟s t–distribution with degrees of freedom v, mean zero, and variance ht involving the 

parameters η if it has the following probability density function: 
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where Γ(.) denotes the gamma function, Γ(s) = ∫
∞

0 x
s–1

exp(–x)dx, s > 0. As v→∞, the density in 

(2.9) coincides with the Gaussian density. 

 

Generalized error distribution (GED): The random variable εt, having mean zero and 

variance ht involving the parameter vector η, is said to follow the generalised error 

distribution if its probability density function is given by:  
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where v is now called the shape parameter, and λ is defined as:  
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In case v = 2 , the density in (2.10) reduces to that of N(0,ht), and the distribution becomes 

leptokurtic if v < 2. For v = 1, the GED coincides with the double exponential distribution. 

Further, as v→∞, the GED approximates the rectangular distribution. 

 

3. EMPIRICAL RESULTS 

 

The time series on India‟s premier stock index, BSESENSEX, has been collected from the 

official website of the Bombay Stock Exchange (www.bseindia.com). The data on call money 

rate have been taken from the website of the Reserve Bank of India (www.rbi.org.in), and the 

nominal exchange rate series have been obtained from the Federal Reserve Bank of St. Louis 

file:///S:\EAD\makale%20donusum\Yeniler\www.bseindia.com
file:///S:\EAD\makale%20donusum\Yeniler\www.rbi.org.in
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of the U.S.A. (www.wikiposit.com). All data sets are at daily-level frequency from January 

1996 to December 2010.  

The different models, borne out of different assumptions on volatility and conditional 

distribution, considered in this paper have been estimated using the maximum likelihood 

method. All computations have been carried out with EVIEWS 7. 

 

We present descriptive statistics in Table 3.1 for understanding the DGP of return series 

process. The mean and the standard deviation of the returns on BSESENSEX show that the 

mean is not different from zero. The value of the coefficient of skewness indicates that the 

series is skewed, and the kurtosis value (8.636) is much higher than that for a normal 

distribution (3), indicating that the return distribution is fat-tailed. We then present the results 

of the ADF and PP unit root tests on daily returns on BSESENSEX. Also included are the call 

money rate and the nominal exchange rate of Indian rupee in terms of the US dollar ($) - both 

at daily level. 

 
Mean 0.001 

Median 0.001 

Std. Dev. 0.018 

Skewness -0.186 

Kurtosis 8.636 

Table 3.1 Descriptive statistics of daily returns on BSESENSEX. 

 
Variable ADF test statistic  p-value  PP test statistic  p-value  

Return on BSESENSEX -56.415 0.000 -56.398 0.000 

Call money rate -10.746 0.000 -27.593 0.000 

Return on Exchange rate -63.948 0.000 -63.836 0.000 

Table 3.2 Results of unit root tests. 

Notes: The time series on call money rate is at level value. The SIC criterion has been used to choose the lag 

value for the ADF estimating equation. The MacKinnon (1996) one-sided p-values are reported. 

 
Test Statistic value p-value 

Maximum LR F-statistic 3.157 0.865 

Maximum Wald F-statistic 6.314 0.372 

Exp LR F-statistic 0.598 0.787 

Exp Wald F-statistic 1.255 0.402 

Ave LR F-statistic 1.139 0.716 

Ave Wald F-statistic 2.279 0.311 

Table 3.3 Results of Andrews test for structural break in the return series. 
Notes: p-values have been calculated using Hansen's (1997) method, and the truncation parameter has been taken 

to be 0.15. 

 

The values of these test statistics are presented in Table 3.2. As evident from this table, all the 

series are stationary at the 1% level of significance. Also, the kurtosis value of BSESENSEX 

returns is 8.636, indicating fat tails compared to that of normal distribution. The significant 

value of the Jarque-Bera test statistic clearly rejects the assumption of normality. 
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Furthermore, the values of Ljung-Box test statistic for the squared returns are significant, 

which indicates the presence of second-order dependence in returns. For instance, the values 

for lags 2, 12 and 22 are 195.57, 703.69 and 920.32, respectively, which are all highly 

significant. An application of the Andrews (1993) test of parameter stability reveals that the 

return series is stable for the entire period considered. The results of this test for stability are 

presented in Table 3.3. As evident from Table 3.3, statistic values derived from the Andrews 

test suggest that the hypothesis of „no structural break‟ cannot be rejected.  

 

We also conducted a one-sample Kolmogorov-Smirnov test for normality and found that the 

return series shows departure from normality, as shown below in Table 3.4. 

 
Smaller group Test Statistic p-value Corrected p-value 

Return on BSESENSEX 0.056 0.000 - 

Cumulative -0.059 0.000 - 

Combined K-S 0.059 0.000 0.000 

Table 3.4 One-sample Kolmogorov-Smirnov test against theoretical distribution normal. 

 
Figure 3.1 Histogram of BSESENSEX returns series 

 
 
Figure 3.2 P.d.f. of standard normal and standardized Student‟s t–distribution of BSESENSEX series 
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Figure 3.3 Kernel density of BSESENSEX returns 

 
 

The histogram of the return series is given in Figure 3.1 demonstrating the asymmetry of the 

series. The Kernel density estimate, as shown in Figure 3.3, also confirms departure from 

normality, indicating that the excess kurtosis is strongly evident for this series. Similar 

conclusions can also be drawn from Figure 3.2. 

 

Next, we report the results of the maximum likelihood (ML) method of estimation of the 

conditional mean as specified in equation (2.1) and the conditional variance given by the 

GARCH family of volatility specification (i.e., equation 2.2 for GARCH(1,1)) under the three 

assumed conditional distributions viz., Gaussian, t and GED in Table 3.5. The order of the 

GARCH volatility model is (1,1) for all distributional assumptions. As regards the choice of 

𝑚 , own lag length of rt, we began with a sufficiently large value of 30. Thereafter, 

insignificant lag values of rt were dropped, and the model was re-estimated with only the 

significant lags. The results of this model are reported in Table 3.5. This has been followed 

for all the models.  
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Apart from these lags, the interest rate (it) and nominal exchange rate (xt), both of negative 

signs, were found to be significantly present. This strong evidence of the causal influence of 

exchange rate on stock prices is consistent with similar findings (see, for instance, Abdalla 

and Murinde, 1997 and Granger et al., 2000). The main implication is that changes in 

exchange rate affect a firm‟s exports as well as the cost of imported goods and production 

inputs, thus ultimately affecting stock prices. Since interest rate is an opportunity cost of 

holding stock, an increase in the interest rate is likely to lead to a substitution effect between 

stocks and other interest bearing assets. Therefore, as interest rate declines, stock price could 

be expected to rise (see Musilek, 1997, for further details).  

 

Moreover, an LM test (also called Rao‟s score test) was carried out to test for the presence of 

any remaining volatility in the residuals of the fitted model under each of the three different 

assumptions on the conditional distribution. This test statistic is evaluated under the null 

hypothesis of „no conditional heteroscedasticity‟ in the fitted residuals 𝜀𝑡 . In case the 

alternative hypothesis is an ARCH(q) model, 𝜀𝑡 
2 is regressed on 𝜀 𝑡−1

2 ,…, 𝜀 𝑡−𝑞
2 , and the test 

statistic is obtained as nR
2
, where R

2
 is the coefficient of multiple determination of the above 

regression. The values of this test statistic have been obtained as 1.883, 2.158 and 0.368, with 

their corresponding p-values being 0.170, 0,142 and 0.543 under normality, t and GED 

distributions, respectively. Thus, it may be concluded that GARCH(1,1) is adequate for the 

return series since there is no volatility in its residuals. 

 
Variable N(0,ht) t(v,0,ht) GED(0,ht) 

Conditional mean 

1tr  
0.081 

(4.162)* 

0.080 

(4.343)* 

0.076 

(4.153)* 

3tr  
0.032 

(1.761)*** 

_ _ 

5tr  
-0.052 

(-2.803)* 

-0.050 

(-2.816)* 

-0.052 

(-2.927)* 

6tr  
-0.055 

(-3.119)* 

-0.049 

(-2.829)* 

-0.049 

(-2.870)* 

9tr  
0.034 

(1.967)** 

_ _ 

11tr  
_ -0.033 

(-2.016)** 
-0.031 

(-1.913)*** 

18tr  
-0.029 

(-1.797)*** 

_ -0.029 

(-1.719)*** 

19tr  
-0.043 

(-2.714)* 

-0.028 

(-1.776)*** 

-0.036 

(-2.329)** 

ti  
-0.0110-2 
(2.373)** 

-0.0210-2 
(-3.001)* 

-0.0210-2 
(-3.025)* 

1D
 

0.003 

(4.212)* 

0.003 

(4.433)* 

0.003 

(4.867)* 

2D
 

0.002 

(3.086)* 

0.003 

(4.173)* 

0.003 

(4.157)* 

3D
 

0.002 

(3.318)* 

0.002 

(3.479)* 

0.002 

(3.667)* 

4D
 

0.003 

(3.779)* 

0.003 

(4.361)* 

0.003 

(4.463)* 

5D
 

0.002 

(2.783)* 

0.002 

(2.637)* 

0.002 

(2.850)* 

tX
 

-0.716 

(-10.293)* 

-0.707 

(-10.031)* 

-0.729 

(-10.232)* 

Conditional variance 
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0
 

0.01210-3 
(2.437)** 

0.00210-2 
(5.655)* 

0.00210-2 
(6.830)* 

2

1t  

0.158 

(17.181)* 

0.144 

(8.725)* 

0.146 

(10.192)* 

1th
 

0.807 

(74.504)* 

0.827 

(47.184)* 

0.819 

(51.726)* 

1D
 

0.00310-2 
(2.819)* 

_ _ 

2D
 

-0.00510-2 
(-4.898)* 

-0.00610-2 
(-3.922)* 

-0.00610-2 
(-4.566)* 

3D
 

0.00210-2 
(2.055)** 

_ _ 

𝒗  (Distribution parameter) _ 7.219 

(9.396)* 

1.423 

(36.801)* 

Max log likelihood 8490.319 8558.595 8543.195 

Table 3.5 Estimates of parameters in conditional mean and conditional variance of GARCH(1,1) volatility 

model under alternative distributional assumptions. 
Notes: Coefficients of variables found to be significant in at least one model have been reported. Blank entry 

means that the corresponding variable has been found to be insignificant under the concerned distribution. The 

values in parentheses indicate the corresponding t-statistic values. *, ** and.*** indicate significance at (i) 1%, 

(ii) 5% and (iii) 10% levels of significance , respectively. 
Variable N(0,ht) t(v,0,ht) GED(0,ht) 

Conditional mean 

1tr  
0.087 

(4.521)* 

0.086 

(4.580)* 

0.081 

(4.364)* 

5tr  
-0.050 

(-2.720)* 

-0.044 

(-2.522)** 

-0.045 

(-2.589)* 

6tr  
-0.049 

(-2.876)* 

-0.044 

(-2.607)* 

-0.045 

(-2.674)* 

9tr  
0.034 

(1.990)* 

_ _ 

19tr  
-0.043 

(-2.772)* 

-0.030 

(-1.926)*** 

-0.039 

(-2.542)* 

ti  
-0.0110-2 
(-2.071)** 

-0.0210-2 
(-2.794)* 

-0.0210-2 
(-2.866)* 

1D
 

0.002 

(3.485)** 

0.003 

(3.944)* 

0.003 

(4.334)* 

2D
 

0.001 

(2.052)** 

0.002 

(3.326)* 

0.002 

(3.303)* 

3D
 

0.002 

(2.488)* 

0.002 

(2.893)* 

0.002 

(3.023)* 

4D
 

0.002 

(2.634)* 

0.002 

(.5186)* 

0.002 

(3.584)* 

5D
 

0.001 

(1.934)*** 

0.001 

(2.115)** 

0.002 

(2.303)** 

tX
 

-0.685 
(-10.035)* 

-0.677 
(-9.673)* 

-0.692 
(-9.838)* 

Conditional variance 

0
 

0.00210-2 
(3.136)* 

0.00310-2 
(6.319)* 

0.00310-2 
(7.463)* 

2

1t  

0.067 

(6.278)* 

0.070 

(4.153)* 

0.069 

(4.441)* 

1

2

1  tt I
 

0.185 

(10.288)* 

0.160 

(5.782)* 

0.167 

(6.487)* 

1th
 

0.784 

(63.696)* 

0.802 

(42.077)* 

0.793 

(45.184)* 

1D
 

0.00310-2 
(3.046)* 

_ _ 

2D
 

-0.00510-2 -0.00510-2 -0.00610-2 
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(-4.317)* (-3.751)* (-4.277)* 

3D
 

0.00210-2 
(1.913)*** 

_ _ 

𝒗  (Distribution parameter) _ 7.751 

(8.674)* 

1.466 

(34.834)* 

Max log likelihood 8518.586 8574.205 8559.084 

Table 3.6 Estimates of parameters in conditional mean and conditional variance of TGARCH(1,1) volatility 

model under alternative distributional assumptions. 

Notes: Coefficients of variables found to be significant in at least one model have been reported. Blank entry 

means that the corresponding variable has been found to be insignificant under the concerned distribution. The 

values in parentheses indicate the corresponding t-statistic values. *, ** and *** indicate significance at (i) 1%, 

(ii) 5% and (iii) 10% levels of significance, respectively. 

 

We now discuss the presence of asymmetry in volatility of Indian stock returns. To that end, 

we first look at the computational figures presented in Table 3.6. Thus, in case of TGARCH 

model for volatility with Gaussian conditional distribution, the ML estimate of the term 

capturing leverage effect i.e., ε
2
t–1It–1 is found to be 0.185, and its t–statistic value is 10.288, 

which is highly significant at 1% level. This term, representing asymmetry, is highly 

significant and positive irrespective of the distributional assumptions considered. Thereby, we 

can conclude that volatility increases more after a large negative shock than after an equally 
Variable N(0,ht) t(v,0,ht) GED(0,ht) 

 Conditional mean 

1tr  
0.081 

(4.404)* 

0.078 

(4.254)* 

0.074 

(4.070)* 

5tr  
-0.049  

(-2.838)* 

-0.046 

(-2.678)* 

-0.048 

(-2.790)* 

6tr  
-0.048 

(-2.828)* 

-0.042 

(-2.534)* 

-0.043 

(-2.587)* 

9tr  
0.039  

(2.366)* 

_ _ 

19tr  
-0.042 

(-2.882)* 

-0.028 

(-1.820)*** 

-0.038 

( -2.576)* 

ti  
_ -0.0210-2 

(-2.747)* 
-0.0210-2 
(-2.743)* 

1D
 

0.002 

(3.367)* 

0.003 

(4.073)* 

0.003 

(4.425)* 

2D
 

_ 0.002 

(3.141)* 

0.002 

(3.046)* 

3D
 

0.001 

(1.668)*** 

0.002 

(2.886)* 

0.002 

(3.017)* 

4D
 

0.001 
(1.857) *** 

0.002 
(3.500)* 

0.002 
(3.511)* 

5D
 

_ 0.001 

(1.812)*** 

0.001 

(1.847)*** 

tX
 

-0.702 

(-10.531)* 

-0.696 

(-10. 150)* 

-0.708 

(-10.266)* 

Conditional variance 
*

0
 

-0.855 

(-11.326)* 

-0.649 

(-7.020)* 

-0.724 

(-7.479)* 

||
1

1





t

t

h


 

0.296 

(16.635)* 

0.281 

(10.403)* 

0.286 

(11.270)* 

1

1





t

t

h



 

-0.112 

(-12.241)* 

-0.099 

(-6.313)* 

-0.104 

(-7.198)* 

)ln( 1th
 

0.922 

(118.811)* 

0.941 

(97.010)* 

0.933 

(91.281)* 
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1D
 

0.132 

(2.355)** 

_ _ 

2D
 

_ -0.292 

(-3.397)* 

 

-0.293 

(-3.676)* 

3D
 

-0.231 

(-3.913)* 

_ _ 

𝒗  (Distribution parameter) _ 7.636  

(8.585)* 

1.464 

(33.740)* 

Max log likelihood 8514.950 8572.594 8557.529 

Table 3.7 Estimates of parameters in conditional mean and conditional variance of EGARCH(1,1) volatility 

model under alternative distributional assumptions. 

Notes: Coefficients of variables found to be significant in at least one model have been reported. Blank entry 

means that the corresponding variable has been found to be insignificant under the concerned distribution. The 

values in parentheses indicate the corresponding t-statistic values. *, ** and *** indicate significance at (i) 1%, 

(ii) 5% and (iii) 10% levels of significance, respectively. 

 

large positive shock in the Indian stock market. The t–statistic values of the coefficient 

corresponding to this term for t–distribution and GED are 5.782 and 6.487, respectively, and 

as indicated in Table 3.6, both are highly significant. We note from Table 3.6 that most of the 

variables including lag values of return in the conditional mean, which are significant with 

TGARCH(1,1) specification, are similar to those attained with the GARCH(1,1) volatility 

model. Furthermore, their respective signs are the same in the two models. We also find that 

the maximized log-likelihood value with TGARCH model is always higher compared to the 

corresponding GARCH model, and this is true for all the distributional assumptions. For 

instance, the maximized log-likelihood value for TGARCH(1,1) model with normal 

distribution is 8518.586 as compared to 8490.319 for GARCH(1,1) with normal distribution. 

 
Variable N(0,ht) t(v,0,ht) GED(0,ht) 

Conditional mean 

1tr  
0.096 

(5.244)* 

0.092 

(4.964)* 

0.084 

(4.581)* 

3tr  
0.041  

(2.332)** 
0.0362 

(2.015)** 
0.032 

(1.826)*** 

4tr  
0.039 

(2.214)** 

0.038 

(2.113)** 

0.039 

(2.258)** 

5tr  
-0.045 

(-2.537)** 

-0.043 

(-2.430)** 

-0.047 

(-2.695)* 

6tr  
-0.044 

(-2.624)* 

-0.042 

(-2.524)** 

-0.045 

(-2.676)* 

8tr  
_ 0.033 

(1.943)*** 

0.038 

(1.998)** 

19tr  
-0.036 

(-2.412)** 

-0.027 

(-1.784)*** 

-0.037 

(-2.422)** 

ti  
_ -0.00810-2 

(-1.677)*** 

-0.0110-2 

(-2.394)** 

1D
 

0.002 

(3.277)* 

0.002 

(3.218)* 

0.003 

(3.961)* 

2D
 

_ 0.001 

(1.823)*** 

0.002 

(2.300)** 

3D
 

_ 0.001 

(1.857)*** 

0.002 

(2.391)** 

4D
 

_ 0.002 

(2.461)** 

0.002 

(2.913)** 

5D
 

_ _ 0.001 

(1.696)*** 

tX
 

-0.684 -0.677 -0.694 
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(-9.818)* (-9.599)* (-9.763)* 

Conditional Variance 

0
 

0.0310-2 
 (1.530)  

0.0110-2 
(1.052) 

0.0110-2 
(1.044) 

1  
0.157 

(13.681)* 

0.147 

(8.227)* 

0.150 

( (8.808)* 


 0.460 

(12.235)* 

0.406 

(5.929)* 

0.398 

(6.676)* 

  
0.790 

(60.263)* 

0.817 

(44.167)* 

0.805 

(44.062)* 

  
1.391 

(9.167)* 

1.462 

(6.599)* 

1.476 

(6.617)* 

𝒗  (Distribution parameter) _ 7.669 

(8.764)* 

1.455 

(34.404)* 

Max log likelihood 8508.688 8574.038 8559.898 

Table 3.8 Estimates of parameters in conditional mean and conditional dispersion of PARCH(1,1) volatility 

model under alternative distributional assumptions. 

Notes: Coefficients of variables found to be significant in at least one model have been reported. Blank entry 

means that the corresponding variable has been found to be insignificant under the concerned distribution. The 

values in parentheses indicate the corresponding t-statistic values. *, ** and *** indicate significance at (i) 1%, 

(ii) 5% and (iii) 10% levels of significance , respectively. 

 

We now check whether the estimation results from the EGARCH(1,1) specification, 

presented in Table 3.7, also indicate the presence of asymmetry in the volatility of Indian 

stock returns. We note from the entries of this table that the results are similar to those 

obtained from the GARCH specification. In the return series, the asymmetric term γ
*
 is 

negative and significant for all the distributional assumptions. For example, for returns with 

normal distribution, the ML estimate of γ
*
 is –0.119, and its t–statistic value is 12.241, which 

clearly indicates significance at 1% level of significance. As „leverage effect‟ or asymmetry in 

volatility is found to be significantly present in both the TGARCH and EGARCH models for 

all three distributions, we can infer that asymmetric response of volatility to positive and 

negative shocks is an important phenomenon for the Indian stock market.  

 

The findings for asymmetric PARCH volatility model reported in Table 3.8, also show that 

the estimate under normal conditional distribution of the ρ parameter denoting asymmetry is 

0.460, which is significant. This term representing asymmetry is significantly present for 

other distributions as well. One can further note that the maximum log-likelihood values for 

TGARCH, EGARCH and PARCH models are almost the same for each of the three 

distributions and always higher than that of the GARCH model, although the value is 

somewhat smaller for EGARCH model. This discrepancy in the maximum log-likelihood 

values suggests that the TGARCH and asymmetric PARCH models are better representations 

for volatility in returns on BSESENSEX, compared to the EGARCH model.  

 

Focusing now on the issue of kurtosis represented by three alternative distributions viz., 

normal distribution, standardized Student‟s t–distribution and standardized GED, we first note 

that that the volatility parameters i.e., α1 and δ of GARCH(1,1) specification, for example, are 

significant under each of the three distributions considered. It is also evident that the excess 

conditional kurtosis, v, which is a parameter for both the t–distribution and GED, is 

significantly present in all the volatility models. For the GARCH(1,1) model, the estimates of 

v are 7.219 and 1.423 for the t–distribution and GED, respectively. The -ratios values are 

9.396 and 36.800, respectively. Further, the estimate of 𝛼 1, the parameter representing 

volatility clustering, is significantly pronounced under all the three distributions. For instance, 
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we find that is 0.158 under normality, whereas for t–distribution and GED, the corresponding 

values are 0.144 and 0.146, respectively.  

 

As regards the suitability of the distributional assumptions under a specific volatility model 

for returns, we note that the density of standardized GED reduces to that of normal when the 

shape parameter takes the value 2 i.e., v = 2, and hence the latter belongs to the family of 

GED. Likewise, normal belongs to the family of standardized t–distribution since the density 

of the latter coincides with the former as v→∞, where v now stands for the degrees of 

freedom. We can, therefore, carry out formal tests like the likelihood ratio (LR) test to find if 

normality is the appropriate distributional assumption against the alternative of GED. In a 

similar spirit, such a test can be envisaged for normality against the alternative of 

t‒distribution. However, a formal test is not possible since from the point of view of a proper 

test of hypothesis, the underlying null hypothesis H0: v→∞ is not well specified. Obviously, 

such a test involving t–distribution and GED cannot be performed at all. 

Now, the maximized log-likelihood values for the three families of distributions viz., 

Gaussian, t and GED, under GARCH(1,1) volatility model have been obtained as 8490.319, 

8558.595 and 8543.195, respectively, for the return series. After applying the LR test under 

the null hypothesis: H0: v = 2 against the alternative hypothesis H1: v ≠ 2 under the GED 

family, we find that the test statistic value is 105.752. This value is very high compared to the 

χ
2

1

 critical value of 6.63 at 1 per cent level of significance, and hence the null hypothesis is 

strongly rejected in favour of GED. A similar conclusion regarding a comparison between the 

Gaussian distribution and the standardized t distribution can perhaps be drawn heuristically, 

but not on the basis of a formal test. Thus, we can conclude that the assumption of normality 

is not an appropriate distributional assumption against the alternatives of GED and t under the 

GARCH(1,1) volatility model. It is obvious from Tables 3.6 through 3.8 that the same 

conclusion holds for each of the other three volatility models. Therefore, we can conclude 

that, as evinced by each of the volatility models considered here, the conditional distributional 

assumption of normality is not quite statistically tenable for comprehending returns on 

BSESENSEX.  

 

Finally, we note that, as in the case of GARCH(1,1) specification, estimated values of under 

all the three distributions indicate that the excess kurtosis of the conditional distribution is 

significantly present for each model. Computational results also show that the maximum log-

likelihood values for the three assumed distributions of normal, t and GED for TGARCH(1,1) 

are 8518.586, 8574.205 and 8559.084, respectively. Applying the LR test, it is evident that as 

in the case of GARCH(1,1), the assumption of normal distribution is rejected against GED 

and, heuristically speaking, against the alternative of t distribution as well. This is true for the 

other two volatility models as well.  

 

4. FORECAST PERFORMANCE 

 

In this section, the performances of the models in terms of in-sample and out-of-sample 

forecasts of returns rt using the criteria of MAE, MAPE, RMSE and Theil‟s inequality are 

discussed
1
. As already mentioned, in-sample data range from January 1996 to December 

2008, and the hold-out sample covers the period January 2009 to December 2010. We have 

applied the dynamic forecasting technique to calculate multi-step forecasts starting from the 

first period in the hold-out sample.  

 

                                                
1 The criterion of AMAPE could not be computed since this in not available in EVIEWS 7. 
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 In-sample Out-of-sample 

Criterion 

Model 

MAE MAPE RMSE Theil‟s 

coefficient 

MAE MAPE RMSE Theil‟s 

coefficient 

GARCH Normal 0.013 165.247 0.018 0.839* 0.010 150.320 0.015 0.698* 
GARCH t 0.013 164.885 0.018 0.841* 0.010 150.460 0.016 0.704* 

GARCH GED 0.013 166.281 0.018 0.839* 0.010 150.685 0.015 0.699* 

TGARCH Normal 0.013 153.285 0.018 0.849 0.010 139.744 0.016 0.712 

TGARCH t 0.013 156.892 0.018 0.850 0.011 142.813 0.016 0.716 

TGARCH GED 0.013 158.477 0.018 0.846 0.010 144.042 0.016 0.710 

EGARCH Normal 0.013 147.751 0.018 0.848 0.010 132.113 0.015 0.711 

EGARCH t 0.013 157.137 0.018 0.847 0.010 142.079 0.016 0.711 

EGARCH GED 0.013 158.364 0.018 0.845 0.010 142.595 0.016 0.708 

Asymmetric PARCH Normal 0.013 139.423* 0.018 0.854 0.010 125.880* 0.016 0.721 

Asymmetric PARCH t 0.013 151.943* 0.017 0.855 0.010 133.799* 0.016 0.720 

Asymmetric PARCH GED 0.013 154.613* 0.017 0.847 0.010 139.737* 0.016 0.710 

Table 3.9 In-sample and out-of-sample forecast performances of returns on BSESENSEX under alternative 

volatility models and conditional distributions. 

Notes: (i) The forecast evaluation criteria used viz., MAE, MAPE and RMSE stand for mean absolute error, 

mean absolute per cent error, and root mean squared error, respectively. 
(ii) * denotes the lowest value among the four models for the same distribution by a particular criterion. 

 

Table 4.9 presents the values of MAE, MAPE, RMSE, and the Theil‟s inequality for all 

models arising out of the four volatility models and the three distributions considered. These 

numerical figures clearly show that MAE and RMSE have produced almost the same value 

for all of the four volatility models irrespective of the distributional assumption. For instance, 

in case of in-sample forecasting, the MAE values under the Gaussian distribution is 0.013 for 

all the GARCH(1,1), TGARCH(1,1), EGARCH(1,1), and asymmetric PARCH(1,1) models. 

The corresponding RMSE values are 0.018, 0.017, 0.018 and 0.018. The in-sample MAPE 

value is minimum for the asymmetric PARCH model, whereas the Theil‟s inequality is 

minimum for GARCH model. The out-of-sample performance also shows similar findings. It 

may thus be concluded that for returns based on BSESENSEX, asymmetric PARCH(1,1) 

performs better than the other models by these forecasting criteria. 

 

Thus, considering both the maximized log-likelihood values and the in-sample and out-of-

sample forecasting performances, we can conclude that the asymmetric PARCH and 

TGARCH perform equally well for Indian stock returns on BSESENSEX. 

 

5. CONCLUSIONS 

 

In this paper, we have empirically examined the twin issues of asymmetry/leverage effect and 

excess kurtosis, both of which are highly prevalent in stock returns, for returns on 

BSESENSEX, the most important and the premier stock index of India. To that end, apart 

from the Gaussian distribution and GARCH volatility specification, we have considered (i) 

three alternative models of volatility viz., the EGARCH, TGARCH and asymmetric PARCH 

for representing the phenomenon of „leverage effect‟ in returns, and (ii) two alternative 

conditional distributions for the innovations – standardized Student‟s t–distribution and 

standardized GED – so that the leptokurtic property of the return distribution are captured. To 

find which of the four assumed volatility models best describes the volatility prevalent in 

returns on BSESENSEX, standard forecast evaluation criteria like the MAE, MAPE, RMSE 

and Theil‟s inequality have been used, considering both in-sample and out-of-sample 

forecasts. 
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In our empirical analysis, we find a significant presence of the „leverage effect‟ in the Indian 

stock returns through each of the three models considered. The values of MAE and RMSE, 

for in-sample as well as the hold-out sample, clearly demonstrate that, under a Gaussian 

distribution, all the volatility models considered viz., GARCH(1,1), TGARCH(1,1), 

EGARCH(1,1) and asymmetric PARCH, perform almost equally well under a consideration 

of both of these criteria. However, in both in-sample and out-of-sample, MAPE produces the 

minimum value for the asymmetric PARCH model, whereas the Theil‟s inequality is 

minimum for the GARCH model. Thus, it can be concluded that while there is practically no 

difference in terms of the chosen criteria between the EGARCH and TGARCH specifications, 

when compared with the other two volatility models, the standard GARCH model is the best 

in terms of Theil‟s measure, and the asymmetric PARCH model in terms of MAPE. 

Regarding „leverage effect‟ as an important phenomenon for the Indian stock market, given 

the poor reliability of Theil‟s measure, we can conclude that the asymmetric PARCH model is 

a slightly better representative model compared to the simple GARCH model, EGARCH and 

TGRACH models. 

 

Our results indicate that the volatility parameters are significant for all the four volatility 

models under all the three distributions considered. Further, it is also evident that the excess 

kurtosis, which is a parameter in both t distribution and GED, is significantly present in all the 

four volatility models, thereby indicating that the standard conditional normality assumption 

is not adequate. We have also found that the assumption of normality for the conditional 

distribution is not quite tenable statistically against GED and also perhaps against 

t‒distribution under all the volatility models considered viz., GARCH(1,1), TGARCH(1,1), 

EGARCH(1,1) and asymmetric PARCH. 
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