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ABSTRACT 

 
Dummy variables can be used to detect, validate and measure the impact of outliers in 

data. This paper uses a model to evaluate the effectiveness of dummy variables in 

detecting outliers. While generally confirming some findings in the literature, the model 
refutes the presumption that the t˗statistic or the F˗incremental statistic is enough to 

validate an observation as an outlier. In order to rectify this fallacy, this paper 

recommends an easily-calculable robust standardized residual statistic that is more 
compatible with the definition of outliers.  

The robust standardized residual statistic suggested herein is still used in many robust 

regression methods and is more effective than the t˗statistic or the F˗incremental statistic 
in validating outliers with dummy variables. The results of this study suggest some 

practical recommendations for dealing with outliers and improvements in maintaining the 

integrity of data. We recommend all previous studies using this statistics be revised in 

light of the findings presented in this paper. 
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1. INTRODUCTION 

 

Outliers are defined as observations that do not obey the (linear) pattern formed by the 

majority of the observations, and if they are influential they give rise to misleading results 

(Rousseeuw and Van Aelst, 1999). During regression analysis, a dummy variable (DV) or 

indicator variable is introduced for an observation that is suspected to be affected by different 

variables other than the ones in the model. In some cases these suspicious observations may 

turn out to be significant outliers.  

 

The standard in the literature has been to assign a DV to each outlier observation, which is 

then validated as an outlier using the t-statistic of the DV. If a search is performed in 

academic journal databases (for example, in Business Source Complete) thousands of studies 

are found in 2010 that identify outliers using the t˗statistic of the DV. 

 

This paper investigates the following questions: If there are many reasons for outliers like an 

economic shock, a technological breakthrough, a natural disaster, even an incorrect recording 

of observation, or, alternatively stated, if an outlying observation is created under the 

influence of a rare occurring and unpredictable incident (variable) then can a DV represent 
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this event? If a DV is used for each outlier, then how are the statistics in Ordinary Least 

Squares (OLS) affected? Is the t˗statistic of DVs or the F˗incremental statistic successful in 

identifying these outliers? Is there a statistic that is easier to calculate? This paper answers 

these questions.  

 

As noted by Greene (2002:117), if a DV is used for an observation it has the effect of deleting 

that observation from the computation of OLS parameters and standard error (SE). 

Studenmund (2002:224) has, in accordance, advanced evidence that the dummy variable 

coefficient is equal to the studentized residual for that observation, which is also proven in the 

following section. This is an advantage because many robust regression techniques identify 

outliers by deleting suspicious observations from the data according to a selected criterion. 

One important point that is not emphasized in the literature is that the ratio of the dummy 

coefficient to the SE of the regression is the robust standardized residual (RSR). RSR is also 

referred to as the deleted studentized residual, externally studentized residual or jackknifed 

residual (Rousseeuw and Leroy, 1987:226), which is still used in many robust regression 

methods. However, the t˗statistic, which will be shown to be unsuccessful, is still widely used 

in the literature. As an alternative to the t˗statistic this paper recommends the use of the 

dummy coefficient to SE ratio as a new robust RSR statistic. This statistic is easier to calculate 

than Cook's distance (which measures the change in the estimates that result from deleting 

each observation, Cook, 1985), DFFITS (which is the predicted value for a point, obtained 

when that point is left out of the regression, Billingsley et.al., 1980) or DFBETAS (which is 

the scaled measure of the change in each parameter estimate and is calculated by deleting the 

i
th
 observation, Billingsley et.al., 1980). 

 

The next section explains the notation and the model used in this paper to derive an important 

statistic based on DVs. The third section introduces this new statistic, and the fourth section 

presents an example, through which the insufficiency of the t˗statistic of the DV or the 

F˗incremental statistic is illustrated. Finally, the conclusion part summarizes the findings of 

this paper with suggestions for future research. 

 

2. THE MODEL 

 

For the given data let there be n observations with v
.
+

.
1 independent variables and n

.
–

 
m 

suspicious observations be represented by n
.
–

 
m different DVs. Let Y'

.
=

.
[y1

.
...

.
ym]1×m be the 

dependent variable vector for the observations without DVs, Y'd
.
=

.
[ym+1

.
...

..
yn]1×(n–m) be the 

dependent variable vector for the observations with DVs, xi
.
=

.
[1

.
xi,1

.
...

.
xi,v]1×(v+1) be the 

independent variable vector for i
th
 observation, X'

.
=

.
[x'1

.
...

.
x'm](v+1)×m be the independent 

variable matrix for the observations without DVs, and X'd
.
=

.
[x'm+1

.
...

.
x'n](v+1)×(n–m) be the 

independent variable matrix for the observations with DVs. Let 0m×(n–m) be the zero matrix, 

εm×1 be the error vector, εd be the (n
.
–

.
m)×1 error vector that contains the outlier information, 

and I(n–m)×(n–m) be the unit matrix. Then the regression model          can be written as 

follows: 
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Proposition 2.1. The OLS estimator for β(v+1)×1 and δ(n–m)×1 is given by: 
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The residuals and other important statistics can be calculated as follows:  
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In equation (2.2) b is the OLS estimator of X, i.e.; it is not affected by the suspicious 

observations represented by DVs. Therefore, the DVs have the effect of omitting these 

observations from the computation of OLS parameters (Greeen, 2002:117). If residual values 

for the dummy variables are required, they can be calculated as Yd
.
–

.
Xdb

.
=

.
d, namely as the 

coefficients of DVs in (2.2), but not as the 0 vector in (2.3) (Studenmund, 2002:224). Hence, 

the DV coefficients are successful in representing the information contained in suspicious 

observations, and their coefficient values are a measure of their influence on the OLS 

regression results.  

 

The DVs have the same effect of deleting these observations from the computations of the SE 

(  ) and cov(b). These estimators can be calculated as follows: 
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For the coefficient of determination R
2
, adding a DV does not have the same effect of deleting 

the suspected observations from the computation as proven in the following proposition. 

 

Proposition 2.2. Let R
2 
be the coefficient of determination in a regression with DVs and R

0

2
 be 

in a regression without any suspicious observations. Then, R
2.
>

.
R

0

2
.
1
  

 

3. PROPOSAL OF AN ALTERNATIVE ROBUST DUMMY STATISTIC TO THE 

T˗STATISTIC OR F˗INCREMENTAL STATISTIC 

 

In the literature on robustness, an observation can be identified as an outlier by the robust 

standardized residual (RSR) value, which is the ratio of the residual value of that observation 

to the SE of the regression. Both the residual value and the SE are calculated using robust 

estimators that are not affected by any outliers. As mentioned previously, for a regression 

with DVs, the ratio of the dummy coefficient to SE of the regression gives the RSR for that 

observation. Alternatively, for observation j this value can be written as follows: 

 
̂

j

j

d
RSR    (3.4) 

 

This RSRj is the robust dummy statistic suggested by this paper. For an outlier observation 

this RSRj of a DV is compared with the tj value of a DV in the following proposition. 

 

Proposition 3.3. The t˗statistic of a DV is unable to validate outliers with large X independent 

variable values.  

                                                
1 While equality is possible, it would not make the observations suspicious. 
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According to the proof of proposition 3.3, provided in the Appendix, it is impossible to assign 

critical values to the calculated t˗values of DVs, because they will depend on Xd or outliers. 

The same conclusion can be stated for the F˗incremental statistic as shown in the following 

proposition. 

 

Proposition 3.4. The F˗incremental statistic is unable to validate outliers with the average of 

Yd dependent variable values of outliers close to the average of Y dependent variable values 

of other observations. 

 

In the following part, the problems that may arise as a result of using the t˗statistic or the 

F˗incremental statistic instead of the RSR value are illustrated with an example.  

 

4. ILLUSTRATIVE EXAMPLE 

 

For the simple regression model yi
.
=

.
β0

.
+

.
β1

.
xi

.
+

.
εi (εi

. .
N(0,σ

2
)), using a software program 

written in Octave, different values for the parameters β0, β1,
.
σ

2
 are generated, and an outlier is 

placed.  

 
Figure 4.1 Plot for the data in Table 4.1.  

 
Obs. y x Obs. y x Obs. y x 

1 1.368872 0.005 8 0.912649 -6.680 15 0.317508 -12.875 

2 1.529872 -0.980 9 -0.059299 -7.595 16 0.802124 -13.720 

3 0.514864 -1.955 10 0.452557 -8.500 17 -0.051358 -14.555 

4 1.256283 -2.920 11 0.519466 -9.395 18 0.089404 -15.380 

5 0.396734 -3.875 12 0.951551 -10.280 19 0.244413 -16.195 

6 0.363789 -4.820 13 0.615652 -11.155 20 0.149377 -17.000 

7 0.463096 -5.755 14 0.501619 -12.020 21 -0.422100 -55.450 

Table 4.1 Data for the example. 

y = 0,8244 + 0,0277x  

R² = 0,4205 

y = 1,0314+ 0,0529x  

R² = 0,3906 

-1,0000 

-0,5000 

0,0000 

0,5000 

1,0000 

1,5000 

2,0000 

-60,0 -50,0 -40,0 -30,0 -20,0 -10,0 0,0 10,0 
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The data in Table 4.1 is generated using yi
.
=

.
1

.
+

.
0.049307299

.
xi

.
+

.
εi

.
(εi

. .
N(0,0.3

2
)). The last 

(21
st
) observation is an outlier as illustrated in Figure

.
4.1, where the OLS estimator deviates 

considerably from the linearity indicated by the majority of observations. Important statistics 

are presented in Table
.
4.2 along with the outlier, in Table

.
4.3 without the outlier, and in 

Table
.
4.4 where a DV is used for the outlier observation. 

 

For the regression results with the outlier included in the data in Table
.
4.2, all of the 

coefficients are statistically significant. In Table
.
4.2 the Durbin-Watson statistic is 1.93,thus 

there is no sign of autocorrelation or model specification error. However, the results are 

biased, because the data contains an outlier. The 99% confidence interval for the slope 

estimator in Table
.
4.2 is (0.006349, 0.048997), and it does not contain the true population 

parameter 0.049307, while the 99% confidence interval for the slope estimator in Table
.
4.3 is 

(0.008339, 0.097426). For the regression results without the outlier in the data in Table
.
4.3, 

again, all of the coefficients are statistically significant. The Durbin-Watson statistic is 2.17, 

hence there may not be an autocorrelation or model specification error.  

 

 Coefficient SE t stat p-value 

Intercept 0.824398 0.116728 7.0625483 1.01E-06 

Slope 0.027673 0.007454 3.7127689 1.47E-03 

     

R2 0.420461  DW d 1.9342573 

Std. Error 0.380587    

Obs. 21    

F 13.784653    

Table 4.2 Regression results with the outlier. 

 

 Coefficient SE t stat p-value 

Intercept 1.031396 0.1586173 6.5024186 4.09E-06 

Slope 0.052882 0.0155696 3.3965079 3.22E-03 

     

R2 0.390580  DW d 2.1729233 

Std. Error 0.359492    

Obs. 20    

F 11.5362659    

Table 4.3 Regression results without the outlier. 

 

 Coefficient SE t stat p-value 

Intercept 1.031396 0.1586173 6.5024185 4.09E-06 

Slope 0.052882 0.0155696 3.3965079 3.22E-03 

Dummy 1.478817 0.8146362 1.8153101 0.086175 

R2 0.510141    

Std. Error 0.359492  RSR 4.113634 

Obs. 21    

F 9.372650    

Table 4.4 Regression results with a dummy variable for the outlier. 
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Unfortunately, the OLS regression results are not immune to masking effect of outliers 

(Rousseeuw and Leroy, 1987). The situation does not change if a DV is added for the 

suspicious observation. If the outlier is represented with a DV, the t˗statistic of the DV is 

(1.82), and it is statistically insignificant at a 5% significance level. In addition, the 

F˗incremental statistic is 4.39 (Fcr
.
=

.
4.41 at a 5% significance level), which does not indicate 

the presence of an outlier. However, the RSR statistic, which is used to identify outliers in the 

literature on robust regression where an observation is identified as outlier if RSR
.
>

.
2.5 in 

value (Rousseeuw and Leroy, 1987), indicates an outlier with an RSR value of
.
4.11.  

 

As theoretically proven and as illustrated in Table
.
4.3 and Table

.
4.4, when a DV is used for an 

outlier, it has the effect of deleting that observation from the computation of the OLS 

parameters. Furthermore, adding a DV for an outlier increases the R
2
 value, while the F˗value 

may increase or decrease.  

 

Using a software program written in Octave, different data are generated, and one outlier is 

placed in each data. In some of data the t˗statistic of a DV or F˗incremental statistic failed to 

validate outliers that were highly influential, which in certain cases even caused the slope 

coefficients to change from positive significant to negative significant or vice versa. 

 

4. COMMENTS AND CONCLUSION 

 

This paper proves that the t˗statistic of a DV or the F˗incremental statistic are not always 

effective in validating outliers; this argument is both theoretically proven and illustrated with 

an empirical example. Therefore, these statistics should not be used. Proposed in place of 

these statistics is an alternative statistic, which is consistent with the standards for outlier 

detection methods in the literature on robustness.  

 

If a DV is used for an outlier observation it has the effect of deleting that observation from 

computation of OLS parameters and standard error (Greene, 2002). However, if the dummy 

variable is used in the model, then the coefficient of determination, R
2
, always increases. In 

addition, according to proposition 3.3, it is impossible to assign critical values to the 

calculated t˗value of a DV, because they will depend on Xd or outliers.  

 

In the literature on robust regression the debate about whether to keep outliers in data or to 

remove them continues. According to the findings in this paper, instead of using outlier 

observations with DVs, removing the outlier (and its DV) might be more appropriate for 

scientific inference, because using DVs for outliers has the effect of deleting that observation 

from computation of OLS parameters and SE. However, as shown in the proof of proposition 

2.2, included in the Appendix, using DVs for outliers always increases the R
2
 statistic. 

 

As mentioned in Studenmund (2002), the dummy's coefficient equals the residual for that 

observation. In the literature on robustness, RSR, which is used to detect outliers, is calculated 

by dividing the residual of the observation by the SE of the regression. This paper suggests 

that the ratio of the DVs coefficient to the SE of the regression be used as the method for 

outlier detection, because this ratio is the RSR of that observation. This RSR value, which is 

the robust dummy statistic suggested by this paper is easier to calculate than Cook's distance 

(Cook, 1985), DFFITS (Billingsley et.al., 1980), or DFBETAS (Billingsley et.al., 1980). In 

addition, RSR of a DV is a residual value that gives the magnitude of the information 

contained in the suspicious observations and their values are a measure of their influence on 

OLS results when they are included in the data without DVs. 
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The illustrative example provided in this paper proves that the t˗statistic of a DV or the 

F˗incremental statistics are not always successful in identifying outliers. This paper aims to 

provide scientists with a better alternative for outlier validation, namely the RSR statistic, 

derived from the techniques/ideas in robust regression methods. The findings of this paper 

both theoretically and empirically demonstrate the superiority of the RSR statistic to the 

t˗statistic and the F˗incremental statistic. 

 

If there is prior information that correctly identifies a group of observations in which all of the 

outliers are contained then using the findings of this paper the RSR statistic of DV will enable 

the accurate detection of all outliers. Using the RSR statistic of DV is not an advanced 

technique, and is in fact easier and faster to calculate than most other robust regression 

techniques.  

 

One important warning must be given about the use of DVs with outliers: due to the masking 

effect, the detection/validation of outliers using the RSR statistic of DVs works correctly only 

if all possible outliers are in the group of observations represented by DVs. If there is no prior 

information on which observations are outliers, all of the outliers have to first be identified 

using any of the other robust techniques for outlier detection, but these advanced techniques 

require a lot of computer calculation
2
. Only then can outliers be validated and their effects be 

analyzed or measured using the RSR statistic of DV. 

 

APPENDIX 

 

Proof of Proposition 2.1: 

 

Without loss of generality, the places of Y and Yd in equation (2.1) can be interchanged to 

make matrix inversion easier, thus the OLS estimator becomes: 
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From the property of inverses of partitioned matrices in Frees (2004:420) or Timm (2002:46) 
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QED. 

 

  

                                                
2 Zaman et al. (2001) is a good example for the use and explanation of these advanced techniques. 



Kiraci-Confirmation, Correction and Improvement for Outlier Validation using Dummy Variables 

50 

 

Proof of Proposition 2.2: 

 

Let R
2
 be the coefficient of determination in the regression with DV and R

0

2 
be the one without 

suspicious observations in data, which can be formulated as follows: 
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This implies that the denominator of the negative term in R
2
 is larger than the one in R

0

2
. 

Hence R
2.
>

.
R

0

2
. QED. 

 

Proof of Proposition 3.3: 

 

For observation j the t˗statistic of DV can be represented as follows:  
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It should be noted that the t˗statistic contains a robust term (RSR) and a non-robust term, 
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From equation (A.5) terms for the dummies can be calculated with the suitable element in the 

diagonal of )XX)XX(I -1

dd
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then the diagonal of 
1)( 

jjXX  becomes: 
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where i
.
=

.
(j–m), abx =

.
x(a+m)b, a

.
=

.
1...

.
(n–m), b

.
=

.
1...

.
v, 0ax =

.
1 if the regression with a constant is 

considered and 0ax =
.
0 if the regression without a constant is considered. From this equation 

even one outlier in x direction, i.e. a large abx  in one observation can make 
1)( 

jjXX >>1, 

which is possible in situations where RSRj
.
>

.
2.5 and tj

.
<

.
2. QED 

 

Proof of Proposition 3.4: 

 

Assume that the same notation is used as the one in Proposition 2.2. Let R
2
 be the coefficient 

of determination in the regression with DVs and R
0

2
 be the one without the suspicious 

observations in the data, then F˗incremental can be expressed as: 
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It should be noted that this F-value does not depend on independent variable values. If the 

(n‒m) suspicious observations have their yi average values around 0y , then F will be around 0 

(insignificant) without depending on independent variable values. QED 
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