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ABSTRACT 

 
The boom-bust cycle in U.S. house prices has been a fundamental determinant of the 

recent financial crisis leading up to the Great Recession. The risky financial innovations 

in the housing market prior to the recent crisis fueled the speculative housing boom. In 

this backdrop, the main objectives of this empirical study are to i) detect the possibility of 

multiple structural breaks in the US house price data during 1995-2010, exhibiting very 

sharp upturns and downturns; ii) endogenously determine the break points and iii) 

conduct house price forecasting exercises to see how models with structural breaks fare 

with competing time series models – linear and nonlinear. Using a very general 

methodology (Bai-Perron, 1998, 2003), we found four break points in the trend in the 

S&P/Case-Shiller 10 city aggregate house-price index series. Next, we compared the 

forecasting performance of the model with structural breaks to four competing models – 

namely, Random Acceleration (RA), Autoregressive Moving Average (ARMA), Self- 

Exciting Threshold Autoregressive (SETAR), and Smooth Transition Autoregressive 

(STAR). Our findings suggest that house price series not only has undergone structural 

changes but also regime shifts. Hence, forecasting models that assume constant 

coefficients such as ARMA may not accurately capture house price dynamics. 

 

Key-words: Structural Break, House Prices, Forecasting, Non-linear Models, 

Nonstationarity 

JEL Classifications: C13, C22, C53 

 

 

1. INTRODUCTION AND LITERATURE REVIEW 

 

Between the bottom in the 4
th

 quarter of 1996 and the peak in the first quarter of 2006, real 

home prices rose 86% nationally in the United States (Shiller, 2007). However, there was a 

dramatic fall in house prices beginning mid-2006. While there was a slight turnaround in late 

2009 and early 2010, house prices reverted back to record lows in the latter half of 2010 (see 

Figure 1.1).  

 
Figure 1.1 S&P/Case Shiller 10 City Index - percentage changes from the preceding year 
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 “Housing is the business cycle” (Leamer, 2007). What goes on in the housing sector has a 

significant impact on the real sector of the economy. Housing prices affect GDP growth both 

directly via new home construction and indirectly through changes in private household 

wealth, leading to changes in consumer spending (Ducca et al., 2011). Given the significant 

share of housing wealth in the overall private household wealth, it is not surprising that the 

severe downturn in the housing market ushered in the worst recession since the Great 

Depression of the 1930s. As the slump in the housing market continued due to the overhang 

of distressed and foreclosed properties, tight credit conditions, and ongoing concerns among 

potential borrowers and lenders about continued decline in house prices, the economic 

recovery process became slow and erratic (Bernanke, 2011). 

 

In this backdrop, forecasting house prices has become even more important than ever before. 

But what types of forecasting models should be used? Our literature search indicates that 

relatively few studies have conducted house price forecasting exercises using alternative 

modeling techniques. The pioneering work in this respect was carried out by Case and Shiller 

(1989), in which they performed tests of market efficiency for the housing market using their 

weighted repeat sales price index for the first time. Existing studies on house price forecasting 

have mostly used time series models. For example, Zhou (1997) and Guirguis et al. (2005) 

utilized multivariate time series modeling approach, which presupposes an underlying 

theoretical relationship. Zhou used a Vector Error Correction (VEC) model to forecast sales 

and median prices of existing single family homes in the US between 1991 and 1994 using 

national data. He found that the predicted values of sales and prices fitted the actual data well 

and hence would be useful in guiding policy decisions. Guirguis et al. (2005) acknowledged 

that modeling house price appreciation has been a challenge for theoreticians and 

econometricians alike due to the strong vulnerability of the housing sector to structural 

changes, macro policies, regime switching, and market imperfections. They justifiably 

questioned the validity of constant coefficient approaches of prior studies to forecast house 

prices and instead first tested for parameter instability in the sub-samples using a sequence of 

Chow tests and Ramsey’s RESET tests. Their findings confirmed coefficient instability in the 

house price equation. Subsequently, they applied time-varying coefficients approach to 

estimate GARCH, AR, Kalman filters, and VEC models from 1975-1985 and generated 

forecasts of house prices from 1985-1998. Based on Mean Square Forecast Error (MSFE) 

comparisons, a rolling GARCH model as well as a Kalman filter model with autoregressive 

representation outperformed the rest. 

 

By contrast, Crawford and Fratantoni (2003), and subsequently Miles (2008), adopted a 

univariate time series approach with a special focus on nonlinear price dynamics in the 

housing market. Crawford and Fratantoni (2003) used a Markov regime switching model to 

capture the boom-bust cycle of the housing market. The underlying intuition addressed the 

price dynamics that may vary between booms and busts, resulting in discrete changes in time 

series properties of house prices over different cycles. They estimated the Markov model 

using state-level data on repeat transactions home price indices for California, Florida, 

Massachusetts, Ohio, and Texas. They compared the model’s forecasting performance with 

that of ARIMA and GARCH models, and while Markov regime switching model performed 

better in-sample, simple linear ARIMA model generally performed better out-of-sample. 

Miles (2008) built upon the study of Crawford and Fratantoni (2003) by using the same state-

level data. In view of the poor out-of-sample performance of Markov regime switching 

models, Miles (2008) employed a few other nonlinear modeling techniques, including the 

Threshold Autoregressive (TAR) and Generalized Autoregressive (GAR) models. He failed to 

find any empirical evidence for TAR effects in house price data for the sample. GAR 



International Econometric Review (IER) 

3 

 

performed generally better than ARIMA and GARCH models in out-of-sample forecasting. 

His general conclusion was that GAR performs substantially better than Markov switching 

models at forecasting house prices, particularly in states associated with high home price 

volatility.  

 

In this study, we also focus on nonlinear price dynamics in the housing market but use a very 

different modeling technique. We explore alternatives to Markov regime switch type models 

since Crawford and Fratantoni (2003) findings in this regard (that Markov regime switching 

did not perform as well in out-of-sample compared to linear ARMA type model) were also 

corroborated by Bessec and Bouabdallah (2005) in a simulation based study
1
. On the other 

hand, while Miles’ GAR modeling approach performed the best in out-of-sample forecasting 

exercise, such a model lacks the theoretical underpinning of the Markov model as it is 

primarily a data fitting technique. Instead, in the presence of extremely sharp and 

unprecedented upturns and downturns in the housing market, we ask if the house price series 

has undergone fundamental structural shifts during this period. 

 

Our literature search indicates that the issue of structural break in time series data has been 

studied to some extent in the financial market literature, especially in the aftermath of the 

Asian or Russian financial crisis in 1997 and 1998, to analyze dynamic market linkages 

before and after the crisis. For example, see Andreou and Ghysels (2002), Ho and Wan 

(2002), Gerlach et al. (2006), Tsouma (2007), Lucey and Voronkova (2008) in this regard. 

However, existing literature has not looked into the issue of structural change in house price 

series. And yet some of the explanations offered for the recent housing crisis have made it 

imperative that we examine the possibility of structural breaks in house price series before 

conducting forecasting experiments. For example, Shiller (2007) characterized the housing 

boom that lasted till 2006 as a classic speculative bubble driven largely by expectations of 

unusually high future price increases. This speculative psychology, in turn, brought forth 

institutional changes in the form of proliferation of new mortgage credit institutions, 

deterioration of lending standards, growth of subprime loans among others. Similar views 

were also expressed by Bernanke (2010), Kohn (2007), and Dokko et al. (2009). In the end, 

the market dynamics were such that they created a vicious cycle in which the expectation of 

rapidly rising house prices fed mortgage credit expansion, which in turn pushed housing 

prices up even further until it became unsustainable (Obtsfeld and Rogoff, 2009). Hence it is 

worth asking whether the institutional changes that took place in the financial market in the 

first half of the last decade prior to the onset of the housing crisis may have fundamentally 

altered the time series properties of house price series.  

 

To the best of our knowledge, our paper is the first attempt in endogenously modeling 

structural break in house price series. In a similar vein to Crawford and Fratantoni (2003) as 

well as Miles (2008), we also use a univariate time series modeling approach in this paper. 

However, our empirical analysis differs from Crawford and Fratantoni (2003) and Miles 

(2008) in the following respects: First, by concentrating on a very recent time period that 

encompasses the current housing crisis, we incorporate not only a period of prolonged sharp 

upturn but also a period of sharp downturn in house prices. Second, as Shiller (2007) 

observed, the last boom in the housing market differed from prior booms in that it was more 

of a nationwide event rather than a regional event. Therefore we use an aggregate composite 

                                                 
1
 Using Monte Carlo study on a wide range of specifications, Besecand Bouabdallah (2005) found Markov regime model to 

perform poorly in general in out-of-sample forecasting due to its failure to predict future regimes. Their findings lend 

empirical support to the theoretical results obtained by Dacco and Satchell (1999). 
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house price index instead of state-level data. Third, we perform tests for multiple structural 

breaks in the house price series using the recent Bai-Perron methodology (Bai and Perron, 

1998, 2003) that endogenously determines break points. 

 

Using a 10-City Composite S&P/Case-Shiller aggregate monthly seasonally adjusted house 

price index for the time period 1995-2010, our results indicate that the nonstationary house 

price series has undergone important structural changes during the sample period. 

Fundamental structural shifts in the series have occurred at February 2001, October 2003, 

April 2006, and August 2008, with the last shift coinciding with the recent housing market 

collapse. Hence any time series forecasting exercise that ignores the structural break 

possibility may run into model misspecification.  

 

Next we compare the forecasting performance of nonstationary models (with break related 

information incorporated) to four competing models – namely, Random Acceleration (RA), 

simple ARMA as well as Self-Exciting Threshold Autoregressive (SETAR) and Smooth 

Transition Autoregressive (STAR) models. In view of the fact that the S&P/Case-Shiller 

house price index series is found to be I(2), we model the first difference in house price series 

to follow a random walk; i.e., the RA model. ARMA type model is most widely used in the 

literature for the purpose of forecasting and has become the standard specification. We apply 

the SETAR and STAR models as alternatives to Markov Regime Switch model to capture 

nonlinear price dynamics in the housing market.
2
 

 

Comparison across alternative models using Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) criteria indicates that the nonstationary model with break in trend 

outperforms all other models in terms of in-sample forecasting. In that sense, it is the best 

fitted model for the given time series. However, the structural breaks model does not yield the 

best results in out-of-sample forecasting. Further, in terms of performance by the modified 

Diebold-Mariano test (see Harvey et al., 1997), none of the models performs significantly 

better than the rest. This may have been due to the fact that the house price series has 

undergone yet another structural change in the hold-out period during 2009-2010 which could 

not be investigated due to trimming considerations associated with the Bai-Perron 

methodology. Furthermore, while ARMA has typically outperformed the Markov in out-of-

sample forecasting in the literature, we do not find empirical evidence of ARMA 

outperforming SETAR and STAR in our empirical study. Our overall findings clearly 

demonstrate that models of house prices have not remained stable during the sample period. 

We strongly recommend taking such nonlinearities into account when conducting forecasting 

exercises and formulating housing policy. 

 

The paper is organized as follows. In Section 2, we provide a brief theoretical description of 

models that investigate structural breaks in time series data. In Section 3, we describe the 

data. We provide our empirical findings along with explanations in Section 4. Finally, we 

provide some concluding remarks in Section 5. 

 

2. MODELS AND METHODOLOGY 

 

Our primary focus in this paper is the model with structural breaks. A brief description of this 

model follows  

 

                                                 
2
 Miles (2008) also looked into TAR effects in the house price data but failed to find evidence of it at the state-

level (for five sample state states) for the period 1979:1-2001:4. 
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2.1. Model with Structural Breaks  

 

In this modeling approach, we first test for the presence of structural breaks in house price 

series – both stationary and nonstationary. For stationary series, we apply the Quandt (1960)-

Andrews (1993) test whereas for nonstationary series, we apply the Bai-Perron (Bai and 

Perron, 1998, 2003) methodology. Before building these models, we carry out standard unit 

root tests to comment on the stationarity property of the series – namely, the augmented 

Dickey-Fuller (ADF) and /or Phillips-Perron tests (see, for instance, Maddala and In-Moo 

Kim, 1998, for details of these tests). In this context, it is worth noting that Maasoummi et al. 

(2010) have recently suggested another test for detecting structural breaks in a time series. 

This test is fairly general and robust even in the presence of multiple breaks. We have, 

however, carried out the Quandt (1960)-Andrews (1993) test along with the Bai-Perron test 

for studying multiple breaks in the house price series in this paper. This is because the latter 

tests have been applied widely in the literature and found to be very useful in detecting 

structural breaks in time series. 

 

In what follows, we first describe briefly the Quandt-Andrews test for detecting a single 

endogenous structural break in a stationary time series and the subsequent works by Bai 

(1994, 1997a, 1997b) for estimating the break point. Next, we describe the methodology 

suggested by Bai and Perron (1998, 2003) for testing the presence of multiple structural 

breaks in a nonstationary time series.  

  

2.1.1. The Quandt-Andrews Test for Single Structural Break  

 

The first classical test of an exogenously given structural change in econometric literature is 

due to Chow (1960). He modeled it under the assumptions of i) a single break point, ii) a 

priori knowledge of exact break date, and iii) equality of error variance over the two sub- 

periods even when there is a break in terms of coefficient parameters. Clearly, these 

assumptions proved to be major limitations of the Chow test. At around the same time, 

Quandt (1960) also discussed the problem of testing the null hypothesis of constant 

coefficients against a more general alternative, where the break point is unknown and the 

error variance is also allowed to change. However, because of the lack of a proper distribution 

theory, this test could not be applied. It was only after three decades that Andrews (1993) and 

Andrews and Ploberger (1994) derived the asymptotic distributions of the likelihood-ratio test 

statistic, as well as the analogous Wald and Lagrange multiplier/Rao’s score test statistics for 

a one-time unknown structural change. These distributions are valid for models with no 

deterministic or stochastic trends as well as for nonlinear models. Andrews (1993, 2003) also 

provided the asymptotic critical values of these distributions under the null hypothesis of no 

structural break. The test statistics are obtained as a function of all possible break dates. 

However, as noted by Hansen (2001), the break dates cannot be considered to be too close to 

the beginning or end of sample, because otherwise there are not enough observations to 

identify the sub-sample parameters. This is called trimming, and conventionally, the trimming 

parameter, , is taken to be 0.15, and thus the search is confined to the range between 15% 

and 85% of the observations. It is then checked to see if the maximum of this sequence of test 

statistic values exceeds Andrew’s appropriate critical values. If it does, then we conclude that 

the time series has a structural break.  

 

The Quandt-Andrews method, however, does not estimate the break point. It is the subsequent 

works by Bai that provide the methodology for estimating the break points. Following Bai 

(1994, 1997a,1997b), the sample is split at each possible break date and the parameters of the 
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model are then estimated by ordinary least squares method and the sum of squared errors 

calculated. The least squares break date estimate is the date that minimizes the full-sample 

sum of squared errors.  

 

2.1.2. The Bai-Perron’s Test for Multiple Structural Breaks 

 

Precursor to Bai and Perron’s papers in 1998 and 2003 on testing the presence of multiple 

structural breaks in time series, Bai (1997b) and Bai and Perron (1998) discussed how to 

estimate multiple break dates sequentially. The results were obtained under very general 

conditions of the data and the errors, and the framework also allowed a subset of the 

parameters not to change. They proposed a number of test statistics for identifying multiple 

break points, and these are stated below.  

 

(i) The sup FT(k) test i.e., a supF-type test of the null hypothesis of no structural break 

versus the alternative of a fixed number of breaks, T representing the sample size. 

 

(ii) Two tests, designated by them as UD max test and WD max test, from consideration of 

having equal  

 

(iii) weighting scheme and unequal weighting scheme where weights depend on the 

number of regressors and the significance level of the tests. For these two max tests, 

the alternative hypothesis is somewhat different from that in (i) viz., the number of 

breaks/changes is arbitrary/unknown, but up to some specified maximum.  

 

(iv) The sup FT(l
·
+

·
1| l) test i.e., a sequential test of the null hypothesis of l breaks versus 

the alternative of (l
·
+

·
1) breaks.  

 

It should be quite obvious that size and power of these tests are important issues for final 

testing conclusions. Based on extensive simulation exercise, they have suggested the 

following useful strategy: “First look at the UD max or WD max tests to see if at least one 

break is present. If these indicate the presence of at least one break, then the number of breaks 

can be decided based upon a sequential examination of the sup F(l
·
+

·
1|

 
l) statistics constructed 

using global minimizers for the break dates (i.e., ignore the test F(1|
 
0) and select m such that 

the tests sup F(l
·
+

·
1| l) are insignificant for l  m). This method leads to the best results and is 

recommended for empirical applications” (Bai and Perron, 2003, pp. 16).  

  

2.2. Forecasting  

 

In order to assess the forecasting performance of the models discussed above, we compared 

both in-sample and out-of-sample forecasts with the actual values using standard forecast 

evaluation criteria. One such well known criterion is the root mean squared error (RMSE) of 

the forecasts defined as:  

 







 






2

,

11

)(
1 1

stst

TT

Tt

fy
T

RMSE    

where ft,s is the s-step ahead forecast from time t and yt+s is the actual value of yt the at time 

t
·
+

·
s, T

·
+

·
T1 is the total sample size (in-sample plus out-of-sample), and (T

·
+

·
1)-th observation 

is the first out-of-sample forecast observation so that the total hold-out sample size is T1. 

Another standard criterion for evaluating forecasting performance is the mean absolute 

forecast error which is given by:  
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



    

 

Insofar as generation of s-step ahead forecasts are concerned, we have used a recursive 

window where the series of forecasts is generated with the initial estimation date fixed. 

Additional observations are added one at a time to the estimation period. By these criteria, a 

model is said to be better than another if the RMSE/MAE value of the former is smaller than 

the latter. 

 

In order to compare between any two models in terms of their forecast performances, a 

number of tests are available in recent literature. To this end, we performed the modified 

Diebold-Mariano test (cf. Harvey et al., 1997) involving all the models considered in our 

study. The test we used is a modified version of the original Diebold-Mariano (1995) test, 

proposed by Harvey et al. (1997). The original test specifies the null hypothesis as of equal 

predictive ability of two models against the alternative hypothesis that one model has a 

smaller RMSE than the other one. The modification is based on a correction factor designed 

to account for potential finite sample size distortion of the original test. We computed this 

modified test statistic for all possible pairs involving the five models considered in this paper.  

 

3. DATA  

 

Given that the housing crisis that erupted in 2006 morphed into a full blown nation-wide 

phenomenon, an aggregate house price index seemed appropriate. We used a 10-City 

Composite S&P/Case-Shiller aggregate house price index that was seasonally adjusted at 

monthly frequency for the time period January, 1995 - December, 2010.
3
 S&P/Case-Shiller 

indices have become one of the most consistent benchmarks of housing prices in the US. 

Their purpose is to track average change in single family house prices in different 

geographical regions. The indices are calculated using the repeat-sales methodology, first 

developed by Case and Shiller (1989), which uses data on properties that have sold at least 

twice in order to capture the true appreciated value of constant-quality homes.
4
 

 

There are three aggregate house price indexes that are routinely published by S&P/Case-

Shiller - i) National U.S. Home Price Index is a quarterly composite of single-family home 

price indices for the nine U.S. Census divisions dating back to 1987, ii) The S&P/Case-Shiller 

monthly 10-City Composite is a value-weighted average of 10 metro area indices dating back 

to 1987 and iii) the S&P/Case-Shiller monthly 20-City Composite is a value-weighted 

average of 20 metro area indices dating back to 2000. Given our focus on the dramatic rise in 

house prices over the decade spanning 1996-2006 and the subsequent meltdown, we decided 

to use the monthly 10-City Composite index with January 1995 as the starting point. 

                                                 
3
 Data were obtained from the following site: http://www.standardandpoors.com/indices/sp-case-shiller-home-

price-indices/en/us/?indexId=spusa-cashpidff--p-us---- 
4
 Several existing studies on house prices have used Federal Housing Finance Agency (FHFA) house price 

indices. While both indices use repeat sales methodology, S&P/Case-Shiller indices represent an improvement 

over FHFA house price indices in several aspects. For example, unlike FHFA index which is a quarterly index, 

S&P/Case-Shiller is a monthly index. Besides, S&P/Case-Shiller indices include foreclosed properties while 

FHFA indices do not. Given the significant increase in number of foreclosed properties in the wake of the 

current crisis, S&P/Case-Shiller indices are expected to more accurately tract the decline in house prices. 

Furthermore, by restricting to Fannie May and Freddie Mac conforming mortgages, FHFA indices concentrate 

more on the lower end of the housing markets.  

http://www.standardandpoors.com/indices/sp-case-shiller-home-price-indices/en/us/?indexId=spusa-cashpidff--p-us----
http://www.standardandpoors.com/indices/sp-case-shiller-home-price-indices/en/us/?indexId=spusa-cashpidff--p-us----
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Furthermore, it is worth noting that despite the difference in coverage, all three aggregate 

indices track each other fairly closely. 

 

4. EMPIRICAL FINDINGS AND ANALYSIS 

 

In this section, we first report and discuss the results of our time series analysis characterizing 

the data generation process of Case-Shiller house price index (Pt) , covering the entire sample 

period from January 1995 to December 2010. We comment on the stationarity property of (Pt) 

as well as the structural stability of the series using relevant testing procedures. Thereafter, we 

report estimated versions of the five different models discussed earlier and the respective in-

sample and out-of-sample forecasts. We also provide a comparison of forecasts using the 

RMSE and MAE values based on these forecasts as well as the modified Diebold-Mariano 

test statistic. For purposes of forecasting, we take the time-period covering January 2009 to 

December 2010 to be the out-of-sample period; thus all the models are estimated based on in-

sample observations from January 1995 till December 2008. The estimation was carried out 

using Eviews, and programs were written in Gauss, based on codes available on the official 

homepage of Dick van Dijk (http://people.few.eur.nl/djvandijk/).
5
 

  

For the purpose of this study, the observations were changed to their logarithmic values i.e., 

ln Pt
·
=

·
pt

·
(say). Therefore, the difference between pt and pt-1 constitutes house price inflation. 

Furthermore, by compressing the scale, the logarithmic transformation makes the distribution 

more akin to a symmetric distribution. 

 

4.1. Testing for Stationarity 

 

As is apparent from the graphical plot of the percentage in house price index (from a year 

earlier) in Figure 1.1, the series is not stationary. In order to verify this statistically, we carried 

out the Augmented Dickey-Fuller (ADF) as well as the Phillips-Perron (PP) tests on the level 

values of the series i.e., pt using estimated equations with intercept and a linear trend term. 

The appropriate lag value for the ADF test was chosen using Schwarz’s (1970) Bayesian 

Information Criterion (SBIC
6
). Subsequently the Ljung Box Q

·
(.) test was carried out to make 

sure that the residuals have indeed become white noise. 

 

The ADF test statistic value was obtained as –1.301. Since the critical value at 5% level of 

significance is - 3.438, we concluded that the null hypothesis of unit root could not be rejected 

for the Case – Shiller house price index, and hence the series has a unit root. Our findings 

based on the PP test for unit root was also the same. The PP test statistic value of 0.279 was 

found to be significant only at a p-value of 0.99. 

 

The first difference of the series was considered next. The unit root tests yielded test statistic 

values of -2.499 and -2.283 for the ADF and PP test respectively. Since both test statistics 

suggested the presence of unit root in the pt series as well, yet another round of differencing 

was done, and unit root tests were carried out once again. The estimating equation for the 

second differenced series is given below: 

 aptp tt
ˆ*818.0)1002.2(0002.0* 1

)44.11()59.0(

6

)68.0(
 






  (4.1) 

                                                 
5
 The algorithms as well as the codes are available, on request, from the third author (kundu.srikanta@gmail. 

com). 
6
 We choose SBIC since it imposes a stiffer penalty term than Akaike’s Information Criterion (AIC). 

http://people.few.eur.nl/djvandijk/
mailto:kundu.srikanta@gmail.com
mailto:kundu.srikanta@gmail.com


International Econometric Review (IER) 

9 

 

where   
      ,     is the residual of the ADF estimating equation, and the numbers in 

parentheses underneath denote the t-ratios. 

 

As is evident from equation (4.1), the intercept and the coefficient of the linear trend term 

were not significant. The ADF test statistic value of –11.44 indicated that there was no unit 

root present in the second differenced values. As for the PP test, the test statistic value was 

found to be -11.34, which reinforced our conclusion based on the ADF test. 

 
Figure 4.2 Plot of Case-Shiller house price index (in log value), pt  

 
 
Figure 4.3 Plot of first differenced values of pt  

 
 
Figure 4.4 Plot of second differenced values of pt  

 
 

We, therefore, concluded, following the procedure of Box-Jenkins of achieving stationarity, 

that Case-Shiller house price series is integrated of order 2, i.e., it becomes stationary after 

second differencing. This was also evident in the graphical plots of ln Pt
·
(=

·
pt), pt and 


pt 
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against time as shown in Figures 4.2, 4.3, and 4.4 respectively. From Figure 4.1, it appeared 

that the house price series at level values had a rising trend until 2006, followed by a 

declining trend suggesting a possible break in the series sometime in 2006. The statistical 

testing of the presence of this break, as well as any other break, and their role in the modeling 

of house prices are discussed in the following sections. 

 

4.2. Testing for Structural Stability in the Stationary Series 

 

Next we formally investigated if there was any structural break in the stationary house price 

series. To that end, we applied Quandt (1960) – Andrews (1993). As mentioned in Section 

2.1.1, in this testing procedure, the null hypothesis of no structural break is tested against the 

alternative where a single structural break has occurred at some unknown time point, and the 

error variance is allowed to change from pre-break to post-break period. If the Quandt-

Andrews test concluded that there existed a break in the stationary series, we determined the 

break points endogenously by applying Bai’s (1994, 1997a, 1997b) least squares based 

procedure.  

 

For the purpose of carrying out the Quandt-Andrews test for parameter stability, we first 

considered an AR
'
(1) model. Thereafter, we considered some higher order AR models as well 

viz., AR
'
(p), p

'
=

'
2,

 
3,

 
4

'
and

'
5. However, results of the tests were found to have hardly changed 

with higher lags, and hence we are reporting here the computational figures for AR
'
(1) only

7
. 

 

Next we calculated Andrews’ Wald (W) statistic to test for stability of the stationary series. 

For the purpose of computing a sequence of Wald statistics as a function of candidate break 

dates, we eliminated the first and the last 15% of the data points. A plot where values of the 

Wald statistic are plotted on the Y-axis against the candidate break dates on the X-axis is given 

in Figure 4.5.  

 
Figure 4.5 Plot of second differenced values of pt  

 
 

It is evident from this plot that the maximum value of the sequence of Wald statistics, 4.331, 

lies below the Andrews’ critical value of 11.72 at 5% level of significance, and hence, the null 

hypothesis of ‘no structural break’ could not be rejected. Thus, based on the Quandt-Andrews 

test, the US house price series, in its stationary values, was found to remain stable during the 

entire sample period. In other words, our findings suggest that even during the period of this 

                                                 
7
 Choice of AR (1) is also supported by Monte-Carlo evidence (see, for instance, Maddala and In-Moo Kim, 

1998). 
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crisis, the stationary component of the series did not undergo any structural change or 

adjustment. However, it appears from Figure 4.2 that structural changes might have occurred 

in the trend component of the series, especially in 2006. We investigated this possibility next 

by applying the Bai-Perron test (1998, 2003), the modeling specification which allows for a 

trend component.  

 

4.3. Testing for Structural Stability in the Nonstationary Series 

 

As stated earlier, we applied the testing procedure proposed by Bai and Perron (1998, 2003) 

for finding the presence of structural breaks, including multiple ones, if that be the case, in the 

nonstationary time series. 

 

The model considered by Bai and Perron (1998) is fairly general allowing for, inter alia, 

trending regressor so that the test can be carried out with nonstationary data having a 

deterministic trend as well. For the purpose of our study, we considered a similar model, 

where the regressors for pt comprised a constant term, a time trend and the first lagged value 

of pt, apart from the noise term, at i.e., 

 ttt aptp  11   (4.2) 

 

While applying this test, we set the value of the trimming parameter,, to equal 0.15. As 

described in Section 2.1.2, we first carried out, as per suggestion by Bai and Perron (1998), 

the UD max and WD max tests. Their test statistic values were found to be 405.502 and 

518.169, respectively. These were compared with their respective critical values of 11.70 and 

12.81 at 5% level of significance, leading us to conclude that at least one structural break is 

present in the nonstationary i.e., trended series. We then performed the sequential 

sup
'
FT(l

·
+

·
1| l), test and the test statistic values were obtained as 80.85, 31.45, 15.06, and 

0.0001 for FT
'
(2|

'
1), FT (3|

'
2), FT (4|

'
3), and FT (5|

'
4), respectively. The comparison with the 

critical values of 12.95, 14.03, 14.85, and 15.29 at 5% level of significance suggested the 

presence of four breaks in the nonstationary series. Finally, the four break points were 

estimated following the procedure proposed by Bai and Perron (1998, 2003), and these were 

found to be February 2001, October 2003, April 2006, and August 2008, respectively. In 

search of an intuitive explanation for the break dates, we note that the first break occurred 

around the time the US economy dipped into a mild recession in 200,1 which was preceded 

by the dot com bust. The subsequent recovery was fairly anemic, which prompted the Fed to 

engage in an aggressive rate cut from 6.5% in late 2000 to 1% in June 2003 to accelerate the 

pace of recovery. The housing market grew vigorously during this period till the peak was 

reached in summer 2006. Finally, the last break date effectively coincided with the collapse of 

the housing market in 2008.  

 

4.4. Estimated Models 

 

In this section, we present the five estimated models. As stated earlier, the estimation was 

carried out based on data covering the period January 1995 to December 2008. 

 

4.4.1. Model with Breaks in Trend 

 

Our model with structural breaks is estimated with the level values, pt. As discussed before, 

the Bai-Perron test, in the framework of a model where break is captured through the 

deterministic trend function, produced four break points in the entire series. Therefore, we 

estimated a model using four dummy variables for each of the intercept and slope parameters 
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along with a sufficient number of lagged values of
8
 pt. The following best fitted model was 

thus obtained:  

 

tttttttt

tttttt

ttttt

appppppp

ppKKKK

tDDDDp

ˆ206.0443.0339.0206.0331.0029.0316.0

669.0780.1002.00004.00002.01043.5

001.0003.0002.0003.0002.0027.0

9
)308.2(

8
)293.2(

7
)627.1(

6
)019.1(

5
)726.1(

4
)156.0(

3
)782.1(

2
)987.3(

1
)708.21(

4
)025.2(

3
)800.2(

2
)583.3(

1
)137.0(

6

)499.3(
4

)461.1(
3

)050.2(
2

)900.2(
1

)684.2()146.1(





























 (4.3) 

[The values in parentheses indicate corresponding values of t-ratios.] 

 

where Dit, i
'
=

'
1,

'
2,

'
3,

'
4 stands for the i-th break dummy for the intercept i.e., Dit takes the value 

1 if the observation falls in the sub-group of observations as characterized by the i-th dummy. 

Similarly, Kit stands for the corresponding slope dummy variables defined as Kit
'
=

'
t
'
-
'
Ti, where 

Ti is the i-th break point. From the diagnostic tests of the residuals of this estimated model, it 

was found that the residuals have become white noise. A few p-values of the Q(k) test statistic 

are given here to lend support to the conclusion. For instance, for k
'
=

'
1,

'
7,

'
13,

'
19,

'
25 and 31, the 

p-values were obtained as 0.98, 0.95, 0.09, 0.34, 0.27 and 0.43.  

 

4.4.2. Random Acceleration Model  

 

This is a very simple model to estimate whereby the stationary series     (i.e. the second 

difference in pt) was regressed on a constant and an error term. In other words, this is a 

random walk model in first difference and was particularly chosen to characterize a house 

price series that is found to be I(2). The constant, estimated as -0.001, was found to be 

statistically insignificant with a p-value of 0.425, which should indeed be so since the 

constant in the ADF estimating equation given in equation (4.1), was found to be 

insignificant.  

 

4.4.3. ARMA Model 

 

Since the time series of the Case-Shiller house prices was found to be I(2), the series was 

differenced twice so as to obtain the stationary series, and then the ARMA model was fitted 

on the stationary series,     say. The best fitted ARMA model for the stationary series was 

found to be an ARMA (2,2) model, as given by:  

 tttttt aaappp ˆˆ983.0ˆ153.0~717.0~178.01028.8~
2

)670.78(

*

1
)244.8(

*

2
)529.12(

*

1
)001.3(

*5  








  (4.4) 

where 1
~

 ttt ppp . [The values in parentheses indicate corresponding values of t-ratios. 

* indicates significance at 1% level of significance.] 

 

The orders of the ARMA model were obtained by following the Schwarz’s (1978) BIC 

criterion. The highest orders of the ARMA model were taken to be the usual (2,2). The values 

of the BIC criterion for all possible combinations of the orders are given in Table 4.1 below. 

The minimum BIC value was attained at orders (2,2). Further, the Ljung-Box Q(.) statistic, 

based on the residuals of this model, suggested that there were no significant autocorrelations 

left in the residuals at 1% level of significance
9
. These test statistic values along with p-values 

are reported in the second and third columns of Table 4.2 below. 

                                                 
8
 Since the data are at monthly frequency, we started with 12 lags of pt and checked for the white noise property 

of the residuals thereof. It was at lag value 9 that the residuals were found to be white noise, and the estimated 

model is accordingly reported in equation (4.3). 
9
 Since residuals of the ARMA (2,2) model in equation (4.4) turned out to be white noise, any other higher 

orders for ARMA model were not considered. 
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  MA(q)  

AR(p) 0 1 2 

0 -9.694 -9.668 -9.688 

1 -9.688 -9.658 -9.678 

2 -9.680 -9.652 -9.722 

Table 4.1 Values of the BIC for ARMA(p,q) model. 

 

 Residual 

Lag value Test statistic p-value 

1 2.881 0.410 

2 9.350 0.053 

3 10.991 0.052 

6 14.264 0.075 

12 21.613 0.087 

18 28.984 0.088 

24 32.917 0.165 

Table 4.2 The Ljung-Box test statistic and p-values based on residuals of the ARMA (2,2) model. 

 

4.4.4. SETAR Model 

 

Based on our literature search, we have found that threshold autoregressive (TAR) models 

have not been applied to forecast house prices [except for Miles (2008) who failed to find any 

threshold effect]. Threshold autoregressive model is an entirely different class of nonlinear 

models in the sense that this is a simple relaxation of the class of linear autoregressive 

models, which allow a locally linear approximation over a number of states (regimes) so that 

globally the model is nonlinear. Tong and Lim (1980) proposed a special case of TAR model, 

where the state-determining variable is the variable under study itself, and in that case the 

model is called the self-exciting TAR or SETAR model. 

 

While considering the SETAR model instead of a single regime linear AR model, an 

important question that naturally arises is whether the additional regimes add significantly to 

explaining the dynamic behavior of the variable under question, the house price series in our 

case. A natural approach to answering this question empirically is to take the single regime 

linear model as the null hypothesis and the regime switching SETAR model as the alternative. 

Therefore, we first tested for the null hypothesis of ‘no threshold’ against the alternative of 

‘threshold’ before actually fitting a threshold model of the SETAR kind. To this end, the 

Rao’s score/LM test was computed and test statistic value was found to be 10.80. Given that 

the distribution of the underlying test statistic is nonstandard, its critical values were obtained 

with bootstrap-based computations using 1000 replications and also allowing for White 

(1980) corrected heteroskedastic errors. The test rejected the null hypothesis with p-value 

0.017. A two-regime SETAR model was then considered, and the estimated model was 

obtained as follows.  

Regime I: ttt app ˆ~301.01028.8~
1

)

*5  



(3.213(0.485)
  (4.5) 

( 001004.0~
4 tp ) 

Regime II: ttt app ˆ~365.00009.0~
1

)

***  
(2.028(2.62)

  (4.6) 

( 001004.0~
4 tp ) 

[The values in parentheses indicate corresponding values of t-ratios. * and ** indicate 

significance at 1% and 5% levels of significance, respectively.] 

 



Barari, Sarkar, Kundu and Chowdhury-Forecasting House P. in US with Multiple Structural Breaks 

14 

 

The estimation technique first searches for the appropriate threshold variable, which is an 

appropriate lag value of the variable concerned, along with the estimate of the threshold 

value. These were found to be       and 0.001004, respectively
10

.  

 

4.4.5. STAR Model  

 

This is a variant of the SETAR model that was introduced by Chan and Tong (1986) and 

extensively explored by Terasvirta and Anderson (1992), Granger and Terasvirta (1993), and 

Terasvirta (1994). It is worth noting that unlike the SETAR model, where it is assumed that 

the border between the two regimes is given by a specific value of the threshold variable yt–d, 

the STAR model allows for a gradual smooth transition between the different regimes. The 

resulting model is called the Smooth Transition Autoregressive (STAR) model (see 

Terasvirta, 1998, for a comprehensive review). The transition variable is often assumed to be 

a lagged endogenous variable i.e., st'='yt–d for certain integer d'>'0. 

 

Following the ‘two regime’ interpretation, which is very common in the STAR literature, we 

may state that different choices for the transition function G(st;','c) give rise to different types 

of regime-switching behavior. The most popular choice for G(st;','c) is the first-order logistic 

function:  

 0,
)}({exp1

1
),;( 


 




cs
csG

t

t   (4.7) 

and the resultant model is called the logistic STAR (LSTAR) model. The parameter c in (4.7) 

can be interpreted as the threshold between the two regimes corresponding to G(st;','c)
'
=

'
0 

and G(st;','c)
 '
=

'
1. The parameter  determines the smoothness of change in the value of the 

logistic function, and thus the transition from one regime to the other. 

 

As in case of SETAR model, we first carried out a test for linearity versus nonlinearity in the 

STAR model. By comparing all possible combination of different lag values with different 

threshold, we observe that the lowest p-values for both the F-type test and chi-square version 

of the test statistic occur at d
'
=

'
4 and lag value 1. The p-values for F-type test and chi-square 

type test are reported as 0.020 and 0.021, respectively, thus rejecting linearity against LSTAR. 

Thereafter the LSTAR model was estimated using conditional maximum likelihood method. 

The results are reported below.  

tttttt apGppGpp ˆ)0008.0,68.18;~(~325.000076.0)0008.0,68.18;~(1~328.010053.9~ *

)17.4(

*

)37.12(
41

)58.2(

**

)76.2(

*

)17.4(

*

)37.12(
41

)258.3(

*5

)519.0(















 






 






  




 (4.8) 

[The values in parentheses indicate corresponding values of t-ratios. *indicates significance at 

1% level of significance.] 

 

After all of the five models were estimated, we first plotted the fitted values of the four 

stationary models along with the stationary (log) price series. We also plotted the fitted values 

of the nonstationary model and the actual (log) prices in level. These plots, shown in Figures 

4.6a and 4.6b, present a visual comparison amongst the fitted models as well as the closeness 

of their fits in comparison with the actual prices. These plots suggest that there was not much 

of a difference in the performance of the five models at their level values. Moreover, since all 

these plots are also very close to the plot of actual values, it can be concluded that all the 

fitted models performed quite well for the given sample period. 

                                                 
10

 It is further to be noted that only the first lag was found to be significant for both the regimes, and that the 

intercept of the model for Regime II was found to be statistically significant unlike in the case of ‘no threshold’ 

i.e., single ARMA model for the entire series. 
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 Figure 4.6a Fitted (in-sample) values of the four stationary models and the stationary data 

 
 
Figure 4.6b Fitted (in-sample) values of the four stationary models and the stationary data 

 
 

4.5. Forecast Performance 

 

In order to assess the performance of these five estimated models in terms of forecasts, we 

obtained both out-of-sample and in-sample forecasts. We calculated out-of-sample forecasts 

for 1-, 2-, 3-, 4-, 5-, and 6- step ahead horizons for the hold-out period ranging from January 

2009 to December 2010. In the forecast computations, we applied the recursive window 

method where the initial estimation date is fixed, but additional observations are added one at 

a time to the estimation period. RMSE and MAE values were then computed based on the 24 

forecasts thus obtained for all six models. The out-of-sample forecast values were 

subsequently plotted along with the actual house prices separately for each forecast horizon. 

These plots are given in Figures 4.7 through 4.12. 

 

We report the RMSE and MAE values for in-sample forecasts in Table 4.3 and out-of-sample 

forecasts in Table 4.4. We also report the values of the modified Diebold-Mariano (MDM) 

test statistic in Table 4.5, where the comparison in terms of forecast performance of each of 

the four models namely, RA, SETAR, STAR, and the model with trend break, were made 

with reference to the ARMA (2,2) model
11

. 

 

                                                 
11

 For brevity of space, the test statistic values for the other pairs of models are not reported. But the conclusion 

is the same. 
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Figure 4.7 One-step-ahead out-of-sample forecasts by the five models. 

 
 

Figure 4.8 Two-step-ahead out-of-sample forecasts by the five models 

 
 

Figure 4.9 Three-step-ahead out-of-sample forecasts by the five models 

 
Figure 4.10 Four-step-ahead out-of-sample forecasts by the five models 
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Figure 4.11 Five-step-ahead out-of-sample forecasts by the five models 

 
 

Figure 4.12 Six-step-ahead out-of-sample forecasts by the five models 

 
 

Model RMSE MAE 

M1 0.001499 0.001141 

M2 0.001871 0.001401 

M3 0.001735 0.001294 

M4 0.001741 0.001265 

M5 0.001744 0.001298 

Table 4.3 In-sample forecast performance 

Notes: M1: Model with breaks in trend; M2: Random Acceleration; M3: ARMA (2,2) ; M4: SETAR; M5:STAR 

 

Comparisons of RMSE and MAE values presented in Table 4.3 and Table 4.4 suggest that in-

sample forecasts perform very well for all the five models, while the out-of-sample forecast 

performances of all the models, in terms of these two criteria, are also remarkably good. In 

addition, a careful inspection of Table 4.3 values indicates that the model with structural 

breaks outperforms all the competing models in terms of in-sample forecasting. In this sense, 

the structural breaks model is the best fitting model for the sample. As regards out-of-sample 

forecasting, Table 4.4 values indicate that SETAR and STAR exhibit identical performance 

with ARMA model using RMSE and near identical performance using MAE for all forecast 

horizons. It is also noted from the values of the MDM test statistic that for all possible pairs 

based on the five models, none of the models performs significantly better than any other 

model. Our results in this regard stand in contrast with Crawford and Fratantoni (2003) who 

found simple ARIMA model to always outperform GARCH and regime switching models in 

out-of-sample forecasts. Based on the RMSE and MAE values in Table 4.4, the structural 

breaks model does not yield the best out-of-sample forecasts. A probable reason for this could 

be the fact that toward the end of the series covering the hold-out period (January 2009-

December 2010), the model appeared to have undergone yet another structural change (see 

Figure 1.1). Because of consideration of trimming associated with the Bai-Perron (1998) 

methodology, the entire hold-out period could not be considered as candidate breakpoints. 
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Hence, the possibility of finding another structural break in the hold-out period was simply 

ruled out by this test. As it turns out, the RA model provides the best out-of-sample forecasts 

for longer term horizons (namely 4, 5, and 6 step ahead). A plausible explanation could be 

that the forecast errors of the RA model are not cumulated as forecast horizon increases, 

unlike the other models. 
 

Forecast RMSE MAE 

horizon M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 

1 0.005 0.011 0.004 0.004 0.004 0.004 0.009 0.003 0.003 0.003 

2 0.011 0.014 0.010 0.010 0.010 0.009 0.011 0.007 0.008 0.008 

3 0.020 0.018 0.017 0.017 0.017 0.017 0.014 0.013 0.014 0.014 

4 0.031 0.026 0.027 0.027 0.027 0.026 0.020 0.021 0.021 0.021 

5 0.041 0.036 0.039 0.039 0.039 0.034 0.028 0.029 0.029 0.029 

6 0.052 0.047 0.051 0.051 0.051 0.043 0.037 0.038 0.038 0.038 

Table 4.4 Out-of-sample forecast performance 

Notes: M1: Model with breaks in trend; M2: Random Acceleration; M3: ARMA (2,2) ; M4: SETAR; M5:STAR 

 

 

Forecast  

horizon 

ARMA 

versus 

RA 

ARMA 

versus 

SETAR 

ARMA 

versus 

STAR 

ARMA 

versus  

nonstationary model with break 

1 
1.293 

(0.104) 

0.592 

(0.280) 

1.012 

(0.161) 

2.522 

(0.009) 

2 
0.640 

(0.264) 

0.656 

(0.259) 

0.504 

(0.310) 

0.957 

(0.174) 

3 
0.386 

(0.352) 

0.507 

(0.309) 

0.555 

(0.292) 

0.547 

(0.295) 

4 
0.186 

(0.427) 

0.437 

(0.333) 

0.599 

(0.278) 

0.179 

(0.430) 

5 
-0.088 

(0.535) 

0.122 

(0.452) 

0.944 

(0.178) 

-0.099 

(0.539) 

6 
-0.298 

(0.615) 

-0.547 

(0.704) 

0.649 

(0.262) 

-0.167 

(0.565) 

Table 4.5 Values of the modified Diebold-Mariano test statistic 

Notes: p-values are reported in parentheses 

 

5. CONCLUDING REMARKS 

 

The boom-bust cycle in U.S. house prices has been a fundamental determinant of the recent 

financial crisis leading up to the Great Recession. The risky financial innovations that took 

place in the housing market prior to the recent crisis fueled the speculative housing boom. In 

this backdrop, the main objectives of this empirical study were to i) detect the possibility of 

multiple structural breaks in the US house price series data for this recent time period 

exhibiting very sharp upturns and downturns; ii) endogenously determine the break points and 

iii) carry out house price forecasting exercises to see how the structural breaks model fares 

with competing time series models – both linear and nonlinear. 

 

Our study is perhaps the very first attempt in investigating the possibility of structural breaks 

in house price series fundamentally altering the time series properties of the series. Using the 

Bai-Perron (1998) methodology that allows for multiple break points and determines them 

endogenously, we found four break points during the sample period in the Case-Shiller 10 

city aggregate house-price index series. As noted earlier, the last break point coincided with 

the time period when the housing market effectively collapsed.  
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For the purpose of forecasting, we used the house price series that was found to be 

nonstationary and explicitly incorporated break related information in it. We then compared 

the performance of this model with four other models comprising RA, simple ARMA, 

SETAR, and STAR. Our findings suggest that house price series not only has undergone 

structural changes but also regime shifts during the sample period. Hence, models that assume 

constant coefficients such as ARMA may not accurately capture the house price dynamics.  

 

Comparison of forecasts across alternative models using RMSE and MAE criteria indicated 

that the nonstationary model with break in trend outperformed all other models in terms of in-

sample forecasting. In that sense, it was found to be the best fitted model for the given time 

series. The superior performance of the nonstationary model with break in trend, however, did 

not extend to out-of-sample forecasting. This may have been due to the fact that the model 

has undergone yet another structural change in the hold-out period, which could not be 

detected because of trimming consideration associated with the Bai-Perron (1998) 

methodology. We expect out-of-sample forecasting performance of the structural breaks 

model to improve as more data become available for the post crisis period. Finally, contrary 

to many existing findings, our empirical findings did not clearly establish superiority of 

simple ARMA model over others in out-of-sample. In fact, the TAR models performed 

almost as well as ARMA in our study.  

 

Stabilizing house prices is going to be the key to a healthy economic recovery. Where are 

house prices heading in the US? Answering such questions will be critical in formulating a 

path out of the current lackluster recovery. Therefore forecasting house prices accurately has 

never been more important. What type of forecasting model should be used to that end? While 

the Random Acceleration model provided the best out-of-sample forecasts in our sample, it 

was only for longer term forecast horizons, and furthermore, such a model lacks theoretical 

underpinning. Instead, based on our findings, we strongly recommend investigating the 

presence of structural breaks/regime switches in house price series before formulating 

forecasting models. Although such models will add to complexity compared to rival linear 

models, they will also be able to capture the unique nonlinear properties of house price series 

as we found in this study. One way of extending our study to gain further insight will be to 

forecast house prices using a multivariate VAR framework with structural breaks.  
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