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ABSTRACT

In this paper, we discuss Bayesian inference of unobserved heterogeneity for
unemployment duration data in the presence of right and interval-censoring, and non-
proportionality. We employ accelerated failure time models with three different
distributional assumptions: log-logistic, log-normal, and Weibull models, and use
members of an exponential family of distributions for considering unobserved
heterogeneity. We adopt a Bayesian approach, using Markov Chain Monte Carlo via
WinBUGS software, to analyze the data. The proposed approach is illustrated using the
unemployment duration data set of Iran in 2009. A sensitivity analysis using different
latent variable models of the exponential family is also considered. After checking
convergence, using the Gelman-Rubin diagnostic test, we compared different
distributional assumptions using the DIC; criterion. Our findings reveal significant
discrepancies in unemployment duration based on different covariates for the sample
population of Iran in 2009.
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1. INTRODUCTION

Ordinary regression models of unemployment duration data implicitly assume that, given the
measured covariates, the sample population is homogenous: that is, all individuals have the
same risk for the event of interest. This assumption is not realistic since demographic
differences about which we have no information exist. Sometimes, the undue financial burden
of collecting all relevant explanatory information leads to the neglect of some covariates,
resulting in unobserved heterogeneity.

Heterogeneity can also be a consequence of disregarding group-specific or individual-specific
variation. For example, different people can have distinct genetic characteristics or different
employment habits, which may be incorrectly ignored in the study. In multi-city studies there
often exist sources of heterogeneity between cities, which may include geographical
differences, e.g. different work habits of staff in different cities (Komarek et al., 2007).This is
a special case of the omitted variables problem, with its resulting biases.
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As discussed by Omori and Johnson (1993) and Greene (2003), if the model specification is
incomplete due to unobserved but relevant and systematic individual differences in the
distribution of the duration data, then inferences based on the improperly specified model are
likely to be biased. Unobserved heterogeneity and frailty models try to reduce heterogeneity
in the sample. Vaupel et al. (1979) were the first to recognize that unobserved heterogeneity
could lead to bias in parameter estimates and to incorrect inferences about the lifetime
distribution for univariate and independent survival times. By means of simulation,
Tempelman and Gianola (1996) demonstrated the necessity of accounting for unobserved
heterogeneity to make correct inferences about model parameters.

In unobserved heterogeneity of time-to-event models, Duchateau et al. (2002) used the frailty
proportional hazard model with a center-specific random effect to investigate heterogeneity
between centers in multi-center trials. They proposed log-normal and gamma densities for the
center-specific random effect and used the expectation-maximization (EM) algorithm in their
analysis. Also, Legrand et al. (2005) proposed a Bayesian approach to look for heterogeneity
between centers in a proportional hazard model. They modeled heterogeneity by including a
center-specific random effect and a random treatment by center interaction. Yamaguchi and
Ohashi (1999) also discussed the use of frailty modeling to investigate heterogeneity between
centers in time-to-event data. Campolieti (2001) conducted a Bayesian analysis of unobserved
heterogeneity of duration data. The model employed by Campolieti (2001) uses Dirichlet
mixtures of normals, which includes Heckman and Singer’s (1982, 1984) approach as a
special case. Some tests of heterogeneity have been proposed in recent years, where a
homogeneity test is the testing of the degeneration of the random effect distribution at point
zero. Vindenes et al. (2008) have mentioned that usual heterogeneity can be important,
particularly in understanding the behavior of small populations, due to its impact on
demographic variance. For example, Knape et al. (2011) handled heterogeneity in the island
population of Silvereyes by using a random effects model.

In this paper, we use a latent variable model to handle unobserved group-specific
heterogeneity in the analysis of unemployment duration data. Introducing this unobserved
random factor modifies the accelerated failure time (AFT) model. We discuss a Bayesian
latent variable model which is a member of the exponential family of distributions for
heterogeneity. To the best of our knowledge, this model has not yet been discussed in the
unobserved heterogeneity literature.

We employ the proposed methodology to analyze unemployment duration data for Iran in
2009. In this study, we group the data according to the province in which an individual lives.
It is essential to consider a heterogeneity factor for modeling because of non-homogeneity
among different provinces. As will be discussed in Section 4, the data set does not satisfy the
proportionality assumption; hence an AFT model is used for modeling this data set.

We use three distributions: log-logistic, log-normal, and Weibull for the duration of
unemployment. The validity of these three distributional assumptions is supported by
goodness-of-fit tests based on some probability plots. We compare the models with different
distributional assumptions using a Bayesian criterion and obtain the results of the Bayesian
implementation using the available software WinBUGS (Spiegelhalter et al., 2003). Next, we
check the convergence of parameters using the Gelman-Rubin criterion in the BOA (Bayesian
Output Analysis) package. We then present a sensitivity analysis with respect to different
random effects distributional assumptions.
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The remainder of the paper is organized as follows: Section 2 discusses a brief review of
unobserved heterogeneity modeling. Section 3 presents the Bayesian model and the
computational approach to handling unobserved heterogeneity in the modeling of our data set.
Section 4, after describing the response and explanatory variables of interest, implements a
goodness-of-fit test, checks the convergence of the MCMC model, and discusses the results
and a comparison of the performance of different distributions. Section 5 contains some
concluding remarks.

2. UNOBSERVED HETEROGENEITY MODELING

Population homogeneity, a common assumption in much data analysis, assumes that all
differences in the population have been captured by the measured variables in the study.
However in reality, unobserved heterogeneity, caused by omitting relevant variables, exists in
many settings. There are several approaches that may be used to investigate the consequences
of unobserved heterogeneity in data analysis. The basic idea behind these methods recognizes
that there is an unobserved or latent variable, which may have a discrete or a continuous
distribution.

One such method is the use of a frailty model. The frailty approach to modeling unobserved
covariates is based on the choice of a frailty distribution. Different distributions are
commonly assumed for frailty, for example gamma, log-normal, inverse Gaussian, and log-t.
(Wienke, 2011). In time-to-event data, the hazard function of an individual, x(t|X,Z), depends
on an unobservable time-independent random variable Z. In the multiplicative hazard
framework, Z acts multiplicatively on the baseline hazard function (t) as follows:
H(t] X, Z) = Zuy (O)e™”

where X=(Xy,...,.XJ) and g=(f.,...., ) are vectors of explanatory variables and regression
coefficients, respectively. Z is a nonnegative latent variable, where E[Z]=1 and its variance is
interpreted as a measure of heterogeneity.

Another way of considering unobserved heterogeneity is to use a latent class approach.
Heckman and Singer (1982, 1984) proposed a nonparametric random effects approach based
on the latent class. Their formulation is similar to an ordinary frailty model with a discrete
distributional assumption for the frailty term as the latent class. In their work, the likelihood
function for the i subject is given by:

K -
0= ult 1%,0,)7 St 1%,,6,)
w=1

where 7, is the proportion of the population belonging to the latent class w with latent
variable 6,, such that the number of latent classes is K, and & is the right-censoring indicator.
Hagenaars and McCutcheon (2002) proposed a latent class approach to handling
heterogeneity in the hazard modelling of survival data. There are some parametric and non-
parametric methods for the estimation of latent class parameters (Hagenaars and McCutcheon,
2002).

The most widely used method in duration modelling with explanatory variables is the broadly
applicable Cox proportional hazards model (Cox, 1972). The Cox model, which is semi-
parametric, has enjoyed tremendous success in applied work with the availability of software
enabling model estimation and inference. Nonetheless one can not always use this method
since the validity of the proportionality assumption has to be confirmed before using this
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model. When the proportionality assumption of the Cox regression model is not valid, AFT
models with different distributional assumptions may be used as an alternative approach.

Komarek et al. (2005) considered the following shifted and scaled penalized Gaussian
mixture model:

log(T,))=a+ f'X+oe
where x is a vector of explanatory variables, « is an intercept parameter, S is a vector of
regression coefficients, and o is a scale parameter. The distribution of the error term, &, in
their proposed model is:

)= Y@, ()

where ¢u,-,oé(g) is the Gaussian density with mean z; and variance o, and w;(a), j =1,..., g are

the mixture coefficients, which are specified as:
e”
9

>er
i=1

w;(a) =

such that 0<w;(a)<1 and =i, w;(a)=1.

A random effect AFT model is discussed by Pan and Louis (2000), who consider a non-
parametric Kaplan-Meier estimate in their estimation procedure. Laird and Ware’s (1982)
random effect AFT model (Komarek et al., 2007) is an AFT model with a random effect term
to account for heterogeneity. Komarek et al. (2007) generalized the random effect AFT model
by using a penalized Gaussian mixture as the error distribution. Their computation is based on
Markov chain Monte Carlo (MCMC) techniques.

In these models, usually a gamma distributional assumption is used for the random effects. In
this paper, we use a random effect AFT model as log(T)=x'f+b+ & assuming the random
effect (b) follows a distribution which is a member of the exponential family distribution. We
then perform some sensitivity analyses with respect to the change in the distributional
assumption for the random effect.

A goodness-of-fit probability plot (see Section 4), allows us to use three different
distributional assumptions: log-logistic, log-normal and Weibull when analyzing our duration
data (Green, 2003). In the following section, we adopt a Bayesian approach to handling
group-specific heterogeneity in a random effects AFT model.

3. BAYESIAN RANDOM EFFECTS AFT MODELS FOR GROUP-SPECIFIC
HETEROGENEITY

Latent variable models may be used for analyzing event time data, when there is no reason to
reject an assumption of unobserved heterogeneity. In our proposed model, we use an AFT
model for analyzing unemployment duration data of Iran. We consider the effect of some
explanatory variables, but we predict that some variables may exist that are not recorded in
this study such as, for example, geographical differences between provinces or different
economic conditions. Therefore, we define a latent variable that varies among provinces to
handle this unobserved heterogeneity in our proposed model. Let T; denote unemployment
duration for the i subject in the j" province (i=1,...,n; j=1,..,m). Under the exponential
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family distributional assumption, we define a random effect b; the estimated value of which
distinguishes between homogenous and non-homogenous provinces.

The random effect AFT model for group-specific heterogeneity is given by:

log(T;) = x; 8+b, +&;,i=1...,n;;j=1...m (3.1)
where n=3,n; is the total sample size, &; s are independent and identical error terms, which
are distributed as normal, logistic, or extreme value, x;=(X;1,..., X;p)' are p-dimensional vectors

of explanatory variables for the i" individual in the j" province, and g;=(f.,..., £,)' is the
vector of coefficients.

Suppose that n independent and identical vectors of (t;,t;.,X;), where t; is the time-to-event for
the i" individual in the j™ group, are observed, such that t;e(t;,t;,]. For a right-censored
observation t;,=oo, and for an exactly observed event time t;,=t;,=t;. The x; is a px1 vector of
explanatory variables.

A random variable Z follows an s—dimensional exponential family distribution, if its density is
of the form:

SUTi(2)-A()

h(z,v) =e™ x h, (2). (3.2)

This form of exponential family is said to have canonical form, and v;, i=1,...,s, are canonical
parameters.

The advantage of our proposed method, in contrast to former random effect AFT models, is
that it can consider various significant distributional assumptions for duration time (survival
time) where selection among these distributions can easily be justified using a graphical
method. In our proposed method, we use different members of the exponential distribution
family for the random effect and perform a sensitivity analysis to examine the effect of a
change in distribution on the results. Also, we conduct all the computations for parameter
estimation using available software WinBUGS, where we implement the Bayesian criterion
DIC, for model comparison. Also, we demonstrate the random effect’s influence distinguished
between the homogenous and non-homogenous area of the population (illustrated in Figure
4.5).

In the following subsections we explain the Bayesian implementation of our approach.
3.1. Log-normal and Log-logistic Random Effect AFT Models in Bayesian Perspective

The structure of the log-normal model is given by:

T;|b; ~LN(x; 8 +b;,0%), b, ~h(b;;v) (3.3
where h(.,v) is given by (3.2). Let #=(f,0,v). The likelihood function for this model is given
by:

i=1

U]

(M(ZHY :JlL:Il TPIH ITU;Cﬁ('Og(U);XIiJ ﬁ+bj’02)du} X{oi (log(t;y);x; ,B+bj,0'2)} J]h(bj;v)de]

ijl
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where ¢; is an indicator function, which takes value one for complete data and value zero for
interval-censored observations. For right-censored observations t;,=oo. Also, &(.;,oc?) denotes
the density function of the normal distribution with mean x and variance o2, and is a member
of the exponential family distribution.

For a Bayesian structure, as mentioned by Ibrahim et al. (2002), the following distributions
are appropriate proposals for priors:

Blo? ~N (u,,oV,), o’ ~IT(ab), v~=(vy). (3.4)

The hyper-parameters of these priors may be selected such that one can have low-informative
prior distributions.

Via the hierarchical structure of (3.3) and prior distributions of (3.4), the joint posterior
distribution for all parameters is given by:

mn.’ij,u L B gV sy b
7Bt b < 1T | - f10g(u)ix, By o)duxh(t,v)r(vi ) (o) e "7 gy o (35)
j':1i=1t ou

ij.l

The posterior distribution for the above model specification does not have closed form
solutions for the parameters. To perform the Bayesian analysis, MCMC techniques can be
used to sample the joint posterior distribution of these models. One special MCMC type
approach, which requires only the specification of the conditional posterior distribution for
each parameter, is the Gibbs sampler (Casella and George, 1992). For implementation of the
Gibbs sampler, we need the full conditional distributions. These are given as follows:

£(t, 10y, B,0v,x,) o £ (tiX, B+by,07) X[y (b, B+, 62) = Fiy (ty,X, B+b,, 0]

(0], BviXy) o Fl (tiX; B+b;,07) X[y (X B+Dy,02) = Fiy (ty,iX B+by, ) x fy (Bitoy 2V o) X IT (05520, by) (3.6)

(b, 1t B, 0,v.x,) o £ (X, B+b,,07)xh(b, ) X [Fyy (40X, B+b,,62) oyt B+by, 0]

jur

(1B, by, 0, o (byv) < (vip), (Bl by o Xy) o 100 (X B+by, 0% % (Bt % ) X [Fu (b3, B+b;,0%) = Foy (b A+ by, o)

where
11, = (% (1ogt, —b)) + (Vo) a2 )x (% X+ (02V,) )
and

= GZ(Xij X'ij+ (c?V 0)"1)_1

Gibbs sampling is needed for the implementation of equation (3.6),which can be done using
the WinBUGS software (Spiegelhalter et al., 2003).

The log-logistic AFT model and its Bayesian implementation have structures similar to those
of the log-normal AFT model, wherein the log-normal distribution should be replaced by the
log-logistic distribution.

3.2. Weibull Random Effect AFT Model in Bayesian Perspective

Similar to Section 3.1, the structure of the Weibull random effect AFT model is given by:
Tij |bj ZWEib(l,y?]), IOg(ﬂ’lj) = _{Xijﬂ+ bj}! bj . h(bj;V) (3.7)

For 6=(p,0,v), the likelihood function of this model is given by:
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S
Gju I

m || 7" 1-65;;
L(o;t) = J_Iill J.Ul _[ fwe (U 4 m)dup x f ! (t;; 4;.m) [h(b;;v)db,
B 0'" tj.1

where fy.i(.;4;,77) denotes the Weibull density function with parameters A, and 7. The
independent prior distributions for the Bayesian structure are given by:

B~N,(uoV o). 7°~IT(@b), v~rx(viy). (38)

The hyper-parameters of these priors are again selected such that one can have the low-
informative priors. Combining the complete likelihood function and the prior distributions
(3.8), the joint posterior distribution of the parameters is given by:

n. Giju by

1 ey -
z(Bn.v.blt;,X;) o Ellij foves (Us Ay, 7)dU x h(by5v) x Z(v;y) x 5BV (5 ﬂo)x(az)—a—le -~ (3.9)
Ty

Also, hierarchical structures for the Gibbs sampler implementation are given by:

o

f(t; 1. B, 7m,v, %) o< foe (tij;exp(_x'ij B+D0;),17) < [Fye (4 exp(_xlij B+D0;),17)—Fya (tij.u;exp(_xlij B+ bj)vﬂ)]lia” )

(B, 71X ) o6 Tl (b €XP(=X,y B, % Ty (Bt o o) [Foye (b3 €XP(=X s B+5,),77) = Foya (b3 XP(=X,, B+b,) 1T 0,
Vlﬂvtijvbjv’7vxij°c h(bj;V)X”(V;y)i (310)
(71 bj Wb vﬁrvvxij) oc f\/\f?i (tij;exp(_xlij B+ bj)yfl) x i (17:84,b,) X[Fwei(tij,u;exp(_xlij B+ bj)v’7) — Fei (tij‘u;exp(_xlij B+ bj)vﬂ)]lio‘” )
70, 1,872 X3) o iy (63 @XD(X, B+3), 1) <Ny ) X (R By XD, B+;),17) — Rty X0(x, B+0,). )],
where ¢; is an indicator function, which takes value one for complete data and value zero for
interval censored observations. For right-censored observations t;,=co. The equations in (3.10)
provide the opportunity to program the Bayesian implementation in the WinBUGS software.

3.3. Measuring unobserved heterogeneity

The amount of unobserved heterogeneity is determined by the size of the standard deviation
of the latent variable distribution, such that, the larger the standard deviation of the latent
variable, the stronger the unobserved heterogeneity. In the exponential family (2), the
unobserved heterogeneity factor, which is the covariance of the random variable Z, can be
computed by:

2

ov.0v,

]

cov(T;(2), T (2)) =

82
var (b;) = —— A(b;),
J abJZ J
where the form of A(b;) depends on the selected member of the exponential family of
distributions (Lehmann and Casella, 1998, p. 23-32).

A(v),

4. APPLICATION
4.1. The Data Set

The data set used in this paper is extracted from a follow-up study conducted by the Statistical
Center of Iran. In these data, the labor force status of people is recorded in two seasons
(spring and summer) in 2009. We have selected the individuals who are observed on both
seasons and are unemployed in spring (unemployed individuals answer a question about their
duration of unemployment in spring). The data contains detailed individual information for a
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random sample of the population aged 14 and older. The vector of explanatory variables
includes personal characteristics such as gender, age, the place of residence, current marital
status, education status, and the number of household members. Details of the categories of
explanatory variables and their percentages are listed in Table 4.1. In this study, we are
concerned with the existence of a set of covariates, which may have been omitted or may not
have been considered in each province of the study.

Explanatory variable Categories Percentage
Current marital status married 2.94%
widow(er) or divorced 7.01%
single 6.99%
Gender female 2.25%
Male 7.75%
Age <20 1.26%
21-25 3.78%
26-30 2.49%
30 > 2.47%
Education status under diploma 4.64%
diploma 3.07%
associate of arts (or science) 8.10%
MA and upper 1.48%
Number of household members one or two 8.21%
three 8.83%
four and more 3.39%
Residence rural 2.77%
urban 7.23%

Table 4.1 Different categories of chosen explanatory variables along with their percentages.

Frequency Percent
Right-censored data’ 743 55.6
Completed observation? 121 9.0
Interval—censored data® 473 35.4

Table 4.2 Employment status in the summer of 2009 of unemployed individuals in the spring of 2009.
Notes: *: Still unemployed in summer, % Duration is recorded, *: Duration is recorded in an interval.

Table 4.2 gives the frequencies and percentages for different categories of unemployment
status in the summer of 2009, for unemployed individuals in the spring of 2009. This table
shows that of the 1337 individuals in the study, 743 individuals remained unemployed in the
summer, and 473+121 individuals became employed. Unfortunately, the exact duration of
unemployment has only been recorded for 121 individuals. For the other 473 individuals we
only know that their shift to employment happened during a 3-month period. The employment
duration of these individuals can be considered as interval-censoring. Figure 4.1 illustrates the
survival curve for unemployment duration. Points on this curve estimate the proportion of
individuals who remained unemployed over time.

For a preliminary description of the explanatory variables in the data set, Figure 4.2 shows the
Kaplan-Meier estimate of the survival curves of unemployment duration for different
categories of explanatory variables. For example, according to Figure 4.2(a) females remained
unemployed for a longer period than males.
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Figure 4.1 Survival curve of unemployment duration along with its confidence bands.
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Figure 4.2 Kaplan-Meier estimates of the survival curves of unemployment duration by (a): Gender, (b): Place
of residence, (c): Current marital status, (d): Age group, (€): Number of household members, (f): Educational

level.
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4.2. Selection of Theoretical Distribution Based on the Probability Plot

The probability plot is one of the most frequently applied methods for checking the
distributional assumption. In this paper, we use the method of Lee and Wang (2003) with
some adjustments.

As mentioned by Lee and Wang (2003), if the theoretical distribution is adequate for the data,
a graph of log(t) versus a function of the sample cumulative distribution function will be close
to a straight line. In other words, a fitted linear regression for log(t) and that function of the
cumulative distribution function is a good index for the selection of a theoretical distribution.
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The regression lines for the log-normal, log-logistic, and Weibull distributions are given by:
1

1, 1.1

logt, = = log =+~ log(l .

ogt = 7logZ+ og( og(l_F(ti)))+e.

logt, = p+od*(F(t))+e, (4.11)
1

logt, = | ~1)+e,

ogt, ,U+009(1_F(ti) )+e,

where e;s are the error terms of the regression models. Thus, a quick goodness-of-fit test is a
regression line of log(t) versus a function of F(t;), where F(t) is an estimate of F(t). This
method can be summarized in the following steps:

e Select a theoretical distribution for the survival time T.

e Estimate the cumulative distribution function. There are several approaches: the most
famous is the Kaplan-Meier estimate, another method used by Lee and Wang (2003) is
the use of (i—0.5)/n for the i" ordered time values, i=1,...,n. In this method, right-
censored observations are considered only in sorting the index i. For interval-censored
data, midpoint imputation may be used.

e Fit a linear regression for log(T) and the function of the cumulative distribution
function.

The R-squared values of the fitted lines for the log-normal, log-logistic, and Weibull models
are summarized in Table 4.3. This table shows that these three distributions are potential
candidates when analyzing these data.

Multiple R-squared
(i-0.5)/n  Kaplan-Meier

log-normal model 0.977 0.914
log-logistic model 0.958 0.965
Weibull model 0.915 0.935

Table 4.3 values of R-squared for fitted regression models in probability plot approach.
4.3. Modeling unemployment duration in Iran

In this section, we analyze the data set based on the proposed methods given in Section 3. The
explanatory variables in this data set were listed in Table 4.1. In the following, we consider
age as a continuous covariate. If a categorical variable has g categories then g—1 dummy
variables need to be created, and consequently, g—1 regression coefficients have to be
estimated. For example, for current marital status, the dummy variables are defined as
follows:

{1 if married {1 if widow(er)or divorced

marl= mar2 =

0.W.
and marl=mar2=0 defines single status.

0.W.

The Cox proportional hazard model is a common model to be applied, because it is not based
on any assumptions concerning the nature or shape of the underlying survival distribution.
However, one may use a graphical test for checking the validity of the proportionality
assumption (Deshpande and Purohit, 2005; page 189). We have checked the proportionality
assumption using log—log plots of unemployment duration for different levels of explanatory
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variables. Figure 4.3 shows these plots. In some panels of this figure (for example panel c) the
log—log survival functions are not parallel for different categories of explanatory variables,
therefore the proportional hazards assumption is not valid. Consequently, the proposed AFT
models of Section 3 should be applied.

Figure 4.3 Graphical test for proportional hazards: Kaplan-Meier log-log plots of unemployment duration by (a):
Gender, (b): Place of residence, (c): Current marital status, (d): Age group, (e): Number of household members,
(f): Educational level.

(b)

log|-log(surw

)]
2
)
2

“logl-logisurvival)
“logl-logisurvival

The AFT random effect model for group-specific heterogeneity is given by:

log(T;) = B, + Bimarl; + B,mar2; + p,sex; + 5,age; + gedul;; + Sedu2; + S.edud;
+ fgnuml; + Sonumz;; + Bores; +b; +¢&;,  i=1,..,n;;j=12,.30. (4.12)

In this model, marl and mar2 denote current marital status, and sex and age denote the gender
and age of individuals, respectively. Dummy variables edul, edu2, and edu3 are used for
education levels, numl and num2 denote categories of household sizes, and res is used to
represent living area. Also, we have considered the above-mentioned three distributional
assumptions for the duration data.

For the random effect b;, we have considered different members of the exponential family of
distributions. Vaupel et al. (1979) proposed the use of a gamma distribution for b;, with a
mean of one and a variance of 1/y, where y is the unknown parameter to be estimated. Several
authors have proposed incorporating a gamma-distributed random term (Tuma and Hannan,
1984; Lancaster, 1990). The analytically tractable and readily computational properties of the
gamma distribution are important reasons, which are mentioned by Vaupel et al. (1979), for
selecting the gamma as an appropriate mixing distribution. Moreover, as Hagenaars and
McCutcheon (2002) mentioned, it is a flexible distribution that takes on a variety of shapes as
the dispersion parameter y varies. As mentioned in Section 3.3, the amount of unobserved
heterogeneity in this model is determined by the standard deviation of b;, which is 1//y. Also,
the normal mixing distribution is the most important base for Laird and Ware’s (1982)
random effect model.
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In our analysis, we ran two MCMC chains with 30000 iterations for each. Then, we discarded
the first 10000 iterations as burn-in and retained 20000 for the posterior analysis. We checked
the convergence of parameter estimates using the Gelman and Rubin diagnostic test (Gelman
and Rubin, 1992) for all models. These approaches were implemented using the BOA
package.

As the DIC criterion (Spiegelhalter et al., 2002), which is automatically calculated by
WIinBUGS, is not adequate for model comparison (Celeux et al., 2006; Delorio and Robert,
2002), in this study we used the DIC; criterion (Celeux et al., 2006).

Let ® and Z=(z,,...,zy)" be the entire model parameters and data, respectively. DIC; is given
by:

DIC, = —4E,[logf(z|0) |z]+2log f (2),
where f(z) =TI, f(z,) = E,[f(z|¢) |z]. The smaller the value of DIC; is, the better the fit of
the model.

Log-Logistic Log-Normal Weibull
Parameters Est. (S.E.) Est. (S.E.) Est. (S.E.)
Intercept  3.192 (0.275) 3.082 (0.252) 3.614 (0.300)
Gender
Female

Baseline (male)

0.826 (0.135)

0.794 (0.129)

0.881 (0.146)

Current marital status

Married

Widow(er) or divorced
Baseline (single)

-0.951 (0.117)
-0.178 (0.571)

-0.909 (0.117)
-0.102 (0.544)

-0.815 (0.103)
-0.086 (0.644)

Education level

Under diploma
Diploma
BS

Baseline(MA and higher)

-0.848 (0.174)
-0.462 (0.177)
-0.873 (0.218)

-0.813 (0.165)
-0.418 (0.167)
-0.816 (0.208)

-0.801 (0.189)
-0.417 (0.193)
-0.809 (0.232)

Age

0.011 (0.004)

0.010 (0.006)

0.013 (0.002)

Number of household members

One or two
Three

Baseline (four and more)

-0.309 (0.197)
0.024 (0.122)

-0.278 (0.191)
0.052 (0.123)

-0.260 (0.183)
-0.095 (0.118)

Living area
Rural -0.532(0.099) -0.479(0.098) -0.536 (0.093)
Baseline (urban) - - -
Scale  0.742 (0.025) 1.651 (0.103) 0.980 (0.032)
HF  0.596 (0.149) 0.428 (0.093) 0.607 (0.136)
DIC; 7814.435 7776.615 9011.668

Table 4.4 Bayesian parameter estimates and standard errors for AFT models under gamma latent model.

The results of using gamma and normal models are shown in Tables 4.4 and 4.5, respectively.
Also, Table 4.6 shows the results of using a squared normal latent model. In these tables HF
denotes Heterogeneity Factor, which is the standard error of the random effect b;. The best
model according to the DIC; criterion is the log-normal AFT model, with the squared normal
latent model. The estimated HF in this model is highly significant.

Also, Table 4.6 shows that married persons have shorter unemployment duration than singles

and widow(er)s or divorced people, fixing values of the other explanatory variables. The
effects of other explanatory variables can be interpreted in a similar manner (see, Section 5).
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Log-Logistic Log-Normal Weibull
Parameters Est. (S.E.) Est. (S.E.) Est. (S.E.)
Intercept  3.097 (0.265) 3.081 (0.243) 1.835 (0.312)
Gender
Female

Baseline (male)

0.824 (0.134)

0.790 (0.128)

0.879 (0.147)

Current marital status
Married

Widow(er) or divorced
Baseline (single)

-0.950 (0.118)
-0.088 (0.574)

-0.904 (0.115)
-0.103 (0.537)

-0.805 (0.101)
-0.075 (0.632)

Education level
Under diploma

-0.854 (0.175)

-0.807 (0.158)

-0.804 (0.183)

Diploma -0.472 (0.177)  -0.419 (0.162)  -0.424 (0.189)
BS -0.881(0.222) -0.820 (0.202)  -0.813 (0.229)
Baseline (MA and higher) - - -
Age 0.012 (0.007) 0.009 (0.006) 0.012 (0.006)
Number of household members
Oneortwo -0.299 (0.195) -0.267 (0.194)  -0.261 (0.182)
Three  0.025 (0.120) 0.063 (0.123) -0.099 (0.117)
Baseline (four and more) - - -
Living area
Rural -0.519 (0.099)  -0.486 (0.097)  -0.533 (0.095)
Baseline (urban) - - -
Scale  0.742 (0.025) 1.652 (0.101) 0.977 (0.030)
HF  2.516 (0.467) 2.001 (0.302) 5.425 (0.878)
DIC, 7809.755 7773.382 9015.654

Table 4.5 Bayesian parameter estimates and standard errors for AFT models under normal latent model.

Log-Logistic Log-Normal Weibull
Parameters Est. (S.E.) Est. (S.E.) Est. (S.E.)
Intercept  3.049 (0.268) 3.096 (0.241) 3.440 (0.273)
Gender
Female

Baseline (male)

0.830 (0.138)

0.791 (0.129)

0.885 (0.145)

Current marital status
Married

Widow(er) or divorced
Baseline (single)

-0.955 (0.119)
-0.163 (0.568)

-0.899 (0.116)
-0.086 (0.537)

-0.818 (0.107)
-0.048 (0.652)

Education level
Under diploma

-0.832 (0.180)

-0.811 (0.159)

-0.798 (0.181)

Diploma -0.446 (0.185)  -0.424 (0.163)  -0.411 (0.185)
BS -0.856(0.229) -0.825(0.204)  -0.797 (0.229)
Baseline (MA and higher) - - -
Age 0.012 (0.006) 0.009 (0.004) 0.013 (0.006)
Number of household members
Oneortwo -0.302 (0.200) -0.271(0.193)  -0.254 (0.182)
Three  0.020 (0.122) 0.059 (0.124) -0.089 (0.120)
Baseline (four and more) - - -
Living area
Rural -0.526 (0.095)  -0.489 (0.098)  -0.519 (0.092)
Baseline (urban) - - -
Scale  0.742 (0.003) 1.654 (0.103) 1.016 (0.033)
HF  4.425 (0.745) 2.001 (0.302) 4.805 (0.935)
DIC; 7813.242 7772.309 9008.878

Table 4.6 Bayesian parameter estimates and standard errors for AFT models under squared normal latent model.
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Figure 4.4 S(t| 6,x) by significant explanatory variables in model (4.13) under the log-normal AFT model with
squared normal random effect distribution
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One of the most important graphical representations in survival analysis is the marginal
survival distribution plot. The marginal survival distribution function is given by:

S(t;0,X) = jsa;e,b,x)h(b;v)db.

Figure 4.4 illustrates predicted plots of the marginal survival function for different categories
of the explanatory variables in model (4.13) under the best fitting distributional assumption.
Panel (a) demonstrates the effect of gender on the marginal survival distribution while
holding fixed values of the other explanatory variables: namely, married, living in urban,
twenty-nine year old educated to under diploma level. This panel shows that the duration of
unemployment with these properties is longer for a female than that for a male. Panel (b)
shows the effect of living area on the marginal survival distribution while holding fixed other
explanatory variables: a married man, twenty-nine year old educated to under diploma level.
Panel (c) shows the effect of education levels on the marginal survival distribution while
holding fixed the explanatory variables: a married man, twenty-nine year old educated to
under diploma level and a household size greater than three. Panel (d) shows the effect of
current marital status on the marginal survival distribution while holding fixed the
explanatory variables: a married man, living in urban, and twenty-nine year old.

A comparison of the results for the log-normal AFT model, the best fitting model, in
Tables 4.4 to 4.6 can be regarded as a sensitivity analysis of the effect on parameter estimates
and model comparison criteria of changing the latent variable distribution. This shows that,
for these data points, the results are not sensitive to the choice of latent variable distribution.
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As a final component of our discussion on unobserved heterogeneity, Figure 4.5 shows the
unobserved heterogeneity of different provinces. On this map, we categorize the posterior
mean of the latent variable of the best fitting model for different provinces. Through a close
look at this figure, one can imply that the provinces with the same color have similar levels of
unobserved heterogeneity. Also, the larger is the unobserved heterogeneity factor, the darker
is the color in this figure and the larger is the duration of unemployment. The larger values of
b are for the rural areas; for example, Sistan and Baluchestan province (which includes
Afghan immigrants) has the largest value of b. This figure shows that most of the provinces
have similar values of b [unobserved heterogeneity factor in the interval (0.5,1)].

Figure 4.5 Posterior means of latent random effects obtained by the best fitting model.
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5. CONCLUSION

In this paper, we analyzed unemployment duration data of Iran in 2009, containing right and
interval-censored observations. Using the WIinBUGS software, we adopted a Bayesian
approach to handle unobserved heterogeneity.

For unemployment duration, we considered accelerated failure time models with various
distributional assumptions selected using proposed R? regression indices. A latent exponential
family distribution was considered for unobserved heterogeneity. We checked the
convergence of the MCMC approach via a Gelman-Rubin diagnostic test. Finally, we
compared different distributional assumptions using the DIC; criterion. A log-normal AFT
model with squared normal latent variable was selected as the best fitting model. Our study
demonstrated that it is essential to consider the heterogeneity factor in the modeling of
unemployment duration of Iran in 2009.

The results of our proposed method revealed significant difference in unemployment duration
based on different explanatory variables: for example, married persons have shorter
unemployment durations than singles persons and widow(er)s or divorced people (fixing
values of the other explanatory variables). Females have longer unemployment durations than
males. Also, in Iran, people with the under diploma have the shortest unemployment
durations. Unemployment duration for families with one or two members is shorter than that
for families with larger numbers of family members, and people living in urban areas have
longer unemployment duration than people living in rural areas.
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Using the proposed method provinces with similar levels of unobserved heterogeneity can be
identified by inspecting the estimated values of the latent variable.

The proposed method presents the possibility of considering different members of the family
of random effects distributions and the use of the available software WinBUGS for model
implementation. The proposed approach can be extended for analyzing unemployment data
with competing risks, where the individuals may remain unemployed, become employed, or
become economically inactive.
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