
International Econometric Review (IER) 

1 

 

Comparison of the r
 
- (k,

 
d) class estimator with some estimators for multicollinearity 

under the Mahalanobis loss function 

 

 

 Shalini Chandra  and Nityananda Sarkar


 

 

 Banasthali University and  Indian Statistical Institute 

 

ABSTRACT 

 
In the case of ill-conditioned design matrix in linear regression model, the r

 
-

 
(k,

 
d) class 

estimator was proposed, including the ordinary least squares (OLS) estimator, the 

principal component regression (PCR) estimator, and the two-parameter class estimator. 
In this paper, we opted to evaluate the performance of the r

 
-

 
(k,

 
d) class estimator in 

comparison to others under the weighted quadratic loss function where the weights are 

inverse of the variance-covariance matrix of the estimator, also known as the 
Mahalanobis loss function using the criterion of average loss. Tests verifying the 

conditions for superiority of the r
 
-

 
(k,

 
d) class estimator have also been proposed. Finally, 

a simulation study and also an empirical illustration have been done to study the 
performance of the tests and hence verify the conditions of dominance of the r

 
-

 
(k,

 
d) 

class estimator over the others under the Mahalanobis loss function in artificially 

generated data sets and as well as for a real data. To the best of our knowledge, this study 

provides stronger evidence of superiority of the r
 
-

 
(k,

 
d) class estimator over the other 

competing estimators through tests for verifying the conditions of dominance, available in 

literature on multicollinearity. 
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1. INTRODUCTION 

 

The presence of multicollinearity among the independent variables in a regression equation 

poses serious problems in regression analysis. A major consequence of multicollinearity on 

the OLS estimator is that the estimator becomes unstable. To circumvent this problem, several 

alternative estimators such as the ordinary ridge regression (ORR) estimator by Hoerl and 

Kennard (1970), PCR estimator by Massy (1965), the r
 
-

 
k class estimator by Baye and Parker 

(1984), the two-parameter class estimator by Özkale and Kaçiranlar (2007), have been 

suggested. Özkale (2012) also proposed the r
 
-

 
(k,

 
d) class estimator by combining the two-

parameter class estimator and the PCR estimator.  
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The mean squared error (MSE) criterion, or equivalently the criterion of average loss under 

quadratic loss function, is a criterion frequently used to evaluate the performance of 

estimators in linear regression models. The performance of these estimators have been 

evaluated by the mean squared error criterion, and conditions for superiority of one estimator 

over some others have also been derived. For instance, Nomura and Okhubo (1985) compared 

the r
 
-

 
k class estimator with the ORR and OLS estimators in terms of MSE and Sarkar (1992) 

derived conditions under which the restricted ridge regression estimator is superior to the 

restricted least squares and the ORR estimators by the same criterion. Özkale (2007) also 

derived the conditions under which the r
 
-

 
(k,

 
d) class estimator dominates the OLS, PCR and 

the two-parameter class estimator by the MSE criterion. However, it may be noted that the 

weighted quadratic loss function is considered to be a stronger criterion than the quadratic 

loss function and hence it is also widely accepted as a criterion for evaluating the performance 

of estimators. In particular, if quadratic loss function is weighted by the inverse of the 

variance-covariance matrix of an estimator, it is called the Mahalanobis loss function. 

Peddada et al. (1989) showed the inadmissibility of ORR estimator when compared with the 

OLS estimator under the Mahalanobis loss function. Recently, Üstündağ-Şiray and 

Sakallioğlu (2012) derived a necessary and sufficient condition for the superiority of the r
 
-

 
k 

class estimator over the OLS, PCR and ORR estimators under the Mahalanobis loss function 

using average loss criterion.  

 

The purpose of this paper is to compare the performance of the r
 
-

 
(k,

 
d) class estimator with 

the OLS, PCR and two-parameter class estimator under the Mahalanobis loss function using 

average loss criterion, and propose tests for verifying the conditions for dominance. The 

structure of the paper is as follows: Section 2 describes the model and the estimators. Section 

3 discusses the comparison between the r
 
-

 
(k,

 
d) class estimator and the other estimators. 

Section 4 provide tests for verifying the conditions for dominance. Sections 4 and 5 present 

the results of a simulation study as well as a numerical illustration for studying the 

performance of the estimators, respectively. Section 7 offers some concluding remarks. 

 

2. THE MODEL AND THE ESTIMATORS 

 

Let us consider the following regression model: 

 uXy     (2.1) 

where y is an n
 
×

 
1 vector of observations on the variable to be explained, X is an n

 
×

 
p matrix 

of n observations on p explanatory variables such that X
 
'X is ill conditioned, β is a p

 
×

 
1 

vector of regression coefficients associated with the explanatory variables and u is an n
 
×

 
1 

vector of disturbances, the elements of which are assumed to have mean zero and variance 

covariance matrix σ
2
I. 

 

In order to define the r
 
-

 
(k,

 
d) class estimator, let us consider an orthogonal matrix 

T
 
=

 
(t1,

 
t2

 
…,

 
tp) such that it diagonalizes X

 
'X i.e., T

 
'X

 
'X

 
T

 
=

 
Λ, Λ being the diagonal matrix 

consisting of the eigenvalues of X
 
'X as its diagonal elements. Further, let Tr

 
=

 
(t1,

 
t2,

 
…

 
,
 
tr), 

where r
 
≤

 
p. Tr

 
'X

 
'X

 
Tr

 
=

 
Λr

 
=

 
diag(l1,

 
l2,

 
…

 
,
 
lr), and Tp'

 
-rX

 
'X

 
Tp-r

 
=

 
Λp-r

 
=

 
diag(lr+1,

 
lr+2,

 
…

 
,
 
lp), 

where Tp-r
 
=

 
(tr+1,

 
tr+2,

 
…

 
,
 
tp), and also X

 
'X

 
=

 
TrΛrT

 
'r+

 
Tp-r Λp-rT

 
'p-r. 

 

The r
 
-

 
(k,

 
d) class estimator as proposed by Özkale (2012) is given as  

 yXTdkSkSTdk rrrrrr '),()(),(ˆ 11     (2.2) 

where k
 
≥

 
0, 0

 
≤

 
d

 
<

 
1. It is worth mentioning that the r

 
-

 
(k,

 
d) class estimator encompasses a 

larger class of estimators, and, in particular, it includes the OLS, PCR, ORR, two-parameter 

class and the r
 
-

 
k class estimators for specific values of r, k, and d. Thus, 
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1. β
  
p(0,0)

 
=

 
β
  
p =

 
(X

 
'X)

-1
X

 
'y is the OLS estimator  

2. β
  
r
 
(0,0)

 
=

 
β
  
r
 
=

 
Tr

 
(Tr

 
'X

 
'X

 
Tr

 
)

-1
Tr

 
'X

 
'y is the PCR estimator, 

3. β
  
p(k,0)

 
=

 
β
  
p(k)

 
= (X

 
'X

 
+

 
Ip)

-1
X

 
'y is the ORR estimator,  

4. β
  
r
 
(k,0)

 
=

 
β
  
r(k)

 
=

 
Tr

 
(Tr

 
'X

 
'X

 
Tr

 
+

 
kIr)

-1
Tr

 
'X

 
'y is the r

 
-

 
k class estimator,  

5. β
  
p(k,d)

 
=

 
β
  
p(k,d)

 
=

 
(X

 
'X

 
+

 
kIp)

-1
(X

 
'y

 
+

 
kd β

  
p) is the two-parameter class estimator. 

 

3. RISK COMPARISONS 

  

For any estimator β
  
  of β, the Mahalanobis loss function is defined as  

 )ˆ())ˆ(()ˆ(),ˆ( 1   CovLM   (3.3) 

 

Therefore, for the r
 
-

 
(k,

 
d) class estimator, the Mahalanobis loss function is defined as  

 )),(ˆ())),(ˆ(()),(ˆ()),,(ˆ( 1    dkdkCovdkdkL rrrrM   (3.4) 

 

From (2.1) and (2.2), we find that 

  rrrrr TdkSkSTdkE   ),()()),(ˆ( 1   (3.5) 

and 

 rrrrrrrr TkSdkSdkSkSTdkCov   1112 )(),(),()(),(ˆ(    (3.6) 

where Sr(k,d)
 
=

 
Λr + kdIr and Sr(k)

 
=

 
Λr

 
+

 
kIr.  

 

Substituting the expressions of β
  
r(k,d) and Cov(β

  
r(k,d)) from (2.2) and (3.6) in (3.4), and then 

simplifying, we obtain the following: 

 




rrrrrrr

rrrrrrrrM

TkSdkSdkSkST

yXTdkSkSTyXTXTydkL








)(),(),()(

),()(2)),,(ˆ(
11

112

  (3.7) 

Suitable choices of the values of r, k and d in (3.7) give the loss functions of the 

corresponding estimators under the Mahalanobis loss function. Now, we compare the r
 
-

 
(k,

 
d) 

class estimator with the others using the risk function defined as the average loss i.e.,viz, 

E(LM (β
  
r(k,d),

 
β)) in case of the r

 
-

 
(k,

 
d) class estimator. 

 

3.1. Comparison of the r
 
-

 
(k,

 
d) class estimator with the OLS estimator 

 

We first consider comparing the risk associated with the r
 
-

 
(k,

 
d) class estimator with that of 

the OLS estimator of β under the Mahalanobis loss function. It can easily be observed that by 

putting r
 
=

 
p and k

 
=

 
d

 
= 0 in (3.7), we get the loss function associated with the OLS estimator. 

We thus have: 

  





 yXTXTydkLL rprprprMpM

12)),,(ˆ(),ˆ(    (3.8) 







rprprp

rrrrrrr

rprprrr

TT

TdkSIdkdkSTdk

TTTdkSTdkXy

















2

112

12

),(]2)1([),()1(

)),()1((2

 

 

Using (3.8), the difference between the two risk functions is obtained as: 

    )()),,(ˆ(),ˆ( rpdkLLE rMpM    (3.9) 

 rrrrr TdkSdkSTdk   11222 ),(),()1(  

 

The equation in (3.9) can also be stated as:  
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    TTPdkrpdkLLE rMpM
 222 )1()()),,(ˆ(),ˆ(   (3.10) 

where 

 











 0,,0,0,

)(
,,

)(
,

)( 22

2

2

2

1

1 
kdl

l

kdl

l

kdl

l
diagP

r

r   (3.11) 

is a positive semi definite matrix for all k
 
>

 
0 and 0

 
<

 
d < 1, and (p

 
-

 
r) is positive. Using the 

equation below (3.12) for the dominance of r
 
-

 
(k,

 
d) class estimator over the OLS estimator, 

we thus have the following theorem (Theorem 3.1): 

   0)),,(ˆ(),ˆ(   dkLLE rMpM
  (3.12) 

 

Theorem 3.1. A necessary and sufficient condition for the dominance of the r
 
-

 
(k,

 
d) class 

estimator over the OLS estimator under the Mahalanobis loss function is given by:  

 
222 )1( 

 TTP

dk

rp 





   

 

Thus, the superiority of the r
 
-

 
(k,

 
d) class estimator over the OLS estimator upholds when the 

values of k and d are such that the given inequality holds. When d
 
=

 
0, the theorem reduces to 

the one obtained by Üstündağ and Sakallioğlu (2012) when the r
 
-

 
k class estimator and the 

OLS estimator have been compared under the Mahalanobis loss function by the average loss 

criterion. Moreover, by substituting r
 
=

 
p and d

 
=

 
0, the expression in equation (3.10) becomes 

the same as that obtained by Peddada et al. (1989), when the ORR estimator has been 

compared with the OLS estimator under the Mahalanobis loss function. 

 

3.2. Comparison of the r
 
-

 
(k,

 
d) class estimator with the OLS estimator 

 

The expression for loss function of β
  
r, the PCR estimator, can easily be obtained by putting 

k
 
=

 
0 and d

 
=

 
0 in (3.7). We thus have,  

    rrrrMrM TdkSXTydkdkLL 12 ),()1(2)),,(ˆ(),ˆ(   (3.13) 

 rrrrrrr TdkSIdkdkSTdk   112 ),(]2)1([),()1(  

 

Hence, the difference between the risk functions is obtained as  

    rrrrrrMrM TdkSdkSTdkdkLLE   11222 ),(),()1()),,(ˆ(),ˆ(    

where Sr(k,d)
-1
Λr Sr(k,d)

-1 
is a diagonal and positive definite matrix with diagonal elements as 

 
22

2

2

2

1

1

)(
,,

)(
,

)( kdl

l

kdl

l

kdl

l

r

r


    

 

Thus, 

   0)),,(ˆ(),ˆ(   dkLLE rMrM   (3.14) 

since k
2 
(1

 
-

 
d)

2
σ

-2
β'TrΛrSr(k,d)

-2
Tr'β is nonnegative for all k

 
 and 

 
d. Hence, in general, the PCR 

estimator dominates, the r
 
-

 
(k,

 
d) class estimator. However, when: 

 0),()1( 2222    rrrr TdkSTdk   (3.15) 

these two estimators perform equally well by this criterion. Obviously, the equality in (3.15) 

holds iff Tr'β =
 
0 as demonstrated in the following theorem. 

 

Theorem 3.2. The PCR estimator and the r
 
-

 
(k,

 
d) class estimator perform equally well by the 

risk criterion under the Mahalanobis loss function iff Tr'β =
 
0.  
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3.3. Comparison of the r
 
-

 
(k,

 
d) class estimator with the two-parameter class estimator 

 

Finally, we compare the r
 
-

 
(k,

 
d) class estimator and the two-parameter class estimator under 

the Mahalanobis loss function. The expression for the loss function of β
  
(k,d), the two-

parameter class estimator, can easily be obtained by putting r
 
=

 
p in (3.7). The difference of 

the two estimators in terms of the Mahalanobis loss function is: 

  





 yXTTXydkLdkL rprprprMM

12)),,(ˆ()),,(ˆ(    (3.16) 





rprprprprprprp

rprprprp

TkSdkSdkSkST

TkSdkSXTy

























)(),(),()(

)(),(2

112

12

 

 

The difference between the two risk functions is given by: 

    )()),,(ˆ()),,(ˆ( rpdkLdkLE rMM    (3.17) 

 rprprprprp TdkSdkSTdk 









  11222 ),(),()1(  

 

The expression in (3.17) can be restated as:  

    TTQdkrpdkLdkLE rMM
 222 )1()()),,(ˆ()),,(ˆ(    

where 

 























 ,
)(

,,
)(

,
)(

,0,,0,0
22

2

2

2

1

1

kdl

l

kdl

l

kdl

l
diagQ

p

p

r

r

r

r     

is a diagonal and positive semi definite matrix for all k
 
≥

 
0 and 0

 
<

 
d

 
<

 
1. Therefore, since p

 
-

 
r 

is positive, (p
 
-

 
r)

 
+

 
k

2
(1

 
- d)

2
σ

-2
β

 
'TQT

 
'β cannot be negative: implying that the r

 
-

 
(k,

 
d) class 

estimator always dominates the two-parameter class estimator under the Mahalanobis loss 

function stated in the form of the following theorem: 

 

Theorem
 
3.3. The r

 
-

 
(k,

 
d) class estimator always outperforms the two-parameter class 

estimator under the Mahalanobis loss function using average loss criterion.  

 

4. TESTS FOR VERIFYING THE CONDITIONS 

 

The conditions stated in Theorems 3.1 and 3.2 in the previous section are not directly 

verifiable due to unknown parameters β and σ
2
. This Section proposes tests in order to be able 

to infer whether the conditions are satisfied or not for a given dataset. We provide two test 

statistics for testing the restrictions for the dominance of the r
 
-

 
(k,

 
d) class estimator over the 

PCR and OLS, by the criterion of average loss under the Mahalanobis loss function. Under 

the assumption of normality of the disturbance term, it can be easily verified that β
  
r(k,d)

 
has a 

normal distribution with covariance matrix σ
2
TrSr(k)

-1
Sr(k,d)Λr

-1
Sr(k,d)Sr(k)

-1
Tr' and mean 

TrSr(k)
-1

Sr(k,d)Tr'β. 

 

4.1. The r
 
-

 
(k,

 
d) class versus the PCR estimators  

 

The first null hypothesis considered is H01: Tr'β
 
=

 
0. The test statistic for this hypothesis, 

Tr'β
 
=

 
0, was first obtained by Sarkar (1996) in the context of MSE comparisons of the r

 
-

 
k 

class estimator over the PCR estimator. Along the same lines, below we obtain the test 

statistic for comparing the r
 
-

 
(k,

 
d) class estimator with the PCR estimator based on average 

loss under the criterion of the Mahalanobis loss function. Now, under the assumption of 

normality of the disturbance term, it can be easily verified from (3.5) and (3.6) that β
  
r(k,d) has 
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a normal distribution with covariance matrix σ
2
TrSr(k)

-1
Sr(k,d)Λr

-1
Sr(k,d)Sr(k)

-1
Tr' and mean 

TrSr(k)
-1

Sr(k,d)Tr'β . Hence, that estimator can be defined as: 

 ))(),(),()(,),()((~),(ˆ 11121   kSdkSdkSkSTdkSkSNdkT rrrrrrrrrr    

 

Since, Tr'β
  
r(k,d) is an unbiased estimator of Tr'β   under H01, the test statistic under H01 is given 

by: 

 
)/(

/),(ˆ)(),(),()(),(ˆ 11

1
pnee

rdkTkSdkSdkSkSTdk
F rrrrrrrrr






 
  (4.18) 

where e'e/(n
 
-

 
p) is the usual OLS estimator of σ

2
, with e as the vector of residuals. F1 follows 

a F distribution with d.f. r and n
 
-

 
p under H01. 

 

4.2. The r
 
-

 
(k,

 
d) class and the OLS estimators  

 

For testing the condition stated in Theorem 3.1 for the superiority of the r
 
-

 
(k,

 
d) class 

estimator over the OLS estimator, we state the null and alternative hypotheses as: 

 1
202 





 TTPc
H  and 1

212 





 TTPc
H   

where c
 
=

 
k

2
(1

 
-

 
d)

2
/(p

 
-

 
r). Under the assumption of normality for the disturbances, c

½
P
½
T

 
' β
  
p 

follows a normal distribution with mean c
½
P
½
T

 
'β and the covariance matrix cσ

2
PΛ

-1
. The test 

statistic is: 

 
)/(

/ˆˆ

2
pnee

pTT
F

pp







  (4.19) 

F2 follows a non-central F distribution with d.f. p and n
 
-

 
p, and the non-centrality parameter 

is λ
 
=

 
β'TΛT

 
'β/σ

2
 under both the null (H02) and alternative (H12) hypotheses where for H02, 

λ
 
≤

 
1/c and for H12, λ

 
>

 
1/c.  

 

Hence, depending on the outcomes of these tests for a given data set, conclusions can be 

drawn regarding the dominance of the r
 
-

 
(k,

 
d) class estimator over the OLS and PCR. If, for 

instance, H01:
 
T

 
'rβ

  
=

 
0 cannot be rejected against the alternative H11:

 
T

 
'rβ

 
≠

 
0 in a given sample, 

the conclusion is that the PCR estimator and the r
 
-

 
(k,

 
d) class estimator performs equally well 

by the risk criterion under the Mahalanobis loss function. 

 

In the next two sections, we report the results of a simulation study and a numerical 

illustration. These were carried out to study the performance of the tests for verifying the 

conditions for dominance of the r
 
-

 
(k,

 
d) class estimator over the others as obtained in Section 

4. 

 

5. A SIMULATION STUDY 

 

We conduct the simulation study for different degrees of collinearity to verify the conditions 

of dominance of the r
 
-

 
(k,

 
d) class estimator over others given in Section 4. All computations 

have been done using R codes. Following Newhouse and Oman (1971), we derive the 

required results, using the explanatory variables generated by the method below: 

 ,ijij aVUX   i
 
=

 
1,

 
2,...,

 
p and j

 
=

 
1,

 
2,...,

 
n (5.20) 

where Vij and U are independent sequence of standard normal pseudo-random numbers. Here, 

α is so chosen as to result in a desired sample correlation (ρ) among explanatory variables, 

and this is given by α
 
=

 
√( 1   -     )     . For the design matrix X, the normalized eigenvector 
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corresponding to the largest eigenvalue is chosen as a coefficient vector. We generate 

observations on the dependent variable by: 

 ,332211 jjjjij uXXXy    j
 
=

 
1,

 
2,...,

 
n  

where uj's are independent normal random variables with mean zero and variance σ
2
. In this 

study, we have taken n
 
=

 
50; p

 
=

 
3; and σ

2 
=

 
100. The values of ρ are considered as 

0.7,
 
0.8,

 
0.9,

 
0.95. Further, we take r to be the number of eigenvalues greater than unity. 

 

In the simulation study, the tests for the various hypothesis discussed in Section 4, have been 

carried out for k
 
=

 
0.001,

 
0.01,

 
0.05,

 
0.1,

 
0.5,

 
0.7,

 
0.9,

 
1 and d

 
=

 
0.001,

 
0.01,

 
0.1,

 
0.5,

 
0.75,

 
0.9. 

We calculate the values of the test statistics for testing the conditions stated in Theorem 3.1 

and 3.2 and repeat the process for 1000 times. The proportions of the cases when a relevant 

null hypothesis is not rejected, are reported in the following tables (Tables 5.1-5.3). 

 

5.1. The r
 
-

 
(k,

 
d) class estimator and the PCR estimator 

  

The value of the test statistic given in (4.18) for testing the null hypothesis H01 is calculated 

and the proportion of the cases, say P1(k,d), when we fail to reject H01, is calculated for the 

different values of k and d considered here. We note that the test statistic follows F 

distribution with degrees of freedom 2 and 47. The results are given in Table 5.1. 

 

k/d   0.001   0.01   0.10   0.50   0.75   0.90  

0.001   0.909   0.909   0.909   0.894   0.936   0.910  

0.01   0.898   0.920   0.905   0.905   0.912   0.907  

0.05   0.905   0.936   0.908   0.912   0.900   0.906  

0.10   0.922   0.921   0.929   0.909   0.897   0.916  

0.50   0.920   0.915   0.920   0.902   0.919   0.895  

0.70   0.925   0.904   0.905   0.917   0.920   0.910  

0.90   0.924   0.899   0.911   0.910   0.901   0.901  

1.00   0.910   0.937   0.911   0.892   0.913   0.904  

Table 5.1 Values of P1(k,d) at 5% level of significance for ρ = 0.80. 

 

The values of P1(k,d) at 5% level of significance, are high for all values of k and d considered 

here. In fact, it is clear from the results in Table 5.1 that the actual size of the test is more or 

less the same as that of the nominal size. Therefore, we conclude that the r
 
-

 
(k,

 
d) class 

estimator and the PCR estimator perform equally well under the Mahalanobis loss function 

i.e., the condition stated in Theorem 3.2 holds true for all combinations of chosen k and d at 

5% level of significance. In fact, the conclusion remains the same at a 1% level of 

significance as well. 

 

5.2. The r
 
-

 
(k,

 
d) class and the OLS estimators  

 

We have note in Section (4.2) that for testing the condition for superiority of the r
 
-

 
(k,

 
d) class 

estimator over the OLS estimator, the test statistic is F2 and it follows a non-central F 

distribution with degrees of freedom p and n
 
-

 
p and non-centrality parameter λ, with λ

 
≤

 
1/c 

under the null hypothesis H02 and λ
 
>1/c under the alternative hypothesis H12. Following 

Johnson et al. (2004), we can approximate such a non-central distribution, denoted as Fp,n-p(λ), 

by (1
 
+

 
λ/p)Fp*,n-p, where Fp*,n-p is the central F distribution with degrees of freedom p* and 

n
 
-

 
p where p* 

=
 
(p

 
+

 
λ)

2
/(p

 
+

 
2λ)

 
=

 
p +

 
λ

2
/(p

 
+

 
2λ) is always greater than p and approximated to 

the nearest integer value. 
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Since, dp*/dλ
 
=

 
2λ(p

 
+

 
λ)/(p

 
+

 
2λ)

2
 is always strictly positive, and hence p* is an increasing 

function of λ. Further, writing Fp*,n-p as  

 
pnY

pY
F pnp




/

/

2

*

1
*,

   

where Y1 and Y2 are independent central chi square distributions, we have  

 
)(

)2)((
)(

2

1
,











pp

ppn

Y

Y
F pnp

   

 

Now, it is easy to check that (n
 
-

 
p)(p

 
+

 
2λ)/(p

 
(p

 
+

 
λ)) is positive and its derivative with respect 

to λ is (n
 
-

 
p)/(p

 
+

 
λ)

2
, which is also positive, making (n

 
-

 
p)(p

 
+

 
2λ)/(p

 
(p

 
+

 
λ)) an increasing 

function of λ. Thus, for a test of size α i.e., if 

 



  




  )

)(

)2)((
())((

2

1
/1,/1 rcrpnpc C

pp

ppn

Y

Y
probCFprob    

then probλ=1 c(Fp,n-p(λ)
 
>

 
Cr)

 
≤

 
α for all λ

 
≤

 
1/c i.e., under H02, where Cr is the critical value at 

α% level of significance. Hence, we carry out the test with the value of the non-centrality 

parameter λ
 
=

 
1/c. 

 

  d=0.001 d=0.01 

k    λ  p*
   Fp*,n-p  critical value    λ   p*  Fp*,n-p  critical value  

0.001   999999.00   500001.80   F(∞,47)   1.47   999900.00   499952.30   F(∞,47)  1.47  

0.01   9999.90   5002.245   F(∞,47)   1.47   9999.00   5001.75   F(∞,47)  1.47  

0.05   400.00   202.253   F(∞,47)  1.47   399.96   202.23   F(∞,47)  1.47  

0.10   100.00   52.261   F(52,47)   1.59   99.99   52.26   F(52,47)   1.59  

0.50   4.00   4.455   F(4,47)   2.57   4.00   4.45   F(4,47)   2.57  

0.70   2.04   3.588   F(4,47)   2.57   2.04   3.59   F(4,47)   2.57  

0.90   1.24   3.279   F(3,47)   2.80   1.23   3.28   F(3,47)   2.80  

1.00   1.00   3.20   F(3,47)   2.80   1.00   3.20   F(3,47)   2.80  

 d=0.10 d=0.50 

k   λ   p*  Fp*,n-p  critical value    λ  p*  Fp*,n-p  critical value  

0.001   990000.00   495002.30   F(∞,47)  1.47   750000.00   375002.30   F(∞,47)  1.47  

0.01   9900.00   4952.25   F(∞,47)  1.47   7500.00   3752.25   F(∞,47)  1.47  

0.05   396.00   200.25   F(∞,47)  1.47   300.00   152.254   F(∞,47)  1.47  

0.10   99.00   51.76   F(52,47)   1.59  75.00   39.765   F(40,47)   1.63  

0.50   3.96   4.44   F(4,47)   2.57   3.00   4.000   F(4,47)   2.57  

0.70   2.02   3.58   F(4,47)   2.57   1.53   3.387   F(3,47)   2.80  

0.90   1.22  3.27   F(3,47)   2.80   0.93   3.177   F(3,47)   2.80  

1.00   0.99   3.20   F(3,47)   2.80   0.75   3.125   F(3,47)   2.80  

  d=0.75 d=0.90 

k   λ   p*
    Fp*,n-p  critical value   λ   p*  Fp*,n-p  critical value  

0.001   437500.00   218752.30   F(∞,47)  1.47   190000.00   95002.25   F(∞,47)  1.47  

0.01   4375.00   2189.75   F(∞,47)  1.47   1900.00   952.25   F(∞,47)  1.47  

0.05   175.00   89.756   F(90,47)  1.55   76.00   40.26   F(40,47)   1.63  

0.10   43.75   24.150   F(24,47)   1.73   19.00   11.805   F(11,47)   2.00  

0.50   1.75   3.471   F(4,47)   2.57   0.76   3.13   F(3,47)   2.80 

0.70   0.89   3.167   F(3,47)   2.80   0.39   3.04   F(3,47)   2.80  

0.90   0.54   3.071   F(3,47)   2.80   0.24   3.02   F(3,47)   2.80  

1.00   0.44   3.049   F(3,47)   2.80   0.19   3.01   F(3,47)   2.80  

Table 5.2 Values of λ, p* and Fp*,n-p for selected k and d. 

 

Finally, c
 
=

 
k(1

 
-

 
d)

2
/(p

 
- r) is always a positive fraction for our choices of the values of k and 

d, and hence 1/c is always a relatively positive large number. Hence, the loss in terms of size 
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and power of the test due to approximation of the first degree of freedom, p*, to the nearest 

integer, is minimal. 

 

The values of the non-centrality parameter, λ, the first degree of freedom of the F distribution, 

p*, and the critical values of Fp*,n-p distribution at 5% level of significance are provided in 

Table 5.2. For testing the null hypothesis H02, the values of the statistic F2/(1
 
+

 
λ/p), say F2

*
, is 

approximated by central Fp*,n-p. The proportion of number of times when we fail to reject the 

null hypothesis H02, say P2(k,d), is reported in Table 5.3. 

 

k/d   0.001   0.01   0.10   0.50   0.75   0.90  

0.001   1.00   1.00   1.00   1.00   1.00   1.00  

0.01   1.00   1.00   1.00   1.00   1.00   1.00  

0.05   1.00   1.00   1.00   1.00   1.00   1.00  

0.10   1.00   1.00   1.00   1.00   1.00   1.00  

0.50   1.00   1.00   1.00   0.997   0.998   0.978  

0.70   0.994   0.994   0.994   0.993   0.984   0.970  

0.90   0.989   0.989   0.988   0.985   0.973   0.964  

1.00   0.985   0.985   0.985   0.978   0.971   0.959  

Table 5.3 Values of P2(k,d) at 5% level of significance for ρ = 0.80. 

 

From Table 5.3, it can be clearly seen that the values of P2(k,d) at 5% level of significance are 

either 1 or close to 1 for all values of k and d considered here. The results render that the 

r
 
-

 
(k,

 
d) class estimator a more suitable estimator than the OLS estimator for large proportions 

of replications. Subsequently, we may conclude that the r
 
-

 
(k,

 
d) class estimator outperforms 

the OLS estimator under the Mahalanobis loss function. The same also holds for 1% level of 

significance. The test results do not show much variation when carried out for 

ρ
 
=

 
0.7,

 
0.8,

 
0.9,

 
0.95. Therefore, in the interest of brevity, we report results only for the case 

when ρ
 
=

 
0.8.  

 

6. A NUMERICAL ILLUSTRATION 

 

In this section, we provide an example with a real data set is provided to demonstrate the 

performance of the test statistics obtained in Section 4, along with the evaluation of the 

r
 
-

 
(k,

 
d) class estimator as compared to the others. The data set is taken from Hald (1952), in 

which the response variable y represents the heat evolved in a cement mix measured in 

calorie/gm, and four explanatory variables, which are ingredients of the mix, viz, 

X1:
 
tricalcium aluminate, X2:

 
tricalcium silicate, X3:

 
tetracalcium alumino ferrite and 

X4:
 
dicalcium silicate. These four variables are measured as percentage weights in clinkers of 

their respective chemical compounds. This data set has been widely used to illustrate 

collinearity and variable selection (see, for instance, Draper and Smith, 1981; Montgomery 

and Peck, 1982; Piepel and Redgate 1998; Özkale, 2012). Here, we use this data set to 

compute the test statistics in order to verify if the conditions for the superiority of the r
 
-

 
(k,

 
d) 

class estimator over the others stated in Theorems 3.1 and 3.2 holds for this data set. The data 

set is given in Table 6.4: 

 

Based on these 13 observations the variables X1 and X3, and X2 and X4 are highly correlated, 

with the correlation coefficients of -0.824 and -0.975, respectively. The condition index 

number of the matrix X
 
'X is found to be 20.585, which shows that the data set has moderate 

collinearity of structure. For this study, we have chosen r to be 2. The values of the test 

statistic for dominance conditions stated in Theorem 3.1 and 3.2 are given below for 

k
 
=

 
0.001,

 
0.01,

 
0.02,

 
0.03,

 
0.07,

 
0.1,

 
0.5 and d

 
=

 
0.001,

 
0.01,

 
0.1,

 
0.5,

 
0.75,

 
0.9. 
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X1 X2 X3 X4 y 

7 26 6 60 78.5 

1 29 15 52 74.3 

11 56 8 20 104.3 

11 31 8 47 87.6 

7 52 6 33 95.9 

11 55 9 22 109.2 

3 71 17 6 102.7 

1 31 22 44 72.5 

2 54 18 22 93.1 

21 47 4 26 115.9 

1 40 23 34 83.8 

11 66 9 12 113.3 

10 68 8 12 109.4 

Table 6.4 Data set for the numerical illustration 

 
  d=0.001 d=0.01 

k   λ   p*   F2
*
   λ   p*  F2

*
 

0.001   2000002.000   1000006   0.010   2000200.000   1000102   0.010  

0.01   20000.020   10002   1.035   20002.000   10003   1.035  

0.02   5000.005   2502   4.138   5000.500   2503   4.137  

0.03   2222.224   1113   9.301   2222.444   1113   9.300  

0.07   408.164   206   50.237   408.204   206   50.232  

0.10   200.000   102   101.499   200.020   102   101.490  

0.50   8.000   6   1725.490   8.001   6   1725.376  

 d=0.10 d=0.50 

k   λ   p*
    F2

*
  λ  p*  F2

*
 

0.001   2020202.000   1010103   0.01025   2666667   1333336   0.00776  

0.01   20202.020   10103   1.025   26667   13335   0.078  

0.02   5050.505   2528   4.097   6667   3336   3.104  

0.03   2244.669   1125   9.208   2963   1484   6.979  

0.07   412.286   208   49.740   544   274   37.769  

0.10   202.020   103   100.504   267   136   76.500  

0.50   8.081   6   1713.949   11   8   1411.765  

 d=0.75 d=0.90 

k   λ   p*   F2
*
  λ  p*  F2

*
 

0.001   4571429.00   2285717   0.00452   10526320.00   5263160   0.00196  

0.01   45714.29   22860   0.05   105263.20   52634   0.02  

0.02   11428.57   5717   1.81   26315.79   13160   0.08  

0.03   5079.37   2542   4.07   11695.91   5850   1.77  

0.07   932.94   469   22.1   2148.23   1076   9.62  

0.10   457.14   231   44.9   1052.63   529   19.6  

0.50   18.29   11   929.11   42.11   23   449.1  

Table 6.5 Values of λ, p* and F2
* for the given dataset 
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6.1. The r
 
-

 
(k,

 
d) class estimator and the PCR estimator 

 

The value of the statistic in (4.18) for testing H01 comes out to be around 10264.27, for all the 

chosen values of k and d, thereby showing hardly any variation in the values of the test 

statistic for the values of k and d considered here. The values of the statistic are evidently very 

high when compared with the critical value of F(2,9) at a 5% level of significance suggesting 

that the null hypothesis H01: Tr'β
 
=

 
0 is rejected at a 5% level of significance. Therefore, it can 

be concluded that the r
 
-

 
(k,

 
d) class estimator and the PCR estimator do not perform equally 

well under the Mahalanobis loss function for this data set. 

 

6.2. The r
 
-

 
(k,

 
d) class and the OLS estimators  

 

A statistic in (4.19) follows a non-central F distribution with degrees of freedom (4,
 
9) and the 

non-centrality parameter λ. The values of the non-centrality parameter λ, the first degree of 

freedom of F distribution, p*, and the values of the statistic F2
*
 for chosen values of k and d are 

given in Table 6.5.  

 

The values of the F2
*
 for k

 
=

 
0.001,

 
0.01 and for all values of d considered here, and also for 

k
 
=

 
0.02; d

 
=

 
0.75,

 
0.9, and k

 
=

 
0.03; d

 
=

 
0.9, implies that the null hypothesis is not rejected at 

5% level of significance when compared with the critical value 2.71 of F0.05(∞,
 
9). For 

k
 
=

 
0.02,

 
0.03,

 
0.07,

 
0.1,

 
0.5 and for all the chosen values of d, except for the cases mentioned 

above, the values of the statistic are quite high, suggesting the rejection of H02. For this data 

set, the r
 
-

 
(k,

 
d) class estimator outperforms the OLS estimator for k

 
=

 
0.001,

 
0.01 and for all 

the chosen values of d, as well as for k
 
=

 
0.02; d

 
=

 
0.75,

 
0.9, and k

 
=

 
0.03; d

 
=

 
0.9 under the 

Mahalanobis loss function. 
 

7. CONCLUDING REMARKS 

 

In this paper, we compare the performance of the r
 
-

 
(k,

 
d) class estimator with the OLS, PCR 

and the two-parameter class estimator using the Mahalanobis loss function as the risk 

criterion. The conditions for the dominance of the r
 
-

 
(k,

 
d) class estimator over the OLS and 

PCR estimators have been derived, and tests for verifying these conditions have also been 

suggested. A numerical illustration and a simulation study have been conducted to study the 

performance of the tests to evince the superiority of the r
 
-

 
(k,

 
d) class estimator over the 

others in artificially generated data sets as well as for a real data set. 
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