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Abstract

This paper aims to show the application of range-based volatility in connectedness analysis. For this purpose, 
we compare the volatility estimators Parkinson, Yang-Zhang, Garman-Klass, Rogers-Satchell, and modified Gar-
man-Klass by Yang and Zhang methods. As an example, we calculated the range-based stock prices’ volatility of 
four defense industry companies quoted in Borsa Istanbul. We compared the forecast performance of volatility 
against Heteroskedastic Root Mean Square Error statistics. We include the best-performing volatility series in the 
spillover analysis. Instead of the Cholesky decomposition VAR and generalized VAR approaches used in the cal-
culation of the Diebold-Yılmaz connectedness index, we apply the TVP-VAR-based connectedness approach. The 
comparison results show that Rogers-Satchell for ASELSAN, KATMERLER, and PAPIL, and Parkinson volatility 
estimator for OTOKAR have the smallest error, respectively. The empirical findings of TVP-VAR connectedness 
show that the average forecast error variance of the network is 34.35%.
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1. INTRODUCTION
The concept of volatility is defined in the litera-
ture as movements in the form of increases and 
decreases in the prices of financial assets. As a 
dictionary meaning, the concept of volatility is 
used in the sense of variability, but it can also 
be expressed as the standard deviation of the as-
set value under consideration. The inevitability 
of the momentary variability of risk factors is an 
extremely important situation in order to predict 
and work on the volatilities that are likely to be 
experienced in the future. Volatility is a natural 
consequence of the trade that takes place with 
the arrival of news and the later reactions of in-
vestors. The chain comovement of market play-
ers will push financial product prices to reach 
the equilibrium level after the information. The 
changing of expectations and related actions will 
be projected in the liquidity of a certain market. 
Since the information flow is continuous, vola-
tility, information, and liquidity are expected to 
be connected. If the data holds more information 
when estimating volatility, forecast results can 
be more consistent. 

One can model the volatility by applying various 
time series analysis methods. Poon and Granger 
(2003, 2005) divide volatility models into three 
groups. These groups are Stochastic Volatility 
models, Predictions Models via historical stan-
dard deviations, and Conditional Volatility es-
timated by ARCH-type models. We consider 
the range-based volatility estimators, in other 
words, volatility indicators using Open-High-
Low-Close (OHLC) prices. Li and Hong (2011) 
state that range-based volatility estimators are 
5–14 times more efficient with respect to fore-
casting error measures. In addition, these kinds 
of volatility estimators have a simple structure 
to implement. In fact, the range is reported as 
candlestick plots which are used widely in tech-
nical analysis. Although range-based estimators 
have calculation and simplicity advantages, they 
are not studied enough in the literature. One can 
state that range-based estimators have poor per-
formance in empirical studies, therefore there is 
a gap in the literature on the range-based volatil-
ity approach. Chou (2005) introduced the Con-
ditional Autoregressive Range (CARR) model 
to the literature. The CARR models use the idea 

of well-known GARCH models to examine the 
dynamic nature of the adjusted range.  He also 
claims that the fundamental reason for the poor 
performance of range-based approaches is that 
they are not so successful and adequate models 
to capture the dynamics of volatilities. We do not 
consider the CARR model in this study. This pa-
per covers the high-low-based Parkinson (1980) 
estimator as well as OHLC estimators Garman 
and Klass -GK- (1980), Rogers and Satchell -RS- 
(1991), Yang and Zhang -YZ- (2000), modified 
Garman and Klass by Yang and Zhang -GKYZ- 
when estimating volatility. There are few stud-
ies about the comparison of the range-based 
volatility estimators’ performance. Yarovaya et 
al, (2016) examine the GK, Park, and RS, they 
obtain inconclusive outcomes. Even though all 
the mentioned range-based volatility estimators 
have different characteristics, one can figure out 
that there are no certain results in the literature 
about which estimator performs more accurate-
ly. Arnerić et al (2019) find no exact result for the 
comparison. They use two different metrics to 
calculate the forecast error. But one of the error 
measures indicates the Garman–Klass estima-
tor is more adequate, while the other one signs 
the Yang–Zhang estimator. They conclude when 
comparison results cannot make a clear conclu-
sion about the efficiency of estimators, one can 
apply the tail dependence error measure to de-
termine the last decision of ordering. Raju and 
Rangaswamy (2017) measure the in-sample and 
out-of-sample forecasting error of volatility es-
timators and find that YZ is the most adequate 
estimator with respect to error metrics.GK ap-
proach is to be found as the optimal OHLC esti-
mator in the studies of  Li and Hing (2011), Bali 
and Weinbaum (2005), Todorova and Husmann 
(2012), and Jiang et al (2014).

In addition to measuring the volatility in the 
markets, understanding the relationships be-
tween different financial markets are important 
for portfolio diversification, portfolio optimiza-
tion, risk management, hedging, and investment 
decisions. If the return or volatility spillover 
among financial assets increases, the possibility 
of diversification decreases. With the increase 
in the amount of information flow, the spread 
of volatility between the stock markets has in-
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creased. Inter-market risk contamination can 
often be caused by a financial crisis. The spill-
over effect between markets is one of the main 
factors that determine the predictability of fi-
nancial markets. The importance of spillover 
analysis has emerged from the fact that markets 
around the world are interconnected. In general, 
volatility increases sharply during financial cri-
ses, and it may naturally be possible to measure 
and monitor such spillovers so that crises can be 
monitored by providing early warning systems. 
Measuring and estimating the volatility spread 
is related to the effort to estimate the level of risk 
and uncertainty of the relevant market or finan-
cial instrument.

Therefore, we apply the method of volatility 
connectedness based on the Diebold and Yilmaz 
- DY - (2009) approach which allows asymme-
tries in bilateral connections between markets 
DY propose the connectedness as a directional 
measure of volatility spillover. DY calculate a 
Connectedness Index (DYCI) which is used to 
interpret the impact of shocks from other finan-
cial assets within the estimation error variance 
of each financial asset. DYCI is a computation-
al tool to figure out the spread trends, cycles, 
and bursts of the return volatility of assets, asset 
portfolios, and asset markets both within and 
between countries. In addition, connectedness 
measurement is potentially useful to monitor 
crises, because connectedness generally tends to 
increase sharply during crises.

VAR-based interconnectedness approaches have 
been utilized to understand the subjects which 
are related to interdependencies and volatility 
spillovers of financial markets (Diebold & Yil-
maz 2009, 2012, 2014). DY make it easy to mea-
sure the interdependence over a network of vari-
ables. Furthermore, this method yields results 
for total, directional, and net interdependence. 
The obtained results of the DY approach provide 
us with determining the type of interdependence 
and detailed knowledge. More specifically, in 
the case of net interdependence, we can easi-
ly separate which financial assets are net shock 
transmitters and net shock receivers. So, one can 
easily figure out the underlying dynamics. Us-
ing the dynamic structure of the method helps to 
reach the policy implications.

Diebold-Yilmaz (2009, 2012) uses a VAR frame-
work with Cholesky decomposition and a gen-
eralized VAR approach, respectively. DY2009 
has been insufficient to examine the necessity 
of ranking the variables and the spread between 
different types of asset markets. Therefore, Die-
bold-Yilmaz (2012) includes a generalized VAR 
approach in which the variables can be ordered 
in an irrelevant way. Finally, Diebold-Yilmaz 
(2014) emphasizes the concept of connectivity 
and enables a more accurate determination of 
potential changes in parameter values. This ap-
proach brings two innovations these are about 
the effect of outliers and arbitrary rolling win-
dow size. One does not need to identify the 
arbitrary rolling window size and the effect 
of outliers disappears. Thus, the dynamic mea-
sures can be calculated without the loss of ob-
servations. Generalized versions of these studies 
are available in Diebold-Yilmaz (2015) and an 
application in Diebold-Yilmaz (2016). However, 
the rolling-window VAR model is insufficient 
in some aspects, in this context Antonakakis & 
Gabauer (2017) and Korobilis &Yilmaz (2018) 
develop a connectedness model based on the 
Time-Varying Parameter Vector Autoregression 
(TVP-VAR) model. In general, the response of 
the rolling-window-VAR approach to the events 
is occurred as either overreacting or softening 
the effect. But we can observe that the reaction 
of the TVP-VAR-based connectedness model is 
adapting instantly. In addition, the TVP-VAR 
model is a solution for arbitrarily chosen roll-
ing window size. Thus, it prevents the loss of 
observed data and satisfies the regularity of the 
parameters. Later, Antonakakis et al. (2020) in-
troduce a method for constructing confidence in-
tervals of dynamic connectedness. They combine 
bootstrapped generalized impulse-response 
functions with common confidence intervals for 
impulse-response functions. Additionally, they 
provide an uncertainty estimate of TVP-VAR-
based connectedness measures, allowing forget-
ting factors and random variation of Minnesota 
priorities. 

In this study, we first make a comparison be-
tween the range-based volatility estimators and 
examine the pass-through between the obtained 
volatilities applying the TVP-VAR-based Die-
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bold-Yilmaz Connectedness approach. For il-
lustrative purposes, we chose defense industry 
companies because of Turkey’s rapid develop-
ment in this field. In particular, the use of Turkish 
Defense Industry products in the current armed 
conflicts in Turkey’s immediate surroundings 
and the global interest in these products moti-
vated us to choose these stocks. Therefore, we 
estimate the volatility of the stock prices of four 
defense industry companies quoted on Borsa 
Istanbul using the OHLC values. Then, we cal-
culate DYCI to interpret the volatility spillover 
between the stocks. This study consists of the 
following parts. The first part is the introducto-
ry part, which includes conceptual explanations 
and literature. The second and the third part cov-
er methods and materials. These parts consist of 
sections that describe range-based volatility es-
timators and the TVP-VAR Connectedness ap-
proach. The following section introduces the vol-
atility dataset. In the third section, the findings 
obtained from the connectedness approach are 
available. The last section concludes the paper.

2. VOLATILITY MODELS
2.1.  Range-Based Volatility Estimators

Intraday Open-High-Low-Close (OHLC) pric-
es are commonly used in volatility calculations 
in technical analysis indicators. These volatility 
calculation approaches have several advantag-
es over volatility calculations based on closing 
prices. Before moving on to OHLC volatility es-
timators, we can express the classic close-to-close 
(CC) volatility estimator as follows:

where 
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3. Roger and Satchell (1991) also assumed no 
opening jump in their estimator, but differently 
from GK, they allow non-zero drift in the volatil-
ity estimator. They apply the following formula
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4. Yang and Zhang extend the Garman Glass vol-
atility estimator allowing for opening jumps. In 
addition, the estimator assumes Brownian mo-
tion with zero drift. This method is one of the 
most preferable estimators among the OHLC 
volatility estimators for zero drift. Its efficiency 
is 8.0 times of the classic CC estimator. But it has 
a disadvantage when the drift is nonzero but in-
stead relatively large to the volatility. It will tend 
to overestimate the volatility. One can express it 
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 (4)

5. Yang and Zhang’s (YZ) approach has a min-
imum estimation error. This estimator is in-
dependent both of the drift and opening gaps. 
Moreover, the efficiency of the YZ estimator is 
maximally 14 times the CC estimator’s efficien-
cy. One can interpret it as a weighted average of 
the RS estimator. The performance of YZ may 
reduce to the CC estimator if the price process is 
heavily dominated by opening jumps. YZ can be 
applied using the following formulations

measures can be calculated without the loss of observations. Generalized versions of these studies are available in 
Diebold-Yilmaz (2015) and an application in Diebold-Yilmaz (2016). However, the rolling-window VAR model 
is insufficient in some aspects, in this context Antonakakis & Gabauer (2017) and Korobilis &Yilmaz (2018) 
develop a connectedness model based on the Time-Varying Parameter Vector Autoregression (TVP-VAR) model. 
In general, the response of the rolling-window-VAR approach to the events is occurred as either overreacting or 
softening the effect. But we can observe that the reaction of the TVP-VAR-based connectedness model is adapting 
instantly. In addition, the TVP-VAR model is a solution for arbitrarily chosen rolling window size. Thus, it 
prevents the loss of observed data and satisfies the regularity of the parameters. Later, Antonakakis et al. (2020) 
introduce a method for constructing confidence intervals of dynamic connectedness. They combine bootstrapped 
generalized impulse-response functions with common confidence intervals for impulse-response functions. 
Additionally, they provide an uncertainty estimate of TVP-VAR-based connectedness measures, allowing 
forgetting factors and random variation of Minnesota priorities.  

In this study, we first make a comparison between the range-based volatility estimators and examine the pass-
through between the obtained volatilities applying the TVP-VAR-based Diebold-Yilmaz Connectedness approach. 
For illustrative purposes, we chose defense industry companies because of Turkey's rapid development in this 
field. In particular, the use of Turkish Defense Industry products in the current armed conflicts in Turkey's 
immediate surroundings and the global interest in these products motivated us to choose these stocks. Therefore, 
we estimate the volatility of the stock prices of four defense industry companies quoted on Borsa Istanbul using 
the OHLC values. Then, we calculate DYCI to interpret the volatility spillover between the stocks. This study 
consists of the following parts. The first part is the introductory part, which includes conceptual explanations and 
literature. The second and the third part cover methods and materials. These parts consist of sections that describe 
range-based volatility estimators and the TVP-VAR Connectedness approach. The following section introduces 
the volatility dataset. In the third section, the findings obtained from the connectedness approach are available. 
The last section concludes the paper. 
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2.1.  Range-Based Volatility Estimators 
Intraday Open-High-Low-Close (OHLC) prices are commonly used in volatility calculations in technical analysis 
indicators. These volatility calculation approaches have several advantages over volatility calculations based on 
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and Z are as follows: 
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2. Garman and Klass (1980) developed the estimation method under two assumptions which are Brownian 
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measures can be calculated without the loss of observations. Generalized versions of these studies are available in 
Diebold-Yilmaz (2015) and an application in Diebold-Yilmaz (2016). However, the rolling-window VAR model 
is insufficient in some aspects, in this context Antonakakis & Gabauer (2017) and Korobilis &Yilmaz (2018) 
develop a connectedness model based on the Time-Varying Parameter Vector Autoregression (TVP-VAR) model. 
In general, the response of the rolling-window-VAR approach to the events is occurred as either overreacting or 
softening the effect. But we can observe that the reaction of the TVP-VAR-based connectedness model is adapting 
instantly. In addition, the TVP-VAR model is a solution for arbitrarily chosen rolling window size. Thus, it 
prevents the loss of observed data and satisfies the regularity of the parameters. Later, Antonakakis et al. (2020) 
introduce a method for constructing confidence intervals of dynamic connectedness. They combine bootstrapped 
generalized impulse-response functions with common confidence intervals for impulse-response functions. 
Additionally, they provide an uncertainty estimate of TVP-VAR-based connectedness measures, allowing 
forgetting factors and random variation of Minnesota priorities.  

In this study, we first make a comparison between the range-based volatility estimators and examine the pass-
through between the obtained volatilities applying the TVP-VAR-based Diebold-Yilmaz Connectedness approach. 
For illustrative purposes, we chose defense industry companies because of Turkey's rapid development in this 
field. In particular, the use of Turkish Defense Industry products in the current armed conflicts in Turkey's 
immediate surroundings and the global interest in these products motivated us to choose these stocks. Therefore, 
we estimate the volatility of the stock prices of four defense industry companies quoted on Borsa Istanbul using 
the OHLC values. Then, we calculate DYCI to interpret the volatility spillover between the stocks. This study 
consists of the following parts. The first part is the introductory part, which includes conceptual explanations and 
literature. The second and the third part cover methods and materials. These parts consist of sections that describe 
range-based volatility estimators and the TVP-VAR Connectedness approach. The following section introduces 
the volatility dataset. In the third section, the findings obtained from the connectedness approach are available. 
The last section concludes the paper. 

 

2. VOLATILITY MODELS 
2.1.  Range-Based Volatility Estimators 
Intraday Open-High-Low-Close (OHLC) prices are commonly used in volatility calculations in technical analysis 
indicators. These volatility calculation approaches have several advantages over volatility calculations based on 
closing prices. Before moving on to OHLC volatility estimators, we can express the classic close-to-close (CC) 
volatility estimator as follows: 

𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �
𝑍𝑍𝑍𝑍

𝑛𝑛𝑛𝑛 𝑛 2
�(𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 𝑛 𝑟𝑟𝑟𝑟𝑟)2
𝑛𝑛𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑛

 

where 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

� is a log-return of closing prices (𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖) and 𝑟𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑖+𝑟𝑟𝑟𝑟2+⋯+𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛

. n is the number of historical days 

used in the volatility estimate and Z is the number of closing prices in a year. We use the high-low-based Parkinson 
(1980) estimator as well as OHLC estimators Garman and Klass (1980), Rogers and Satchell (1991), Yang and 
Zhang (2000), Garman and Klass - Yang and Zhang when estimating volatility. These volatility estimators for n 
and Z are as follows: 

1. Parkinson (1980) introduced the approach for estimating volatility based on high and low prices. So, the 
formula is 

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = � 𝑍𝑍𝑍𝑍
4𝑛𝑛𝑛𝑛×𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔2

∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖
𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖
�
2

𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖𝑖𝑛                         (1) 
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3. Roger and Satchell (1991) also assumed no opening jump in their estimator, but differently from GK, they 
allow non-zero drift in the volatility estimator. They apply the following formula 
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4. Yang and Zhang extend the Garman Glass volatility estimator allowing for opening jumps. In addition, the 
estimator assumes Brownian motion with zero drift. This method is one of the most preferable estimators 
among the OHLC volatility estimators for zero drift. Its efficiency is 8.0 times of the classic CC estimator. 
But it has a disadvantage when the drift is nonzero but instead relatively large to the volatility. It will tend to 
overestimate the volatility. One can express it using the following equation 
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5. Yang and Zhang's (YZ) approach has a minimum estimation error. This estimator is independent both of the 

drift and opening gaps. Moreover, the efficiency of the YZ estimator is maximally 14 times the CC estimator's 
efficiency. One can interpret it as a weighted average of the RS estimator. The performance of YZ may reduce 
to the CC estimator if the price process is heavily dominated by opening jumps. YZ can be applied using the 
following formulations 
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2.2. Data Set 
The data set consists of stock prices of four defense industry companies listed on Borsa Istanbul. The stocks used 
in the analysis are ASELSAN, KATMERLER, OTOKAR and PAPİL. Since PAPİL stock started to be traded on 
BIST on 29 November 2019, data covers daily OHLC prices from 2020-01-02 to 2022-06-01. The dataset is 
obtained from the "Yahoo Finance" platform via the 'quantmod' R package (Ryan & Ulrich, 2020). The close 
prices are adjusted for all applicable splits and dividend distributions in YahooFinance. Therefore, the open, high, 
and low prices are also adjusted for splits and dividend distributions. Moreover, the raw data may contain missing 
values. In our case, all stocks' price data have the missing values on the same date. So, we didn't need to remove 
any observations. 

2.3. The Comparison Results of Range-Based Volatility Estimators 
Although Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are very common metrics to compare 
the forecasting performance we apply Heteroskedastic Root Mean Square Error (HRMSE) to compare the out-of-
sample forecasting performance of the volatility estimators. When volatility clustering occurs, RMSE and MAE 
are generally not sufficient and proper metrics for accurate model comparison (Bayraci & Ünal, 2014). The 
HRMSE computes the error measures as an average relative error. Moreover, it takes high and low volatility 
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3. Roger and Satchell (1991) also assumed no opening jump in their estimator, but differently from GK, they 
allow non-zero drift in the volatility estimator. They apply the following formula 
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4. Yang and Zhang extend the Garman Glass volatility estimator allowing for opening jumps. In addition, the 
estimator assumes Brownian motion with zero drift. This method is one of the most preferable estimators 
among the OHLC volatility estimators for zero drift. Its efficiency is 8.0 times of the classic CC estimator. 
But it has a disadvantage when the drift is nonzero but instead relatively large to the volatility. It will tend to 
overestimate the volatility. One can express it using the following equation 
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5. Yang and Zhang's (YZ) approach has a minimum estimation error. This estimator is independent both of the 

drift and opening gaps. Moreover, the efficiency of the YZ estimator is maximally 14 times the CC estimator's 
efficiency. One can interpret it as a weighted average of the RS estimator. The performance of YZ may reduce 
to the CC estimator if the price process is heavily dominated by opening jumps. YZ can be applied using the 
following formulations 
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2.2. Data Set 
The data set consists of stock prices of four defense industry companies listed on Borsa Istanbul. The stocks used 
in the analysis are ASELSAN, KATMERLER, OTOKAR and PAPİL. Since PAPİL stock started to be traded on 
BIST on 29 November 2019, data covers daily OHLC prices from 2020-01-02 to 2022-06-01. The dataset is 
obtained from the "Yahoo Finance" platform via the 'quantmod' R package (Ryan & Ulrich, 2020). The close 
prices are adjusted for all applicable splits and dividend distributions in YahooFinance. Therefore, the open, high, 
and low prices are also adjusted for splits and dividend distributions. Moreover, the raw data may contain missing 
values. In our case, all stocks' price data have the missing values on the same date. So, we didn't need to remove 
any observations. 

2.3. The Comparison Results of Range-Based Volatility Estimators 
Although Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are very common metrics to compare 
the forecasting performance we apply Heteroskedastic Root Mean Square Error (HRMSE) to compare the out-of-
sample forecasting performance of the volatility estimators. When volatility clustering occurs, RMSE and MAE 
are generally not sufficient and proper metrics for accurate model comparison (Bayraci & Ünal, 2014). The 
HRMSE computes the error measures as an average relative error. Moreover, it takes high and low volatility 
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3. Roger and Satchell (1991) also assumed no opening jump in their estimator, but differently from GK, they 
allow non-zero drift in the volatility estimator. They apply the following formula 
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4. Yang and Zhang extend the Garman Glass volatility estimator allowing for opening jumps. In addition, the 
estimator assumes Brownian motion with zero drift. This method is one of the most preferable estimators 
among the OHLC volatility estimators for zero drift. Its efficiency is 8.0 times of the classic CC estimator. 
But it has a disadvantage when the drift is nonzero but instead relatively large to the volatility. It will tend to 
overestimate the volatility. One can express it using the following equation 
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5. Yang and Zhang's (YZ) approach has a minimum estimation error. This estimator is independent both of the 

drift and opening gaps. Moreover, the efficiency of the YZ estimator is maximally 14 times the CC estimator's 
efficiency. One can interpret it as a weighted average of the RS estimator. The performance of YZ may reduce 
to the CC estimator if the price process is heavily dominated by opening jumps. YZ can be applied using the 
following formulations 
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2.2. Data Set 
The data set consists of stock prices of four defense industry companies listed on Borsa Istanbul. The stocks used 
in the analysis are ASELSAN, KATMERLER, OTOKAR and PAPİL. Since PAPİL stock started to be traded on 
BIST on 29 November 2019, data covers daily OHLC prices from 2020-01-02 to 2022-06-01. The dataset is 
obtained from the "Yahoo Finance" platform via the 'quantmod' R package (Ryan & Ulrich, 2020). The close 
prices are adjusted for all applicable splits and dividend distributions in YahooFinance. Therefore, the open, high, 
and low prices are also adjusted for splits and dividend distributions. Moreover, the raw data may contain missing 
values. In our case, all stocks' price data have the missing values on the same date. So, we didn't need to remove 
any observations. 

2.3. The Comparison Results of Range-Based Volatility Estimators 
Although Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are very common metrics to compare 
the forecasting performance we apply Heteroskedastic Root Mean Square Error (HRMSE) to compare the out-of-
sample forecasting performance of the volatility estimators. When volatility clustering occurs, RMSE and MAE 
are generally not sufficient and proper metrics for accurate model comparison (Bayraci & Ünal, 2014). The 
HRMSE computes the error measures as an average relative error. Moreover, it takes high and low volatility 
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2.2. Data Set

The data set consists of stock prices of four de-
fense industry companies listed on Borsa Istan-
bul. The stocks used in the analysis are ASEL-
SAN, KATMERLER, OTOKAR and PAPİL. Since 
PAPİL stock started to be traded on BIST on 29 
November 2019, data covers daily OHLC pric-
es from 2020-01-02 to 2022-06-01. The dataset is 
obtained from the “Yahoo Finance” platform via 
the ‘quantmod’ R package (Ryan & Ulrich, 2020). 
The close prices are adjusted for all applicable 
splits and dividend distributions in YahooFi-
nance. Therefore, the open, high, and low prices 
are also adjusted for splits and dividend distri-
butions. Moreover, the raw data may contain 

missing values. In our case, all stocks’ price data 
have the missing values on the same date. So, we 
didn’t need to remove any observations.

2.3. The Comparison Results of Range-Based 
Volatility Estimators

Although Root Mean Square Error (RMSE) and 
Mean Absolute Error (MAE) are very common 
metrics to compare the forecasting performance 
we apply Heteroskedastic Root Mean Square 
Error (HRMSE) to compare the out-of-sample 
forecasting performance of the volatility estima-
tors. When volatility clustering occurs, RMSE 
and MAE are generally not sufficient and proper 
metrics for accurate model comparison (Bayraci 
& Ünal, 2014). The HRMSE computes the error 
measures as an average relative error. Moreover, 
it takes high and low volatility periods into ac-
count (Bayraci & Ünal, 2014; Bollen, 2014). There-
fore, we utilize HRMSE to compare the volatility 
methods. The error statistics can be computed 
using the following formula

                            (6)

Table 1 shows the HMRSE statistical results. The 
results show that RS for ASELSAN, KATMERL-
ER and PAPİL, and Parkinson volatility estima-
tor for OTOKAR have the smallest error, respec-
tively.
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3. Roger and Satchell (1991) also assumed no opening jump in their estimator, but differently from GK, they 
allow non-zero drift in the volatility estimator. They apply the following formula 

 

𝜎𝜎𝜎𝜎𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅 = �𝑍𝑍𝑍𝑍
𝑛𝑛𝑛𝑛
∑ �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
× 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖

𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
+ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
× 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖

𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
�𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖𝑖1                    (3) 

 

4. Yang and Zhang extend the Garman Glass volatility estimator allowing for opening jumps. In addition, the 
estimator assumes Brownian motion with zero drift. This method is one of the most preferable estimators 
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5. Yang and Zhang's (YZ) approach has a minimum estimation error. This estimator is independent both of the 

drift and opening gaps. Moreover, the efficiency of the YZ estimator is maximally 14 times the CC estimator's 
efficiency. One can interpret it as a weighted average of the RS estimator. The performance of YZ may reduce 
to the CC estimator if the price process is heavily dominated by opening jumps. YZ can be applied using the 
following formulations 
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2.2. Data Set 
The data set consists of stock prices of four defense industry companies listed on Borsa Istanbul. The stocks used 
in the analysis are ASELSAN, KATMERLER, OTOKAR and PAPİL. Since PAPİL stock started to be traded on 
BIST on 29 November 2019, data covers daily OHLC prices from 2020-01-02 to 2022-06-01. The dataset is 
obtained from the "Yahoo Finance" platform via the 'quantmod' R package (Ryan & Ulrich, 2020). The close 
prices are adjusted for all applicable splits and dividend distributions in YahooFinance. Therefore, the open, high, 
and low prices are also adjusted for splits and dividend distributions. Moreover, the raw data may contain missing 
values. In our case, all stocks' price data have the missing values on the same date. So, we didn't need to remove 
any observations. 

2.3. The Comparison Results of Range-Based Volatility Estimators 
Although Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are very common metrics to compare 
the forecasting performance we apply Heteroskedastic Root Mean Square Error (HRMSE) to compare the out-of-
sample forecasting performance of the volatility estimators. When volatility clustering occurs, RMSE and MAE 
are generally not sufficient and proper metrics for accurate model comparison (Bayraci & Ünal, 2014). The 
HRMSE computes the error measures as an average relative error. Moreover, it takes high and low volatility 

periods into account (Bayraci & Ünal, 2014; Bollen, 2014). Therefore, we utilize HRMSE to compare the volatility 
methods. The error statistics can be computed using the following formula 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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where 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 and 𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡𝑡1 represent 𝑘𝑘𝑘𝑘 × 1 and 2𝑘𝑘𝑘𝑘 × 1 vectors, respectively,  A𝑡𝑡𝑡𝑡 is 𝑘𝑘𝑘𝑘 × 2𝑘𝑘𝑘𝑘 dimensional matrix, and 𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡 and 
𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 are 𝑘𝑘𝑘𝑘 × 1 and 2𝑘𝑘𝑘𝑘2 × 1 dimensional vectors, respectively. Σ𝑡𝑡𝑡𝑡 and S𝑡𝑡𝑡𝑡 are time-varying variance-covariance 
matrices of which dimensions are 𝑘𝑘𝑘𝑘 × 𝑘𝑘𝑘𝑘 and 2𝑘𝑘𝑘𝑘2 × 2𝑘𝑘𝑘𝑘2, respectively. Finally, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) is a 2𝑘𝑘𝑘𝑘2 × 1 dimensional 
vector. 

Diebold-Yilmaz’s approach is based on the Generalized Forecast Error Variance Decomposition (GFEVD) 
analysis. The transformation of TVP-VAR into TVP-VMA is yt = ∑  Ahtϵt𝑡h∞

h𝑡0  where  A0 =  Ik. So, the 
influence of a shock in variable j on variable i is computed as: 

ϕ�ij,t
g (H) =

∑ �ϵi
TAhtΣtϵj�

2H−1
h=0

�ϵi
TΣtϵj�∑ �ϵi

TAhΣtAht
T ϵi�H−1

h=0
                          (9) 

with ∑ ϕ�ij,t
g (H) = 1m

j𝑡1  and ∑ ϕ�ij,t
g (H) = km

i,j𝑡1 . Thus, the connectedness measures of Diebold-Yilmaz (2012, 2014) 
via GFEVD are calculated as follows 
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Total Directional Connectedness from Others (FROM) 
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Net Total Directional Connectedness (NET) 
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Table 1. The Comparison of Range-Based Volatility Estimators 

Range-Based Volatility Estimator ASELSAN KATMERLER OTOKAR PAPİL 

Garman and Klass 0.9407214 0.9434485 0.9444576 0.9433979 

Parkinson 0.9418122 0.9434276 0.9441477 0.9434275 

Rogers and Satchell 0.9399920 0.9433925 0.9453977 0.9433702 

Yang and Zhang 0.944069 0.9496686 0.9473703 0.9461385 

Garman&Klass – Yang&Zhang 0.9443705 0.9499457 0.9471353 0.9463432 
Source: Authors’ own calculations 

Table 1. The Comparison of Range-Based Volatility Estimators

Source: Authors’ own calculations
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Figure 1 presents the range-based volatility series. 
The skewness and the excess kurtosis statistics in 
Table 2 indicate that all the volatility series have 
significant skewness and excess kurtosis with 
respect to the normal distribution. Jarque-Be-
ra test statistics also indicate the series are not 
normally distributed at the 1% significance level. 
Therefore, we can apply Elliot-Rothenberg-Stock 
(ERS) test to check for stationarity of the volatil-

ity series. ERS statistics show that all volatility 
series are stationary. 

There is a significant autocorrelation that emerg-
es in all series and the square series. So, the 
mean and variance of each series change over 
time. Therefore, the TVP-VAR model with a 
time-varying variance-covariance structure is an 
appropriate econometric framework that cap-
tures all these factors. Moreover, Table 1 shows 

 

Figure 1. Range-Based Volatility Series 

 
Figure 2. Dynamic Total Connectedness Index 

Notes: cTCI is Corrected TCI. Results are based on a TVP-VAR (2) model and a 10-step-ahead GFEVD. 

 

Table 2. Summary Statistics 

Statistics ASELSAN KATMERLER OTOKAR PAPIL 

Mean 0.364 0.703 0.472 0.569 

Variance 0.039 0.451 0.048 0.051 

Skewness 1.839*** 4.581*** 1.246*** 0.953*** 

Ex.Kurtosis 3.206*** 23.440*** 0.748*** 0.658*** 

JB 589.267*** 15675.527*** 167.590*** 100.706*** 

ERS -4.191*** -5.503*** -3.765*** -3.485*** 

Q(10) 2367.653*** 1601.338*** 2149.838*** 2247.574*** 

Q2(10) 2206.552*** 1424.183*** 2018.880*** 2182.663*** 

Pearson Correlation Matrix     

ASELSAN 1.00    

KATMERLER 0.271*** 1.00   

OTOKAR 0.564*** 0.122*** 1.00  

PAPIL 0.610*** 0.198*** 0.525*** 1.00 

Notes: *** p < .01. Skewness, Kurtosis, and JB: Jarque and Bera test for normality; ERS: Elliott-Rothenberg-Stock unit-root test; 𝑄𝑄𝑄𝑄(20) and 
𝑄𝑄𝑄𝑄2(20): weighted portmanteau test. Source: Authors’ own calculations 

 

Table 3. Average Volatility Connectedness Table 

 
ASELSAN KATMERLER OTOKAR PAPIL FROM 

ASELSAN 57.07 7.04 19.4 16.48 42.93 

KATMERLER 3.45 90.41 2.3 3.83 9.59 

OTOKAR 23.04 3.43 61.86 11.67 38.14 

PAPİL 23.6 6.95 16.18 53.27 46.73 

TO 50.09 17.43 37.88 31.99 137.39 

Inc.Own 107.17 107.84 99.74 85.26 cTCI/TCI 

NET 7.17 7.84 -0.26 -14.74 45.80/34.35 

Notes: Results are based on a TVP-VAR (2) model and a 10-step-ahead GFEVD. Source: Authors’ own calculations 

 

 

Notes: *** p < .01. Skewness, Kurtosis, and JB: Jarque and Bera test for normality; ERS: Elliott-Rothen-
berg-Stock unit-root test; (20) and 𝑄2(20): weighted portmanteau test. Source: Authors’ own calculations
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Figure 1. Range-Based Volatility Series
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the unconditional correlation matrix across the 
range-based volatility series of defense industry 
firms’ stocks over the sampling period. Pear-
son correlations show that there is a significant 
positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN 
and PAPIL volatilities.

3. RANGE-BASED VOLATILITY 
CONNECTEDNESS
Antonakakis et al. (2020) use the TVP-VAR meth-
od to enhance Diebold and Yilmaz’s (2014) pro-
posed connectedness approach. They allow the 
variance-covariance matrix to fluctuate using a 
Kalman filter estimation with forgetting factors. 
They follow the study of Koop and Korobilis 
(2013, 2014) to determine the VAR and EWMA 
forgetting factors. To investigate the time-vary-
ing linkage between price volatilities of defense 
industry stocks, we estimate TVP-VAR(2) model, 
which is determined to be the most appropriate 
by Bayes Information Criteria (BIC), is as follows
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periods into account (Bayraci & Ünal, 2014; Bollen, 2014). Therefore, we utilize HRMSE to compare the volatility 
methods. The error statistics can be computed using the following formula 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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where 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 and 𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡𝑡1 represent 𝑘𝑘𝑘𝑘 × 1 and 2𝑘𝑘𝑘𝑘 × 1 vectors, respectively,  A𝑡𝑡𝑡𝑡 is 𝑘𝑘𝑘𝑘 × 2𝑘𝑘𝑘𝑘 dimensional matrix, and 𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡 and 
𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 are 𝑘𝑘𝑘𝑘 × 1 and 2𝑘𝑘𝑘𝑘2 × 1 dimensional vectors, respectively. Σ𝑡𝑡𝑡𝑡 and S𝑡𝑡𝑡𝑡 are time-varying variance-covariance 
matrices of which dimensions are 𝑘𝑘𝑘𝑘 × 𝑘𝑘𝑘𝑘 and 2𝑘𝑘𝑘𝑘2 × 2𝑘𝑘𝑘𝑘2, respectively. Finally, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) is a 2𝑘𝑘𝑘𝑘2 × 1 dimensional 
vector. 

Diebold-Yilmaz’s approach is based on the Generalized Forecast Error Variance Decomposition (GFEVD) 
analysis. The transformation of TVP-VAR into TVP-VMA is yt = ∑  Ahtϵt𝑡h∞

h𝑡0  where  A0 =  Ik. So, the 
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via GFEVD are calculated as follows 
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periods into account (Bayraci & Ünal, 2014; Bollen, 2014). Therefore, we utilize HRMSE to compare the volatility 
methods. The error statistics can be computed using the following formula 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 =  A𝑡𝑡𝑡𝑡𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡𝑡1 + 𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡                𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡~𝑁𝑁𝑁𝑁(0, Σ𝑡𝑡𝑡𝑡)                  (7) 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡1) + 𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡         𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡~𝑁𝑁𝑁𝑁(0, S𝑡𝑡𝑡𝑡)         (8) 

where 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 and 𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡𝑡1 represent 𝑘𝑘𝑘𝑘 × 1 and 2𝑘𝑘𝑘𝑘 × 1 vectors, respectively,  A𝑡𝑡𝑡𝑡 is 𝑘𝑘𝑘𝑘 × 2𝑘𝑘𝑘𝑘 dimensional matrix, and 𝜖𝜖𝜖𝜖𝑡𝑡𝑡𝑡 and 
𝜐𝜐𝜐𝜐𝑡𝑡𝑡𝑡 are 𝑘𝑘𝑘𝑘 × 1 and 2𝑘𝑘𝑘𝑘2 × 1 dimensional vectors, respectively. Σ𝑡𝑡𝑡𝑡 and S𝑡𝑡𝑡𝑡 are time-varying variance-covariance 
matrices of which dimensions are 𝑘𝑘𝑘𝑘 × 𝑘𝑘𝑘𝑘 and 2𝑘𝑘𝑘𝑘2 × 2𝑘𝑘𝑘𝑘2, respectively. Finally, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡) is a 2𝑘𝑘𝑘𝑘2 × 1 dimensional 
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Diebold-Yilmaz’s approach is based on the Generalized Forecast Error Variance Decomposition (GFEVD) 
analysis. The transformation of TVP-VAR into TVP-VMA is yt = ∑  Ahtϵt𝑡h∞
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
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EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 
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connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
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connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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periods into account (Bayraci & Ünal, 2014; Bollen, 2014). Therefore, we utilize HRMSE to compare the volatility 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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Table 1 shows the HMRSE statistical results. The results show that RS for ASELSAN, KATMERLER and PAPİL, 
and Parkinson volatility estimator for OTOKAR have the smallest error, respectively. 

Figure 1 presents the range-based volatility series. The skewness and the excess kurtosis statistics in Table 2 
indicate that all the volatility series have significant skewness and excess kurtosis with respect to the normal 
distribution. Jarque-Bera test statistics also indicate the series are not normally distributed at the 1% significance 
level. Therefore, we can apply Elliot-Rothenberg-Stock (ERS) test to check for stationarity of the volatility series. 
ERS statistics show that all volatility series are stationary.  

There is a significant autocorrelation that emerges in all series and the square series. So, the mean and variance of 
each series change over time. Therefore, the TVP-VAR model with a time-varying variance-covariance structure 
is an appropriate econometric framework that captures all these factors. Moreover, Table 1 shows the unconditional 
correlation matrix across the range-based volatility series of defense industry firms' stocks over the sampling 
period. Pearson correlations show that there is a significant positive correlation between the volatilities. The 
highest correlation occurs between ASELSAN and PAPIL volatilities. 

3. RANGE-BASED VOLATILITY CONNECTEDNESS 
Antonakakis et al. (2020) use the TVP-VAR method to enhance Diebold and Yilmaz's (2014) proposed 
connectedness approach. They allow the variance-covariance matrix to fluctuate using a Kalman filter estimation 
with forgetting factors. They follow the study of Koop and Korobilis (2013, 2014) to determine the VAR and 
EWMA forgetting factors. To investigate the time-varying linkage between price volatilities of defense industry 
stocks, we estimate TVP-VAR(2) model, which is determined to be the most appropriate by Bayes Information 
Criteria (BIC), is as follows 
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h𝑡0  where  A0 =  Ik. So, the 
influence of a shock in variable j on variable i is computed as: 
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with ∑ ϕ�ij,t
g (H) = 1m

j𝑡1  and ∑ ϕ�ij,t
g (H) = km

i,j𝑡1 . Thus, the connectedness measures of Diebold-Yilmaz (2012, 2014) 
via GFEVD are calculated as follows 

Total Directional Connectedness to Others (TO) 

TOjt = ∑ ϕ�ij,t
g (H)k

i𝑡1,i≠j  (10) 
Total Directional Connectedness from Others (FROM) 

FROMjt = ∑ ϕ�ji,t
g (H)k

i𝑡1,i≠j                                       (11) 

Net Total Directional Connectedness (NET) 

NETjt = ∑ ϕ�ij,t
g (H)k

i𝑡1,i≠j − ∑ ϕ�ji,t
g (H)k

i𝑡1,i≠j   

Table 2. Summary Statistics 

Statistics ASELSAN KATMERLER OTOKAR PAPIL 

Mean 0.364 0.703 0.472 0.569 

Variance 0.039 0.451 0.048 0.051 

Skewness 1.839*** 4.581*** 1.246*** 0.953*** 

Ex.Kurtosis 3.206*** 23.440*** 0.748*** 0.658*** 

JB 589.267*** 15675.527*** 167.590*** 100.706*** 

ERS -4.191*** -5.503*** -3.765*** -3.485*** 

Q(10) 2367.653*** 1601.338*** 2149.838*** 2247.574*** 

Q2(10) 2206.552*** 1424.183*** 2018.880*** 2182.663*** 

Pearson Correlation Matrix     

ASELSAN 1.00    

KATMERLER 0.271*** 1.00   

OTOKAR 0.564*** 0.122*** 1.00  

PAPIL 0.610*** 0.198*** 0.525*** 1.00 

Notes: *** p < .01. Skewness, Kurtosis, and JB: Jarque and Bera test for normality; ERS: Elliott-Rothenberg-Stock unit-root test; 𝑄𝑄𝑄𝑄(20) and 
𝑄𝑄𝑄𝑄2(20): weighted portmanteau test. Source: Authors’ own calculations 

 

Table 3. Average Volatility Connectedness Table 

 
ASELSAN KATMERLER OTOKAR PAPIL FROM 

ASELSAN 57.07 7.04 19.4 16.48 42.93 

KATMERLER 3.45 90.41 2.3 3.83 9.59 

OTOKAR 23.04 3.43 61.86 11.67 38.14 

PAPİL 23.6 6.95 16.18 53.27 46.73 

TO 50.09 17.43 37.88 31.99 137.39 

Inc.Own 107.17 107.84 99.74 85.26 cTCI/TCI 

NET 7.17 7.84 -0.26 -14.74 45.80/34.35 

Notes: Results are based on a TVP-VAR (2) model and a 10-step-ahead GFEVD. Source: Authors’ own calculations 

 

 

Notes: Results are based on a TVP-VAR (2) model and a 10-step-ahead GFEVD. Source: Authors’ own calculations
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Total Connectedness Index (TCI) 

TCIt = k−1 ∑ TOjt
k
j=1 ≡ k−1 ∑ FROMjt

k
j=1                (13) 

Net Pairwise Directional Connectedness (NPDC) 

NPDCij,t = ϕ�ij,t
g (H) − ϕ�ji,t
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3.1. Empirical Findings of TVP-VAR Connectedness 
We follow the studies by Koop and Korobilis (2014), Korobilis and Yilmaz (2018), and Antonakakis et al (2020) 
to figure out the forgetting factors and prior distribution. We set TVP-VAR forgetting factor as 0.99 and the 
EWMA forgetting factor as 0.99. Also, we assume Minnesota Prior for TVP-VAR model.  

The Total Connectedness Index (TCI) shows the average impact of a shock to one financial asset on other assets 
in the network. A relatively high TCI index value indicates that the spillover of a shock in a variable will be 
significant. In this case, the interconnectedness of the market increases the risk. The relatively low TCI value 
indicates that most variables in the network are independent. Thus, it means that the shock that will occur in one 
of the variables will have a weak effect on any adjustment movement in the other variables. Hence, it will result 
in lower market risk. Table 3 presents the average connectedness measures. The rows of the 4x4 (blue) matrix in 
Table 3 contain the FROM connectedness and the columns contain the TO connectedness values. The difference 
between To and FROM gives the NET connectedness values that are available at the end of Table 3. The main 
diagonal of the matrix consists of the variance shares of the variables themselves. The off-diagonal elements reflect 
the interaction between financial assets. First, we sign that there is a relatively medium connectedness between 
volatilities. We find that TCI is 34.35%. So, we can interpret that the interconnectedness in the network causes 
34.35% of the total forecast error variance on average. Figure 2 illustrates the dynamic connectedness throughout 
the whole period. Thus, certain periods that affect adherence among volatilities over time can be identified. For 
example, the highest connectedness occurs in the first quarter of 2020, when the Covid-19 pandemic was declared 
by Worl Health Organization. 

TCI reaches its highest value of 47.18% on 2020-02-05 and becomes 40.83% at the time of the first Covid-19 case 
in Turkey. Interestingly, in June 2021, the TCI value starts to rise again and reaches 42.45% on 2021-06-25. This 
is due to the emergence of the delta variant, which is more contagious despite the availability of a vaccine against 
the Covid-19 virus. It will not cause an increase in the TCI value of October 2020, the period when the Nagorno-
Karabakh War ended with the victory of Azerbaijan. 

Net Total Directional Connectedness (NET) is calculated by subtracting the effect of variable 𝑗𝑗𝑗𝑗 on others from the 
effect of others on j shows whether the variable is a net shock transmitter or receiver. If 𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 >  0 (𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 <  0), 
the variable 𝑗𝑗𝑗𝑗 is a net transmitter of shocks (𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) – and therefore drives the network (𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦). Figure 3 
presents the NET of the system. The positive values of the shaded area show a net-transmitting role of the index 
and negative values show the period when the index is a net receiver of shocks from others. PAPIL is a risk receiver 
throughout the entire period. It is the stock that is most affected by the high volatility spillover especially when 
the Covid-19 pandemic started. PAPIL is affected by up to 46% of the GEFVD created by the shocks in other 
stocks. The highest volatility transmitter of this period is KATMERLER. While the extreme volatility in exchange 
rates in December 2022 made ASELSAN and KATMERLER shock receivers, its effect is more visible in PAPIL. 

The Net Pairwise Directional Connectedness (NPDC) offers information about the bilateral relationship between 
𝑗𝑗𝑗𝑗 and 𝑖𝑖𝑖𝑖 via subtracting the impact variable 𝑗𝑗𝑗𝑗 has on variable 𝑖𝑖𝑖𝑖 by the influence variable 𝑖𝑖𝑖𝑖 has on variable 𝑗𝑗𝑗𝑗. If 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡 >  0 (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡  <  0), it means that the variable 𝑗𝑗𝑗𝑗 dominates (is dominated by) the variable 𝑖𝑖𝑖𝑖. Figure 4 
presents NPDC measures of spillovers. Although the NPDC plots do not clearly reveal which stock is more 
dominant, we see that OTOKAR has been dominant against PAPİL since the beginning of 2021. We understand 
that KATMERLER is dominant against PAPİL until the beginning of 2021. ASELSAN, on the other hand, appears 
to be dominant against PAPİL after the third quarter of 2020. 
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The Total Connectedness Index (TCI) shows the 
average impact of a shock to one financial asset 
on other assets in the network. A relatively high 
TCI index value indicates that the spillover of 
a shock in a variable will be significant. In this 
case, the interconnectedness of the market in-
creases the risk. The relatively low TCI value 
indicates that most variables in the network are 
independent. Thus, it means that the shock that 
will occur in one of the variables will have a weak 
effect on any adjustment movement in the other 
variables. Hence, it will result in lower market 
risk. Table 3 presents the average connectedness 
measures. The rows of the 4x4 (blue) matrix in 
Table 3 contain the FROM connectedness and 
the columns contain the TO connectedness val-
ues. The difference between To and FROM gives 
the NET connectedness values that   are avail-
able at the end of Table 3. The main diagonal of 
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TCI is 34.35%. So, we can interpret that the in-
terconnectedness in the network causes 34.35% 
of the total forecast error variance on average. 
Figure 2 illustrates the dynamic connectedness 
throughout the whole period. Thus, certain peri-

ods that affect adherence among volatilities over 
time can be identified. For example, the highest 
connectedness occurs in the first quarter of 2020, 
when the Covid-19 pandemic was declared by 
Worl Health Organization.

TCI reaches its highest value of 47.18% on 2020-
02-05 and becomes 40.83% at the time of the 
first Covid-19 case in Turkey. Interestingly, in 
June 2021, the TCI value starts to rise again and 
reaches 42.45% on 2021-06-25. This is due to the 
emergence of the delta variant, which is more 
contagious despite the availability of a vaccine 
against the Covid-19 virus. It will not cause an 
increase in the TCI value of October 2020, the 
period when the Nagorno-Karabakh War ended 
with the victory of Azerbaijan.

Net Total Directional Connectedness (NET) is 
calculated by subtracting the effect of variable 
𝑗 on others from the effect of others on j shows 
whether the variable is a net shock transmitter 
or receiver. 

NETjt = TOjt − FROMjt                                          (12)     

Total Connectedness Index (TCI) 

TCIt = k−1 ∑ TOjt
k
j=1 ≡ k−1 ∑ FROMjt

k
j=1                (13) 

Net Pairwise Directional Connectedness (NPDC) 

NPDCij,t = ϕ�ij,t
g (H) − ϕ�ji,t

g (H)                               (14) 

 

3.1. Empirical Findings of TVP-VAR Connectedness 
We follow the studies by Koop and Korobilis (2014), Korobilis and Yilmaz (2018), and Antonakakis et al (2020) 
to figure out the forgetting factors and prior distribution. We set TVP-VAR forgetting factor as 0.99 and the 
EWMA forgetting factor as 0.99. Also, we assume Minnesota Prior for TVP-VAR model.  

The Total Connectedness Index (TCI) shows the average impact of a shock to one financial asset on other assets 
in the network. A relatively high TCI index value indicates that the spillover of a shock in a variable will be 
significant. In this case, the interconnectedness of the market increases the risk. The relatively low TCI value 
indicates that most variables in the network are independent. Thus, it means that the shock that will occur in one 
of the variables will have a weak effect on any adjustment movement in the other variables. Hence, it will result 
in lower market risk. Table 3 presents the average connectedness measures. The rows of the 4x4 (blue) matrix in 
Table 3 contain the FROM connectedness and the columns contain the TO connectedness values. The difference 
between To and FROM gives the NET connectedness values that are available at the end of Table 3. The main 
diagonal of the matrix consists of the variance shares of the variables themselves. The off-diagonal elements reflect 
the interaction between financial assets. First, we sign that there is a relatively medium connectedness between 
volatilities. We find that TCI is 34.35%. So, we can interpret that the interconnectedness in the network causes 
34.35% of the total forecast error variance on average. Figure 2 illustrates the dynamic connectedness throughout 
the whole period. Thus, certain periods that affect adherence among volatilities over time can be identified. For 
example, the highest connectedness occurs in the first quarter of 2020, when the Covid-19 pandemic was declared 
by Worl Health Organization. 

TCI reaches its highest value of 47.18% on 2020-02-05 and becomes 40.83% at the time of the first Covid-19 case 
in Turkey. Interestingly, in June 2021, the TCI value starts to rise again and reaches 42.45% on 2021-06-25. This 
is due to the emergence of the delta variant, which is more contagious despite the availability of a vaccine against 
the Covid-19 virus. It will not cause an increase in the TCI value of October 2020, the period when the Nagorno-
Karabakh War ended with the victory of Azerbaijan. 

Net Total Directional Connectedness (NET) is calculated by subtracting the effect of variable 𝑗𝑗𝑗𝑗 on others from the 
effect of others on j shows whether the variable is a net shock transmitter or receiver. If 𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 >  0 (𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 <  0), 
the variable 𝑗𝑗𝑗𝑗 is a net transmitter of shocks (𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) – and therefore drives the network (𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦). Figure 3 
presents the NET of the system. The positive values of the shaded area show a net-transmitting role of the index 
and negative values show the period when the index is a net receiver of shocks from others. PAPIL is a risk receiver 
throughout the entire period. It is the stock that is most affected by the high volatility spillover especially when 
the Covid-19 pandemic started. PAPIL is affected by up to 46% of the GEFVD created by the shocks in other 
stocks. The highest volatility transmitter of this period is KATMERLER. While the extreme volatility in exchange 
rates in December 2022 made ASELSAN and KATMERLER shock receivers, its effect is more visible in PAPIL. 

The Net Pairwise Directional Connectedness (NPDC) offers information about the bilateral relationship between 
𝑗𝑗𝑗𝑗 and 𝑖𝑖𝑖𝑖 via subtracting the impact variable 𝑗𝑗𝑗𝑗 has on variable 𝑖𝑖𝑖𝑖 by the influence variable 𝑖𝑖𝑖𝑖 has on variable 𝑗𝑗𝑗𝑗. If 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡 >  0 (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡  <  0), it means that the variable 𝑗𝑗𝑗𝑗 dominates (is dominated by) the variable 𝑖𝑖𝑖𝑖. Figure 4 
presents NPDC measures of spillovers. Although the NPDC plots do not clearly reveal which stock is more 
dominant, we see that OTOKAR has been dominant against PAPİL since the beginning of 2021. We understand 
that KATMERLER is dominant against PAPİL until the beginning of 2021. ASELSAN, on the other hand, appears 
to be dominant against PAPİL after the third quarter of 2020. 

4. CONCLUSION 

, the variable 
𝑗 is a net transmitter of shocks (𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟) – and 
therefore drives the network (𝑑𝑟𝑖𝑣𝑒𝑛 𝑏𝑦). 

Figure 3 presents the NET of the system. The pos-
itive values of the shaded area show a net-trans-
mitting role of the index and negative values 
show the period when the index is a net receiver 
of shocks from others. 
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Notes: cTCI is Corrected TCI. Results are based on a TVP-VAR (2) model and a 10-step-ahead GFEVD. 
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PAPIL is a risk receiver throughout the entire 
period. It is the stock that is most affected by 
the high volatility spillover especially when the 
Covid-19 pandemic started. PAPIL is affected by 
up to 46% of the GEFVD created by the shocks 
in other stocks. The highest volatility transmit-
ter of this period is KATMERLER. While the ex-
treme volatility in exchange rates in December 
2022 made ASELSAN and KATMERLER shock 
receivers, its effect is more visible in PAPIL.

The Net Pairwise Directional Connectedness 
(NPDC) offers information about the bilater-
al relationship between 𝑗 and 𝑖 via subtract-
ing the impact variable 𝑗 has on variable 𝑖 by 
the influence variable 𝑖 has on variable 𝑗. If  
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Total Connectedness Index (TCI) 

TCIt = k−1 ∑ TOjt
k
j=1 ≡ k−1 ∑ FROMjt

k
j=1                (13) 

Net Pairwise Directional Connectedness (NPDC) 

NPDCij,t = ϕ�ij,t
g (H) − ϕ�ji,t

g (H)                               (14) 

 

3.1. Empirical Findings of TVP-VAR Connectedness 
We follow the studies by Koop and Korobilis (2014), Korobilis and Yilmaz (2018), and Antonakakis et al (2020) 
to figure out the forgetting factors and prior distribution. We set TVP-VAR forgetting factor as 0.99 and the 
EWMA forgetting factor as 0.99. Also, we assume Minnesota Prior for TVP-VAR model.  

The Total Connectedness Index (TCI) shows the average impact of a shock to one financial asset on other assets 
in the network. A relatively high TCI index value indicates that the spillover of a shock in a variable will be 
significant. In this case, the interconnectedness of the market increases the risk. The relatively low TCI value 
indicates that most variables in the network are independent. Thus, it means that the shock that will occur in one 
of the variables will have a weak effect on any adjustment movement in the other variables. Hence, it will result 
in lower market risk. Table 3 presents the average connectedness measures. The rows of the 4x4 (blue) matrix in 
Table 3 contain the FROM connectedness and the columns contain the TO connectedness values. The difference 
between To and FROM gives the NET connectedness values that are available at the end of Table 3. The main 
diagonal of the matrix consists of the variance shares of the variables themselves. The off-diagonal elements reflect 
the interaction between financial assets. First, we sign that there is a relatively medium connectedness between 
volatilities. We find that TCI is 34.35%. So, we can interpret that the interconnectedness in the network causes 
34.35% of the total forecast error variance on average. Figure 2 illustrates the dynamic connectedness throughout 
the whole period. Thus, certain periods that affect adherence among volatilities over time can be identified. For 
example, the highest connectedness occurs in the first quarter of 2020, when the Covid-19 pandemic was declared 
by Worl Health Organization. 

TCI reaches its highest value of 47.18% on 2020-02-05 and becomes 40.83% at the time of the first Covid-19 case 
in Turkey. Interestingly, in June 2021, the TCI value starts to rise again and reaches 42.45% on 2021-06-25. This 
is due to the emergence of the delta variant, which is more contagious despite the availability of a vaccine against 
the Covid-19 virus. It will not cause an increase in the TCI value of October 2020, the period when the Nagorno-
Karabakh War ended with the victory of Azerbaijan. 

Net Total Directional Connectedness (NET) is calculated by subtracting the effect of variable 𝑗𝑗𝑗𝑗 on others from the 
effect of others on j shows whether the variable is a net shock transmitter or receiver. If 𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 >  0 (𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡 <  0), 
the variable 𝑗𝑗𝑗𝑗 is a net transmitter of shocks (𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟𝑟𝑟) – and therefore drives the network (𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑦𝑦𝑦𝑦). Figure 3 
presents the NET of the system. The positive values of the shaded area show a net-transmitting role of the index 
and negative values show the period when the index is a net receiver of shocks from others. PAPIL is a risk receiver 
throughout the entire period. It is the stock that is most affected by the high volatility spillover especially when 
the Covid-19 pandemic started. PAPIL is affected by up to 46% of the GEFVD created by the shocks in other 
stocks. The highest volatility transmitter of this period is KATMERLER. While the extreme volatility in exchange 
rates in December 2022 made ASELSAN and KATMERLER shock receivers, its effect is more visible in PAPIL. 

The Net Pairwise Directional Connectedness (NPDC) offers information about the bilateral relationship between 
𝑗𝑗𝑗𝑗 and 𝑖𝑖𝑖𝑖 via subtracting the impact variable 𝑗𝑗𝑗𝑗 has on variable 𝑖𝑖𝑖𝑖 by the influence variable 𝑖𝑖𝑖𝑖 has on variable 𝑗𝑗𝑗𝑗. If 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡 >  0 (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡  <  0), it means that the variable 𝑗𝑗𝑗𝑗 dominates (is dominated by) the variable 𝑖𝑖𝑖𝑖. Figure 4 
presents NPDC measures of spillovers. Although the NPDC plots do not clearly reveal which stock is more 
dominant, we see that OTOKAR has been dominant against PAPİL since the beginning of 2021. We understand 
that KATMERLER is dominant against PAPİL until the beginning of 2021. ASELSAN, on the other hand, appears 
to be dominant against PAPİL after the third quarter of 2020. 

4. CONCLUSION 

 it means that the 
variable 𝑗 dominates (is dominated by) the vari-
able 𝑖. Figure 4 presents NPDC measures of spill-
overs. Although the NPDC plots do not clearly 
reveal which stock is more dominant, we see 
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that OTOKAR has been dominant against PAPİL 
since the beginning of 2021. We understand that 
KATMERLER is dominant against PAPİL until 
the beginning of 2021. ASELSAN, on the other 
hand, appears to be dominant against PAPİL af-
ter the third quarter of 2020.

4. CONCLUSION
This study demonstrates the use of range-based 
volatilities, also known as OHLC-based, in the 
analysis of connectivity. For this purpose, we 
first introduced the volatility estimators Parkin-
son, Garman and Klass (GK), Rogers and Satch-
ell (RS-), Yang and Zhang (YZ), and modified 
Garman and Klass by Yang and Zhang (GKYZ). 
As an example, we calculated the range-based 
volatility of the stock prices of four defense in-
dustry companies quoted on Borsa Istanbul. We 
compared the forecast performance of the vol-
atilities according to the HRMSE statistics. The 
best-performing volatility series were included 
in the connectedness analysis. Instead of the 
Cholesky decomposition VAR and generalized 
VAR approaches used by Diebold-Yilmaz (2009, 
0212,2014), we applied the TVP-VAR-based con-
nectedness approach developed by Antonakakis 
et al (2020). We can say that the most important 
advantage of the TVP-VAR approach is that it is 
unnecessary to specify a certain rolling-window 
size and data loss does not occur. In conclusion, 
our findings show that Rogers-Satchell for ASEL-
SAN, KATMERLER, and PAPIL, and Parkinson 
volatility estimator for OTOKAR have the small-
est error, respectively. Moreover, the empirical 
findings of TVP-VAR connectedness show that 
the average forecast error variance of the net-
work is 34.35%. The reason for using an HRMSE 
metric in our comparison between volatility esti-
mators is that the other error metrics do not give 
accurate results during the volatility cluster pe-
riods. One can apply various metrics by adding 
Root Mean Square Error, Mean Absolute Error, 
and Heteroskedastic Mean Absolute Error to 
compare the out-of-sample forecasting perfor-
mance of the volatility models. One can extend 
the analysis to utilize the frequency connected-
ness and quartile VAR connectedness methods.

REFERENCES

ANTONAKAKIS, N., & GABAUER, D. (2017). Re-
fined measures of dynamic connectedness based on 
TVP-VAR. MPRA Paper No. 78282.

ANTONAKAKIS, N., CHATZIANTONIOU, I., & 
GABAUER, D. (2020). Refined Measures of Dynam-
ic Connectedness based on Time-Varying Parameter 
Vector Autoregressions. Journal of Risk and Financial 
Management, 13(4), 84. MDPI AG. Retrieved from 
http://dx.doi.org/10.3390/jrfm13040084

ARNERIĆ, J., MATKOVIĆ, M., & SORIĆ, P. (2019). 
Comparison of range-based volatility estimators 
against integrated volatility in European emerging 
markets. Finance Research Letters, 28, 118-124.

BALI, T. G., & WEINBAUM, D. (2005). A comparative 
study of alternative extreme-value volatility estima-
tors. Journal of Futures Markets: Futures, Options, and 
Other Derivative Products, 25(9), 873-892.

BAYRACI, S., & UNAL, G. (2014). Stochastic inter-
est rate volatility modeling with a continuous-time 
GARCH(1, 1) model. Journal of Computational and 
Applied Mathematics, 259, 464–473. doi:10.1016/j.
cam.2013.10.017

BOLLEN, B. (2014). What should the value of lamb-
da be in the exponentially weighted moving aver-
age volatility model? Applied Economics, 47(8), 853–
860. doi:10.1080/00036846.2014.98285

CHOU, R. Y. (2005). Forecasting financial volatilities 
with extreme values: the conditional autoregressive 
range (CARR) model. Journal of Money, Credit and 
Banking, Vol. 37, 561-582.

DIEBOLD, F.X., & YILMAZ, K. (2009). Measuring Fi-
nancial Asset Return and Volatility Spillovers, with 
Application to Global Equity Markets. Economic Jour-
nal, 119, 158{171.

DIEBOLD, F.X., & YILMAZ, K. (2012). Better to Give 
than to Receive: Predictive Measurement of Volatility 
Spillovers. International Journal of Forecasting, 28, 57-66.

DIEBOLD, F.X., & YILMAZ, K. (2014). On the Net-
work Topology of Variance Decompositions: Measur-
ing the Connectedness of Financial Firms. Journal of 
Econometrics. 182, 119-134.

DIEBOLD, F.X., & YILMAZ, K. (2015). Financial and 
Macroeconomic Connectedness: A Network Approach to 
Measurement and Monitoring. Oxford University Press.

DIEBOLD, F.X., & YILMAZ, K. (2016). Trans-Atlantic 
Equity Volatility Connectedness: U.S. and European 
Financial Institutions, 2004-2014. Journal of Financial 

http://dx.doi.org/10.3390/jrfm13040084


157

Journal of Life Economics, Volume/Cilt: 9, Issue/Sayı: 3, Year/Yıl:2022

Econometrics, 14, 81-127.

GARMAN, M. B., & KLASS, M. J. (1980). On the es-
timation of security price volatilities from historical 
data. Journal of Business, 67-78.

JIANG, I. M., HUNG, J. C., & WANG, C. S. (2014). 
Volatility forecasts: Do volatility estimators and 
evaluation methods matter?. Journal of Futures Mar-
kets, 34(11), 1077-1094.

LI, H., & HONG, Y. (2011). Financial volatility fore-
casting with range-based autoregressive volatility 
model. Finance Research Letters, 8(2), 69-76.

KOROBILIS, D., & YILMAZ, K. (2018). Measuring Dy-
namic Connectedness with Large Bayesian VAR Mod-
els. Koc University-TUSIAD Economic Research Forum, 
Working Paper No. 1802, January.

KOOP, G., & KOROBILIS, D. (2013). Large Time-Vary-
ing Parameter VARs. Journal of Econometrics. 177: 185–
98. 

KOOP, G., & KOROBILIS, D. (2014). A New Index 
of Financial Conditions. European Economic Review. 
71:101–116.

PARKINSON, M. (1980). The extreme value method 
for estimating the variance of the rate of return. Journal 
of business, 61-65.

POON, S.-H., & GRANGER, C. W. J. (2003). Fore-
casting Volatility in Financial Markets: A Re-
view. Journal of Economic Literature, 41(2), 478–
539. doi:10.1257/002205103765762743

POON, S.-H., & GRANGER, C. (2005). Practical Is-
sues in Forecasting Volatility. Financial Analysts Journal, 
61(1), 45–56. doi:10.2469/faj.v61.n1.2683 

RAJU, K., & RANGASWAMY, S. (2017). Forecasting 
volatility in the Indian equity market using return and 
range-based models. Applied Economics, 49(49), 5027-
5039.

ROGERS, L. C. G., & SATCHELL, S. E. (1991). Estimat-
ing variance from high, low and closing prices. The 
Annals of Applied Probability, 504-512.

RYAN, A.J. & ULRICH, M.J. (2020). quantmod:  Quan-
titative Financial Modelling Framework. R package 
version 0.4.18. https://CRAN.R-project.org/pack-
age=quantmod

TODOROVA, N., & HUSMANN, S. (2012). A com-
parative study of range-based stock return volatility 
estimators for the German market. Journal of Futures 
Markets, 32(6), 560-586.

ULRICH, J. (2018). Package TTR: Technical trading 
Rules. CRAN Repository. http://cran. r-project. org/web/
packages/TTR/TTR. pdf.

YANG, D., & ZHANG, Q. (2000). Drift-independent 
volatility estimation based on high, low, open, and 
close prices. The Journal of Business, 73(3), 477-492.

YAROVAYA, L., BRZESZCZYŃSKI, J., & LAU, C. K. 
M. (2016). Volatility spillovers across stock index fu-
tures in Asian markets: Evidence from range volatility 
estimators. Finance Research Letters, 17, 158-166.


