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Abstract 

In this study, Kraenkel-Manna-Merle (KMM) system is discussed. Sine-Gordon expansion method (SGEM), which is one of 
the solution methods of nonlinear evolution equations (NLEEs), has been applied to this system. Thus,  by applying this 
method for the first time, some dark soliton, bright soliton, and dark-bright soliton solutions of the KMM system have been 
obtained. In addition, by giving specific values to the achieved solutions, 2D and 3D graphics of the solutions were plotted 
by way of the Wolfram Mathematica 12 program. 
Keywords: Kraenkel-Manna-Merle System, mathematica, SGEM 

KRAENKEL-MANNA-MERLE SİSTEMİNİN SGEM YOLUYLA İNCELENMESİ 

Özet 

Bu çalışmada, Kraenkel-Manna-Merle sistemi ele alınmıştır. Doğrusal olmayan evrim denklemlerinin çözüm 
yöntemlerinden biri olan sinüs-Gordon açılım yöntemi bu sisteme uygulanmıştır. Böylece ilk kez bu yöntem uygulanarak 
KMM sisteminin bazı dark soliton, bright soliton ve dark-bright soliton çözümleri elde edilmiştir. Ayrıca elde edilen 
çözümlere belirli değerler verilerek Wolfram Mathematica 12 programı aracılığıyla çözümlerin 2 boyutlu ve 3 boyutlu 
grafikleri çizilmiştir.  
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1.  Introduction 

NLEEs have very important practices in many fields such 
as biology, chemistry, optic, physics, fluid dynamics, 
hydromagnetic waves, and many others. Recently, 
various methods have been developed and implemented 
in order to obtain NLEEs solutions, which have such 
important areas of use [1-11].  

In recent years, intensive information and data have 
emerged thanks to the rapid developments in computer 
and information technologies. The transportation, 
storage, and processing of the obtained big data have also 
been an important subject of study. Today, many 
researchers are working in the field of ferromagnetic 
materials due to the important areas of use in 
technologies such as storing and processing large-
capacity data [12-19].  

Solitons are a special type of solitary waves. Solitary 
waves in integrable equations are called solitons. 
Therefore, hyperbolic function solutions are soliton 
solutions if the equation is integrable. In addition, the 
obtained soliton solutions can be of different types, such 

as dark soliton, bright soliton and dark-bright soliton 
[20]. 

In a study by Kraenkel et al. in 2000, short-wave 
propagation in saturated ferromagnetic materials was 
investigated from Maxwell and Landau-Lifshitz-Gilbert 
equations, and they have obtained the system of 
equations given below [21],  
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                              (1) 

From the notations here, P  shows dimensionless 

magnetic induction and K   represent magnetization 
density. m  and    are constants and exemplify 

dimensionless saturation magnetization and Gilbert-

damping parameter respectively,   is divergence for 

vector field. Nguepjouo et al. introduced a combination of 
coordinate transformations and expansion series of the 
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magnetization density in recent years, and thus changed 
the (1) system to the following form [22], 

                          
0,

0,

xt x x

xt x

u uv su

v uu

− + =

+ =
                                 (2) 

where ( , )u u x t=  is magnetization and ( , )v v x t=  is 

external magnetic fields related to the ferrite. x   

represents the displacement and t  represents the time. 

Coefficient s  denotes the damping effect [23-28].  

Various studies have been carried out by researchers 
recently to get solutions of the KMM system. For example 
Younas et al. discussed extended sinh-Gordon equation 

expansion method and the  
2
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-expansion function 

method for KMM system [23]. Li and Ma applied 

generalized 
'G

G

 
 
 

-expansion method and truncated 

Painleve method to KMM system [24,25]. Raza et al. used 
the new auxiliary equation method and semi inverse 
technique for KMM system [26]. Ur-Rehman et al.  
applied new extended direct algebraic method to KMM 
system [27]. Si and Li constructed the one-soliton and 
two-soliton for KMM system by the bilinear method [28].  

In this study, we will use SGEM, which is one of the widely 
used methods to find the solutions of NLEEs [29-32]. 
SGEM has been grown based on traveling wave 
transformation and the sine-Gordon equation [33]. We 
perform SGEM to the system to obtain soliton solutions 
of the Kraenkel-Manna-Merle system. 

2.  Basic structure of SGEM 

We will give the general basic of SGEM. For this, we first 
consider the sine-Gordon equation 

                                  
2 sin( ),xx ttv v m v− =                           (3) 

where m  is a real constant and ( , )v v x t=  is a function. 

Performing the wave transformation 

( , ) ( ), ( )v x t V x kt  = = −  to Eq. (3), we have 

following nonlinear ordinary differential equation 
(ODE), 

                             
( )

2
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is obtained. Integrating Eq. (4) and setting the 
integration constant to zero 
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Subsituting ( )
2

V
w  =  and 
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2
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−
 in Eq. 

(5), we get: 

                                    ' sin( ).w b w=                                      (6) 

If we take 1b = , we have: 

                                       ' sin( ).w w=                                      (7) 

From the Eq. (7), we get: 
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To find solution of the nonlinear partial differential 
equation given below; 

                         ( , , , , , , ,...),x t xx tt xt xxxF v v v v v v v              (10) 

we handle the equation given below, 
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Considering the Eqs. (8) and (9), we can write the Eq. 
(11) as follows: 

 1

0

1
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n

i

i i

i

V w w B w A w A−

=
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                                                                                                    (12) 

Here one can specify the value of n  in Eq. (12) by means 

of balance principle, replace Eq. (12) into Eq. (10), and 
comparison the terms, one can get a system of equations. 
By solving this obtained system of equations, one can 
obtain results in travelling wave solutions of the Eq. (10). 

3.  Application of SGEM to KMM 

Considering the zero dumping effect ( )0s = , we apply 

the following transformation to Eq. (2) 

                                       

( , ) ( ), ( , ) ( ), ( ).u x t u v x t v x ct   = = = −            (13) 

We obtain the following system. 
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From Eq. (14) we have the following equation, 
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If the integration with respect to   is taken in Eq. (15) 

and by taking the integration constant as zero, we get the 
following equation, 

                                        

2

' .
2

u
v

c



= +                                 (16) 

If Eq. (16) is written in system (14), we find the following 
ODE, 

                            
3 2 22 2 '' 0.c u u c u + + =                  (17) 

Balancing the terms ''u  and 
3u  gives 1N = . Using the 

value of 1N =  in Eq. (12), we get: 

                  1 1 0( ) sin( ) cos( ) ,u w B w A w A= + +          (18) 

              
2
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By placing Eq. (18), (19) and (20) into Eq. (17), we 
generate trigonometric equations. We obtain an equation 
system by performing some mathematical operations in 
these trigonometric equations. By solving the obtained 
system of equations with the help of Wolfram 
Mathematica Release 12, the following situations are 
obtained: 

Case1: 

               
0 1 1
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If we consider the coefficients of (21) in Eq. (11), we get 
the following solutions: 
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Fig. 1: 3D plot of real and imaginary values of solution 

(22) for 2, 3c = =  values with

10 10, 5 5x t−   −    range and 2D plot of solution 

for 2t =  with this values. 

 

 
Fig. 2: 3D plot of real and imaginary values of solution 

(23) for 1, 2c = =  values with 
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25 25, 4 4x t−   −    range and 2D plot of solution 

for 3t =  with this values. 

Case2: 

                      
0 1 10, 0, 2 , .A A B

c


 = = = = −            (24) 

If we consider the coefficients of (21) in Eq. (11), we get 
the following solutions: 
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                                                                                               (26) 

 

 
Fig. 3: 3D plot of real values of solution (25) for 

1, 3c = =  values with 35 35, 2 2x t−   −    range 

and 2D plot of solution for 1t =  with this values. 

 

 

 
Fig. 4: 3D plot of real values of solution (26) for 

1.5, 0.5c = =  values with 20 20, 5 5x t−   −    

range and 2D plot of solution for 2t =  with this values. 

 

Case3: 

                      
0 1 10, , 0, .
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If we consider the coefficients of (27) in Eq. (11), we get 
the following solutions: 

                       
3( , ) tanh .

2

t
u x t i x


 

 
= − 

 
                  (28) 

               
2

2 3

3( , ) tanh tanh .
2 3 2

t i t
v x t i x x

  
  

   
= − − −   

   
                                                                                                         

                                                                                                    (29) 
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Fig. 5: 3D plot of imaginary values of solution (28) for 

1.2, 3 = =  values with 25 25, 4 4x t−   −    range 

and 2D plot of solution for 0.5t =  with this values. 

 

 
Fig. 6: 3D plot of imaginary values solution (29) for 

0.8, 2 = =  values with 30 30, 3 3x t−   −    range 

and 2D plot of solution for 2t =  with this values. 

4.  Result and discussions 

In this study, a mathematical approach that has not been 
applied to the KMM system before was used. Thus, some 
soliton solutions were obtained by using the sine-Gordon 
expansion method for the KMM system. Looking at the 

obtained solutions, 1( , )u x t  and 1( , )v x t  dark-bright 

soliton, 2 ( , )u x t  and 2 ( , )v x t bright soliton, and 3( , )u x t  

and 3( , )v x t dark soliton solutions were obtained. In 

addition, 2D and 3D graphics of the obtained solutions 
have been drawn. Graphics of dark-bright soliton 
solutions are plotted for both imaginary and real 
situations. Real graphics of bright soliton solutions and 
imaginary graphics of dark soliton solutions have been 
drawn. The SGEM contains trigonometric functions that 
will be used to obtain new solutions of the equation 
considered in equation 12. Thanks to the properties of 
these trigonometric functions, various new solutions can 
be obtained. This is one of the main features of SGEM. For 
this reason, it gives many coefficients such as complex, 
exponential, and trigonometric to the model under 
consideration. Thus, SGEM is an easy-to-use method 
applied to obtain various solutions of nonlinear partial 
differential equations. 

5.  Conclusion 

In this study, we had some soliton solutions for the KMM 
system by applying SGEM. Thus, we obtained new soliton 
solutions of the KMM system. We drew the 2D and 3D 
graphical representations of these solitons with the help 
of a Wolfram Mathematica 12. As far as we know, SGEM 
has not been applied to the KMM system before. The 
solutions we obtained have not been presented in 
previous studies and are new. In the light of this results, 
we consider the SGEM as an effective method in NLEEs 
calculation. 
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