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ABSTRACT 
A feedback control strategy was used to regulate an irrigation canal to minimize the magnitude and duration of the 
mismatch between the supply and the demand of water. To derive the control system, the Saint-Venant equations 
of open-channel flow were linearized using Taylor series and a finite-difference approximation of the original 
nonlinear, partial differential equations around the initial steady state or equilibrium conditions. Using optimal 
control theory, a stochastic (Linear Quadratic Gaussian (LQG)) controller was designed to generate optimal gate 
opening and to estimate state vectors.  Since state vectors (flow rate and depth) were estimated in the operation of 
the irrigation canal, LQG controller did not provide appropriate performance like other deterministic approaches 
(e.g. Linear Quadratic Regulator (LQR)) did. Therefore, LQG feedback controller for the irrigation canal was 
tuned by using a loop shaping technique to recover LQR performance capability before committing to 
implementation. To analyze the performance of LQG controlled irrigation canal, frequency response techniques 
(singular values (SV) and Bode diagram) were employed. Frequency response methods were found to be great 
techniques to analyze the performance of feedback controlled irrigation canals and to demonstrate the 
improvement in the performance of the control system when a loop shaping technique was employed.  
Keywords: feedback control; irrigation canals; singular values; Bode diagram. 

 
Geri Beslemeli Sistemle Kontrol Edilen Sulama Kanallarının Frekans Cevabı Yöntemleri ile Performans 

Analizi 
 
ÖZET 
Sulama suyu talep ve arz miktarları arasındaki dengesizliği zaman ve miktar açısından minimize etmek için 
geribeslemeli bir kontrol sistemi sulama kanalı regülasyonunda kullanılmıştır. Kontrol sisteminin oluşturulması 
için sulama kanallarındaki akımı ifade eden Saint-Venant eşitlikleri Taylor serileri ve sonlu-farklar tekniği 
kullanılarak doğrusal eşitlik haline getirilmiştir. Bu doğrusallaştırma denge halindeki akım şartları referans kabul 
edilerek yapılmış ve kapaktaki açılıp kapanmanın akım miktarına ve derinliğine olan etkisini anlatan bir çift adi 
türevsel denklem geliştirilmi ştir. Optimum kapak açıklığını hesaplamak ve durum vektörlerini tahmin etmek için 
optimal control teorisi kullanılarak stokastik bir kontrol mekanizması (dogrusal karesel Gaussian) oluşturulmuştur. 
Stokastik kontrol yaklaşımları, deterministik yaklaşımlar (doğrusal karesel regülatör) kadar beklenen performansı 
gösteremeyen mekanizmalardır. Sulama kanallarında kullanılan stokastik kontrol tekniğinin gerekli performansı 
gösterebilmesi için çevrim kazancı methodu uygulanarak performans ayarlaması yapılabilir. Bu tekniğin 
uygulanması sonucu stokastik kontrol mekanizmasında oluşan pefromans değişimleri frekans cevabı 
yöntemlerinden olan Bode diagramı ve tekil değer yöntemleri ile analiz edilmiştir. Geri beslemeli sulama 
kanallarının performans analizlerinde frekans cevabı yöntemlerinin sulama kanallarının işletilmesi konusunda 
önemli bilgiler verdiği ve stokastik kontrol mekanizmasının performansı ile ilgili yararlı veriler sağladığı 
görülmüştür.  
Anahtar Kelimeler: : geribeslemeli kontrol, sulama kanalları, tekil değerler, Bode diyagramı. 

 
 
INTRODUCTION  
 

The mounting pressure on available water 
supplies is resulting in a need to increase productivity 
of water for irrigation. With increasing demands for 
water for domestic use, industry and the environment 
supplies of water for irrigation can be expected to fall, 
hence the need for “more from less” in irrigated 

agriculture. Better control and distribution of irrigation 
water within a canal network results in increased 
agricultural performance by providing water in a more 
adequate, timely and reliable manner to suit the needs 
and expectation of the farming community. The goal 
of canal operations is to match the actual flow in the 
canals to the required flow for that day while 
maintaining water surface elevations within allowable 
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limits. Canal control systems must provide timely 
deliveries to users with little or no wastage of water 
and power under predicted and unknown demands. 
Feedback or closed-loop control strategies can be used 
to regulate irrigation canals to minimize the magnitude 
and duration of the mismatch between the supply and 
the demand of water. In recent years, growing 
awareness of the importance of delivery flexibility and 
distribution equity has focused attention on improving 
the performance of controlled canal networks. In the 
past, the concepts of standard full-state control theory 
have been applied for driving feedback control 
algorithms for real-time irrigation canals (Balogun et 
al. 1985; Reddy, 1995; Liu et al. 1995; Malaterre, 
1997; Reddy and Jacquot, 1999). However, previous 
papers studied performance of control systems by 
evaluating deviations in flow depth and changes in 
gate opening in the canal. They did not consider the 
frequency response methods for the performance 
analysis of the controlled irrigation systems. In order 
to analyze the performance of controlled irrigation 
canals, singular values and Bode diagram frequency 
respond methods can be used. These techniques has 
been successfully used in control engineering for 
decades, and have proved to be indispensable when it 
comes to providing insight into the benefits, 
limitations and problems of feedback control. One 
important advantage of a frequency response analysis 
of a control system is that it provides insight into the 
benefits and trade-offs of feedback control (Skogestad 
and Postlethwaite 1996). The objectives of this study 

are to present the frequency response methods in the 
performance analysis of feedback controlled irrigation 
canals and to observe improvement in the performance 
of the controller with applying a loop shaping 
technique.  

 
MATHEMATICAL MODELING OF OPEN-
CHANNEL FLOW 
 

The Saint-Venant equations, presented below, 
are used to model flow in a canal: 
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in which Q = flow rate m3/sec; A = wetted area, m2; ql 

= lateral flow, m2/sec; y = water depth, m; t = time, 
sec; x = longitudinal direction of channel, m; g = 
gravitational acceleration, m2/sec; S0 = canal bottom 
slope (m/m); and Sf  = the friction slope, m/m. 
Applying a finite-difference approximation and the 
Taylor series expansions to Equations (1) and (2), a set 
of linear, ordinary differential equations is obtained for 
the canal with control gates and turnouts (Durdu 
2003):  
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where  δQ+

j and  δz+
j  = discharge and water-level 

increments from time level t+1 at node j; δQj and  δzj  
= discharge and water-level increments from time 
level t at node j; and A11, A’21,…. A12, A22 are the 
coefficients of the continuity and momentum 
equations, respectively, computed with known values 
at time level t. The state of system equation at any 
sampling interval k can be written, in a compact form 
as follows: 
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where A = l x l system feedback matrix, B = l x m 
control distribution matrix, C = p x l disturbance 
matrix, δx(k)  = l x 1 state vector, δu(k) = m x 1 control 
vector, ∆δq = variation in demands (or disturbances) at 
the turnouts, m2/s, l = number of dependent (state) 
variables in the system, m = number of controls (gates) 
in the canal, p = number of outlets in the canal, and k = 
time increment, sec. The elements of the matrices A, B, 
and C depend upon the initial condition. The 
dimensions of the control distribution matrix, B, 
depend on the number of state variables and the 
number of gates in the canal (Durdu 2004). The 
dimensions of the disturbance matrix, C, depend on 
the number of disturbances acting on the canal system 
and the number of dependent state variables. The Eq. 
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(5) can be written in a state-variable form along with 
the output equations as follows (Reddy 1999):  
                                         

)()()()1( kqkukxkx δδδδ Ψ+Γ+Φ=+     (6) 
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where Φ = (AL)
-1 *AR ,  Γ = (AL)

-1*B, and Ψ  = (AL)
-

1*C, δy(k) = r x 1 vector of output (measured 
variables), H = r x l output matrix, and r = number of 
outputs.  
 
LINEAR QUADRATIC GAUSSIAN 
CONTROLLER (LQG) 
 

Linear Quadratic Gaussian control theory 
integrates the states estimation and the controller 
design into a single body of knowledge. A LQG 
controller consists of an optimal state feedback (LQR) 
and an optimal state estimator (Kalman filter). LQR 
control problem as an optimization problem in which 
the cost function, J, to be minimized is given as 
follows (Reddy, 1999): 
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subject to the constraint that: 
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where K

∞ = number of sampling intervals considered 
to derive the steady state controller; Qxlxl = state cost 
weighting matrix; and Rmxm = control cost weighting 

matrix. Equations (8) and (9) constitute a constrained-
minimization problem that can be solved using the 
method of Lagrange multipliers. In the optimal steady-
state case, the solution for change in gate opening, 
δu(k), is of the same form as (Reddy 1999): 
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Since it is expensive to measure all the state variables 
(flow rates and flow depths) in a canal system, the 
number of measurements per pool must be kept to an 
absolute minimum. Usually the flow depths at the 
upstream and downstream ends of each pool are 
measured (Reddy 1999). The relationship between the 
state variables and the measured (or output) variables 
is: 
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in which δy(k) = Nmo x 1 vector of output variables; H 
= Nmo x l output matrix; η(k) = Nmo x 1 vector of 
random measurement noises; and Nmo = number of 
measured outputs. If the initial conditions and the 
inputs (control inputs and the disturbances) are known 
without error, the system dynamic equation (2) can be 
used to estimate the state variables that are not 
measured. Since part of the disturbances are random 
and usually are not measured, the canal parameters are 
not known very accurately, the estimated values of the 
state variables would diverge from the actual values. 
This divergence can be minimized by utilizing the 
difference between measured output and the estimated 
output (error signal), and by constantly correcting the 
system model with the error signal. Therefore, the 
modified state equations are given as (Reddy 1995): 
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in which x̂δ (k) = estimated values of the state 
variables; and L = observer gain matrix. 
After calculation of optimal regulator and Kalman 
filter separately, both optimal regulator and Kalman 
filter are combined into an optimal LQG regulator, 
which generates the input vector, δu(k), based upon the 
estimated state-vector, x̂δ (k), rather then the actual 
state-vector, δx(k) and the measured output vector, 
δy(k).  
 

FREQUENCY RESPONSE METHODS FOR 
PERFORMANCE ANALYSIS  
 

A LQG controlled system does not have 
guaranteed stability margins. When a full-state 
feedback controller (LQR) is implemented via an 
observer (Kalman) based measurement feedback, the 
impressive properties of LQR are generally lacking. 
Since the closed-loop eigenvalues of the compensated 
(LQG) system are the eigenvalues of the regulator and 
the eigenvalues of the Kalman filter, if we wish to 
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achieve the same performance in the compensated 
system as the full-state feedback system (LQR), 
ideally we must select a Kalman filter such that the 
Kalman filter eigenvalues do not dominate the closed 
loop system, i.e. they should not be closer to the 
imaginary axis then the regulator eigenvalues. Since 
full-state feedback has great performance utilities, 
LQR controller is the target loop to reach the full-state 
feedback performance. A Feedback controlled system 
consists of a feedback controller (LQG) with transfer 

matrix, H(z), a canal system with transfer matrix, G(z), 
with desired input Yd(z) with desired output, Y(z)  and 
disturbances, δq(k) (Figure 1).  The performance of a 
feedback control system is related to the return ratio 
matrix G(z)H(z) [i.e. H(zI – Φ)-1 Г]  for full state 
feedback and return ratio matrix G(z)H(z) [i.e. H(zI - 
Φ)-1 Г(-K(zI – Φ + ГK + LH)-1 K)]  for LQG. The 
return ratio matrix of LQG is represented by M, the 
norm matrix as follows (Durdu 2003): 

 
                           Norm Matrix (M) = H(zI - Φ)-1 Г(-K(zI – Φ + ГK + LH)-1K)             (13) 

 
To analyze and improve the performance of a 
feedback controlled irrigation canal, singular values 
(SV) and Bode diagram techniques are used in this 
study.  
 
Singular Values (SV) 
The singular values help us analyze the properties of 
a multivariable feedback system in a manner quite 
similar to a single-input, single-output feedback 
system (Tewari 2002) . For analyzing performance of 
control systems, we can treat the largest and smallest 
singular values of a return difference (or return ratio) 
matrix as providing the upper and lower bounds on 
the scalar return difference (or return ratio) of an 
equivalent single-loop system. For example if system 
transfer matrix is G(z) and feedback controller matrix 
H(z), then to maximize performance of the system, 
we should minimize the singular values of the 
sensitivity matrix, [I+G(z)H(z)] -1 which implies 
minimizing the largest singular value, σmax[{I + 

G(z)H(z)}-1] , or maximizing the singular values of the 
return difference matrix at the output, i.e. maximizing 
σmin[I + G(z)H(z)]. The singular values of the return 
difference matrix at the output in the frequency 
domain σ[I + G(iω)H(iω)] , can be used to estimate 
the gain and phase margins of a multivariable system 
(Tewari 2002). The way in which multivariable gain 
and phase margins are defined with respect to the 
singular values is as follows: take the smallest 
singular value, σmin, of all the singular values of the 
return difference matrix at the output, and find a real 
constant, a, such that σmin [I + G(iω)] ≥ a for all 
frequencies, ω, in the frequency range of interest. 
Then the gain and phase margins can be defined as 
follows (Tewari 2002) : 
 
Gain Margin = 1/(1± a)                                 (14) 
Phase Margin = ± 2sin-1(a/2)                        (15) 
 

 

 
Figure 1. A Feedback control system scheme. 
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 The adjustment of the singular values of 
return ratio matrices to achieve desired closed-loop 
performance is called loop shaping. This term derived 
from single-loop systems where scalar return ratios of 
a loop are to be adjusted. For compensated systems 
based on an observer (i.e. the Kalman filter), generally 
there is a loss of performance, when compared to full-
state feedback control systems. To recover the 
performance properties associated with full-state 
feedback, the Kalman filter must be designed such that 
the sensitivity of the system’s input to process and 
measurement error is minimized. This requires that the 
smallest singular value of the return ratio at plant’s 
input, σmin[H(z)G(z)], should be maximized. 
Theoretically, this maximum value of σmin[H(z)G(z)] 
should be equal to that of the return ratio at the plant’s 
input with full-state feedback (Tewari 2002).  
 
Bode Diagram 
Bode diagram contains two plots in rectangular 
coordinates, in which the magnitude is expressed in 
decibels (dB), and the phase angle in degrees, both 

plotted as functions of the logarithm of frequency in 
rad/unit time (normally, rad s-1). Bode diagrams are 
normally plotted on semi-logarithmic graph paper, so 
that the dB values plotted on the linear vertical axis 
have the effect of producing a logarithmic scale, while 
the frequency values can be plotted directly on the 
horizontal axis, allowing the logarithmic axis to do the 
work of conversion. The frequency response 
magnitude ratio is expressed in decibels using (Tewari 
2002) : 
 
  M(ω)dB = 20 log10 M(ω)                                      (16) 

 
where M(ω)dB is the log modulus in decibels and 
M(ω)is the magnitude ratio. Typical Bode plots are 
shown in Figure 2. For convenience, the two types of 
diagram are shown together. For a control system 
having desired input Yd(z) and output Y(z), the transfer 
function model is defined as the z transformed output 
Y(z) divided by input Yd(z), such that: 
 
Y(z)/Yd (z) = G(z)H(z)/[1+G(z)H(z)]   = F(z)         (17) 

 

 
Figure 2. Singular values of LQG controlled open-channel. 
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Consider the Bode form of a transfer function F(z) for which the frequency response is (Tewari 2002): 
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where KB is Bode gain, m and n are the numbers of 
terms in the numerator and denominator, respectively, 
zi and pi are the non-zero finite zeros and poles 
respectively of F(z), r is system type. A constant KB 
provides a magnitude contribution of 20 log10 |KB| and 
a phase angle of 00 if KB is positive, or -1800 if KB is 
negative. If KB =1, then 20 log10 |KB| is zero dB; if KB 
=2, then the dB magnitude is 6 and if KB = 0.5, the dB 
magnitude is -6. In all three cases the phase angle 
contribution is 00. For KB = -2 or -0.5, the dB 
magnitude would be 6 or -6, respectively, but the 
phase contribution would be -1800.  
 
RESULTS AND ANALYSIS  
 

To demonstrate the effectiveness of 
frequency response methods in the performance 
analysis of feedback controlled irrigation canals, an 
LQG regulation problem for a discrete-time multi-pool 
irrigation canal had been simulated. The data used was 
as follows: length of canal reach = 52500 m, number 
of nodes = 49, number of sub-reaches used = 6, ∆x = 
1500 m, channel slope = 0.0002, side slope = 1.0, 
bottom width = 5 m, disturbance along the simulation 
= 2.5 m3/s, discharge required at the end of the canal = 
5 m3/s, target depth at downstream end = 1.5 m, gate 
width = 5 m, and gate discharge coefficient = 0.8. First 
this data was used to calculate the steady state values, 
which in turn were used to compute the initial gate 
openings and the elements of the Φ, Г, H matrices 
using sampling interval of 30 sec. The values of the 
initial gate openings for gate1, gate2, gate3, gate4, 
gate5, gate 6 and gate 7 were 1.1338 m, 1.368 m, 
1.1686 m, 0.9782 m, 0.8583 m, 0.6372 m and 0.7055 
m, respectively. At first part of LQG controller, a 
Linear Quadratic controller was designed to regulate 
the six pool canal system using a constant-level 
control approach. The system response was simulated 
using the controller in the feedback loop. In the 
derivation of the feedback gain matrix K, the control 
cost weighting matrix, R, of dimensions 12, was set 
equal to 100, whereas the state cost weighting matrix, 
Qx, was set equal to an identity matrix of dimensions 
85. The matrix dimension 85 comes from the system 
dimension. Since the irrigation canal is divided into 49 
nodes and each node has a set of two equations, in 
other words the dimension of the system should have 

been 98. But the system has 7 gates and 6 turnouts; 
therefore, the system matrix dimensions were 85. The 
cost weighting matrix and the control cost matrix must 
be symmetric and positive definite (i.e. all eigenvalues 
of R and Qx must be positive real numbers). A priori, 
we do not quite know what values of Qx and R will 
produce the desired effect. In the absence of a well-
defined procedure for selecting the elements of these 
matrices, these values were selected based upon trial 
and error. At first, we began by selecting both Qx and 
R as identity matrices. By doing so, we were 
specifying that all state variables and control inputs 
were equally important in the objective function, i.e. it 
was equally important to bring all the deviations in the 
state variables (water surface elevations and flow rate) 
and the deviations in the control inputs to zero while 
minimizing their overshoots. Note that the existence of 
a unique, positive definite solution to the algebraic 
Riccati equation (Eq. 19) is guaranteed if Qx and R are 
positive semi-definite and positive definite, 
respectively, and the system is controllable. After 
defining Qx and R matrices, the optimal feedback gain 
matrix, K, was calculated. A Kalman filter technique 
was used to estimate the values for the state variables 
in the system. Kalman filter for the system used the 
control input δu(k), generated by the LQR, measured 
water depths δy(k) for each pool, and the disturbances 
δq(k) and η(k) with known power spectral densities, ρ. 
In the design of the Kalman filter, in lieu of actual 
field data on withdrawal rates from the turnouts, the 
random disturbances were assumed to have some 
prespecified levels of variance. The variances of the 
disturbances must be estimated from historical records 
on water withdrawals from the canal outlets. The 
variances of the disturbances were: w1 = 12, w1 = 1.32, 
w1 = 0.72,  w1 = 1.42 and w1 = 1.32 . A value of 0.0005 
was used for the variance of the measurement spectral 
density matrix (RC), and it was an identity matrix. 
Using the given initial values, the system response was 
simulated for 250 time increments or 7500 seconds. 
The analysis was started by evaluating the system 
stability. All the eigenvalues of the feedback matrix 
were positive and had values less than one. In the 
derivation of the control matrix elements, Г, it was 
assumed that both the upstream and downstream gates 
of each reach could be manipulated to control the 
system dynamics. The downstream-end gate (gate 7) 
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position was frozen at the original steady state value, 
and only the upstream-end gate (gate 1) of the given 
reach was controlled to maintain the system at the 
equilibrium condition. The effect of variations in the 
opening of the downstream gate must be taken into 
account through real-time feedback of the actual 
depths immediately upstream and downstream of the 
downstream gate (node N). The frequency range, ω, 
was chosen between 10-6 and 102.  
 For performance analysis of the feedback 
controlled irrigation canal, the frequency response 
methods were used to show the system’s response to 
the initial conditions at different frequency ranges, ω 
(bandwidth). Singular values (SV) and Bode plot 
diagrams were conducted for the system. LQR 
controlled system had a gain margin equal to infinity 
for each control input of the system. Since LQR 
controller had the best performance properties, the 
performance analysis of the LQG controller used the 
LQR performance properties as a target. As shown in 
Figure 3, for the sake of simplicity, the maximum 
singular values of the LQG and the LQR controller are 
not shown. Figure 3 illustrates that there are some 
differences between the minimum singular values of 
the LQG compensated system and the full-state 
feedback system. The y-axes of Figure 3 represent the 
magnitude of the singular values of the return ratio 
matrix in decibel and the x-axes of Figure 3 represent 
the frequency of the disturbances. For LQR controller, 
the return ratio, G(z)H(z), is equal to -K(zI-Φ)-1Г. 

When the LQG compensated controller was designed, 
the singular values of the return ratio, G(z)H(z), was 
targeted to approach the corresponding singular values 
of the LQR controller. To determine the stability of the 
LQG and the LQR controllers, it was monitored that if 
the singular values of the return ratio were close to 
zero. Since the LQR was the target loop function, the 
investigation concentrated on adjusting the LQG’s 
singular value curves as close as to the possible LQR’s 
singular value curves. It was obvious from Figure 3 
that the all 5 pools were stable at higher sinusoidal 
frequencies for LQR controller but when the frequency 
was 0.1 rad/sec, the oscillatory behavior in the canal 
occurred. At all 5 pools the singular values of LQG 
controller were far away from zero in comparison to 
LQR singular values. When the sinusoidal frequency, 
ω, increased, all pools started having higher 
oscillations. But as far as the performance of LQG was 
concerned, the system had less performance than LQR 
did. It was obvious that if LQR and Kalman filter were 
combined together, there will be a loss of performance 
for the new compensated controller (LQG) in 
comparison to the full-state feedback LQR controller. 
To recover the full-state feedback performance in 
LQG controller, Kalman filter spectral density matrix 
was readjusted by using a loop shaping technique. As 
demonstrated in Figure 3, the singular values of LQG 
controller were approaching the LQR singular values. 
In other words, LQG controller  
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Figure 3. Stability margins on Bode diagram. 
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performance was improved by using a loop shaping 
technique. Pool 1, 2, 3, and 4 had relatively good 
recovery of LQR performance. Singular values of 
LQG in pool 5 and 6 came closer to LQR’s singular 
values but not as much as the other pools did. Also 
oscillations of LQG’s singular values started at 0.1 
rad/sec. At lower sinusoidal frequencies LQG 
controller was stable.  

Bode plot is the other option to investigate 
the performance analysis of the feedback controller 
systems. Figure 4 illustrates gain and phase margin 
diagrams for all the irrigation canal pools. A 12-set of 
Bode diagram for each pool was obtained. The reason 
for that the system had 12 external inputs 
(disturbance), two for each pool (one at the beginning 
of the sampling interval and the other at the end of the 
sampling interval). From these graphs it was obvious 
that the LQG controller did not have a good 
performance like LQR did.  As shown in Figure 5, the 
gain margin for both LQG and   the LQR controller 
was high and the curves were far away from 0 dB. If 
the curves were close to or over the 0 dB, the system 
would be unstable and the gain margin would be 
small. Gain diagram illustrated that LQG and LQR 
controllers were both stable but the phase diagram did 
not allow one to make that same statement about the 
performance of the LQG controller. It was obvious 
that LQR curves in all pools had a cross over with   -
180 degrees around a disturbance frequency of 0.105 
rad/sec and it had a large frequency range (bandwidth) 
for stability. A comparison of the LQR and the LQG 
stability bandwidths reveals that LQR is stable at all 
disturbance frequencies whereas LQG has less 
frequency range for stability.  In Pool 1, the LQG 
curve did not have a phase crossover with -180 
degrees. In other words, LQG controller did not have a 
good performance in pool 1 but with applying loop 
shaping technique the curve in the phase diagram 
moved upward and it had a crossover with -180 
degrees at a frequency of 0.000407 rad/sec.  

Frequencies more than this value caused loss of 
performance in the pool 1.  LQG phase curve did not 
have a crossover in pool 2 but loop shaping moved 
LQG’s phase curve towards LQR’s curve and the 
phase curve had a crossover with -180 degrees at a 
frequency of 0.000667 rad/sec. In pool 3, both LQG 
and improved LQG phase curves had a crossover with 
-180 degrees at a frequency of the 0.000558 rad/sec. 
LQG controller did not present a good performance at 
low frequencies but applying loop shaping technique 
helped LQG phase curve move upward and improve 
its performance. In pool 4, both LQG and improved 
LQG phase curves had a crossover at a frequency of 
the 0.000656 rad/sec. At low frequencies LQG 
controller did not show a good performance but loop 
shaping improved LQG performance at low 
frequencies too.  If the frequency range of the 
disturbance was increased beyond 0.000656 rad/sec, 
there would be loss of stability in pool 4. Like in pool 
3 and 4, in pool5, LQG controller did not have a good 
performance at low frequencies. The crossover with -
180 degrees occurred at a frequency of 0.000646 
rad/sec. A frequency range more then this value 
caused loss of performance in the pool 5. LQG phase 
curve presents that pool 6 did not have a good 
performance along the simulation and there was no 
crossover with -180 degrees. With loop shaping 
technique, LQG controller’s phase curve moved 
towards LQR phase curve and had a crossover at a 
frequency of 0.00141 rad/sec. But there was a loss of 
performance at a low frequency bandwidth where the 
frequency range was between 2.19x10-10 and 5.17x10-
10.  It can be observed that phase diagrams of pool 1, 
pool 2 and pool 6 had significant differences between 
LQG and LQR phase curves. The reason for that in 
pool 1 and pool 2, there was an increase in the opening 
of the upstream gate and release more water to 
compensate for the demands at downstream end. In 
pool 6, the differences in phase curves were because of 
meeting target depth at downstream end.  
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Figure 4. Bode diagrams of LQG controlled open-channel 

 
Figure 5 illustrates the variations in flow 

depth in all pools for LQR, LQG and improved LQG. 
It was obvious that LQR controller had more 

variations in flow depth than LQG and improved 
LQG. Because of robustness and stability properties of 
the LQR, LQR variations curves must be chosen as 
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target loops. As mentioned above first and last pools 
had highest flow depth variations among the other 
pools. The decrease in the downstream depth of flow 
resulted in a sudden increase in gate opening (0.6 m) at 
the upstream end of the reach to release more water 
into the canal. However, because of the wave travel 
time, the depth of flow at the downstream end did not 
start to rise until 3000 s. With applying loop shaping 
technique flow depth variations curves in all pools 
moved towards LQR curves.  
 
CONCLUSIONS 
 

The purpose of this study has been show that 
Bode diagram and singular values methods can be 
applied in the performance analysis of feedback 
controlled open-channel with multiple gates and pools. 
To design a feedback control system, the basic 
nonlinear hydrodynamic partial equations for open-
channel flow were discertized and linearized about 
equilibrium conditions. The feedback control theory 
augmented with loop shaping is a very powerful 
design synthesis procedure to improve the 
performance of the system. To demonstrate their 
effectiveness, Bode diagram and singular values 
techniques were applied to a feedback controlled 
irrigation canal with 6 pools and 7 gates. At first 
Linear Quadratic Regulator (LQR) was applied to the 
canal system using a constant-level approach and the 
results were observed. It was assumed that all the state 
variables (flow rate and flow depth) were available in 

the designing of LQR. Therefore LQR control has 
good stability margins. Since it was expensive to 
measure all the flow depth and flow rates along the 
canal, a Kalman estimator was designed to estimate 
the state variables at unmeasured nodes. Combining 
LQR and Kalman estimator resulted in a LQG control 
system for the open-channel. However, for a LQG 
controlled system, there are no guaranteed stability 
margins. Therefore, Bode diagram and singular values 
techniques were applied to feedback controlled 
irrigation canal to analyze the performance of the 
system. The results from gain graphs of Bode diagram 
demonstrated that LQR curves at all pools was under 0 
dB. Also results from phase graphs showed that LQR 
curves had a crossover with -180 degrees at all pools. 
This implies that LQR curves had great performance 
in the operation of canal control. At first, phase curves 
of LQG controller demonstrated that LQG feedback 
controlled system did not have good performance but 
with applying loop shaping technique LQG’s 
performance reached to LQR’s performance in the 
control of the canal. Overall the results of this study 
show that Bode  
diagram and singular value methods are acceptable 
techniques in the performance analysis of feedback 
controlled irrigation canals. Also these methods have a 
great illustration capability to show the improvement 
in the performance of controlled canals via a loop 
shaping technique. 
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Figure 5. Variations in flow depth at each pool. 
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