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Abstract: The use of sensitive electrical gadgets in industries, buildings, smart cities, and homes has increased 

drastically in recent years. PQ events such as interruptions, surges, and sags have a high impact on these 

sensitive devices. The failure of these delicate devices in real-time applications, particularly smart applications, 

may result in significant damage. The supply quality decreases because of the failure of internal transmission 

system elements, unbalanced loads, and other outdoor issues such as weather. Several academics have proposed 

techniques to analyze these PQ disturbances, including wavelet packets, the S-transform, rough sets, and neural 

networks. In all the available algorithms, the classification procedure involves the extraction of a large set of 

features from the transformed outputs, training the classifier, and finally making a conclusion with the classifier. 

Because a large number of features are involved, the computational cost of all these methods increases. To 

reduce complexity and enhance classification efficiency, the proposed method focuses on extracting fewer low-

complexity wavelet features from signals. In this study, pattern recognition (PR) methods, such as the wide 

variety of K-nearest neighbors (KNN) and ensemble classifiers, are used to classify PQ events. The performance 

of the proposed ML approaches is evaluated at various training and testing rates. Subsequently, the performance 

of the proposed strategies was compared to that of the current methods to determine the dominance of the 

proposed approaches.  

 

Keywords: PQ disturbances, classification, KNN, Ensemble Classifiers, Wavelet features 

 
1. Introduction 

 

Recently, the use of delicate microelectronic appliances is rising. The presence of PQ disturbances 

can harm these gadgets easily. A PQ disturbance is defined as any variation in the power signals from 

their usual levels [1]. PQ disturbances are caused by rapid changes in the frequency and voltage of 

the clean sinusoidal waveforms [2]. Fault clearing, utility switching, and non-linear loads are the 

causes of these sudden changes. Such PQ fluctuations can trigger device failure, interrupting power 

transmission, and may cause failure of the entire grid network [3]. This subsection provides info on 

several existing methodologies and discusses the benefits and drawbacks of such approaches. 

Artificial Neural Networks (ANN), probabilistic neural network (PNN), and retrieved features by 

Discrete Wavelet Transform (DWT), Hilbert Transform (GT), and S-transform (ST) among others, 

are some of the existing methodologies. Ferhat Ucar [4] presented the W-ELM driven features 

extraction approach. further, ELM applied to classify the type of event. This approach yielded a 96% 

accurate categorization rate.  Biawal [5] presented a Discrete ST based extraction of features and 

extracted 6 different features, and APSO and fuzzy C-means algorithms are implemented for PQ 

classification. This approach yielded a 96% accurate recognition rate. S. Mishra et al. [6] suggested 

an ST based feature selection technique and employed a PNN classifier to categories the PQ 

disturbance. This approach yielded a 96% accurate categorization rate. 
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R. Bhavani and N. Rathina Prabha [7] presented feature extraction using Wavelet Packets and applied 

ANN for PQ noise classification. Among 200 actual events tested, this technique had a 95.25 percent 

successful classification rate. M. A. S. Masoum and colleagues [8] suggested a Wavelet Network 

Based Method for recognizing PQ events and the approach achieved a good recognition rate of 98.18 

percent. Recently several new ML and deep learning-based approaches are proposed for classification 

of PQ disturbances. Decision trees (DT) are proposed with cumulant features for classification of 10 

classes of PQ disturbances [9]. The performance of DT is superior but with course tree (CT) the max 

accuracy achieved is 71.64 %. Dawood Z et. al [10] proposed a PNN based architecture with artificial 

bee colony feature selection. The performance of the model used in [10] achieved accuracy of 64.65% 

to 99.98% at different iterations and features. However, the model is not achieved good accuracy at 

different iterations. Recently a new classification models are developed with ML and deep learning 

architectures such as SVM [11], Convolutional neural network (CNN) [12,13], DT [14], PNN [15], 

a CNN based hybrid DL approach [16], bidirectional GRU (Bi-GRU) [17] and adaptive chirp mode 

pursuit and grasshopper optimized SVM (ACMP + GOA + SVM) [18]. These approaches have 

superior classification than conventional approaches. However, most of the deep learning-based 

architectures suffered with the computational complexity and deep architectures for PQ classification. 

 

The majority of current models consider only small set of disturbances into account. They examined 

analysis at a constant training rate of 80%. Furthermore, if they had introduced more classifications, 

there would be a risk of a loss in accuracy. The purpose of the study is to create a system that can 

categorize the PQ disturbances with a smaller number of features. So as to avoid these constraints, a 

number of combinations were evaluated and classified using KNN and Ensemble Classifiers.  

 

The article is arranged as follows. The section 2 discusses WT decomposition and extraction of 

features. Section 3 describes the KNN and Ensemble Classifiers. Section 4 evaluates the effectiveness 

of KNN and Ensemble classifiers with various training rates. Finally, Section 5 presents the primary 

hypotheses of the research effort that have been derived through simulation. 

 

2. Proposed Framework 

 

Figure 1 represents the outline of the proposed PQ classifier. In first stage, different types of practical 

power quality event signals like Pure signal, Swell, Sag, Interruption, Impulsive transient, harmonics, 

flicker, Sag+harmonics, Swell+harmonics are collected using standard data bases. Signal Pre-

processing is used to enhance data quality by resampling, eliminating outliers, and filling gaps from 

signal sets.  

 

In feature extraction stage the data sets are applied to DWT (Meyer WT) to extract features from the 

signals. The extracted features are Mean energy, Shannon entropy, Max-percentage, and THD (total 

hormonic distortion). Further, the extracted features are fed to the ML classifiers for training. 

 

ML provides the ability to the machine to learn the things based on the data provided and then it 

classifies the type of event based on the experience that it has gained in training phase. In this paper, 

6 KNNs and 5 Ensemble classifiers are used as a PR classifier.  The extracted datasets are divided 

into two parts. One part is for training the model and the second part is for testing the model by 

considering training rate as splitting criteria i.e.., 90%, 80%, 70%, 60%, 50% [9]. 

 

To demonstrate the superiority of the classifier, its performance is also evaluated at training rates of 

50% and 60%. This analysis will show the dominance of the classifiers at lower training rates. In 

training phase, the model will try to draw patterns or insights from the data. In the testing phase, each 

model is evaluated at different testing rates like 10%, 20%, 30%, 40% and 50%. 
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Different performance metrics such as accuracy, Recall, Precision, Sensitivity, Specificity are 

evaluated to analyze the performance of the classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. PQ Classifier Framework. 

 

3. Methodology 

 

KNN and Ensemble classifiers are chosen as a PR classifier for classification of PQ events. The basic 

principles of the proposed classifiers are as follows. 

 

3.1. KNN Classifiers 

 

The KNN is a supervised classifier suits for both binary and multi-class classification. These models 

are non-parametric. KNN classifier maintains all available instances and recognizes the new cases 

based on a similarity measure such as distance functions to identify a PQ signal. The signal is assigned 

to a PQ class in a KNN classifier based on a majority neighbours. The value of K is determined by 

the size of the data collection and determines the performance of the classifier. KNNs are classified 

into Cosine, Cubic, Fine, Medium, Coarse, and Weighted KNNs based on their K value and distance 

functions. Table 1 shows the features of each KNN. The suggested KNN classifier's performance is 

evaluated using various K values such as 1, 10, and 100, as well as various distance types such as 

Euclidian, cosine, and cubic distances. Weighted KNN makes a decision by computing a weighting 

function based on the Euclidian value. 

 

By setting K=1, Fine KNN distinguishes between classes in minute detail. By K= 10 and 100, 

respectively, Medium KNN and Coarse KNN classifiers create fewer distinctions than Fine KNN. 

Cosine and Cubic KNN’s uses cosine and cubic distances instead of Euclidean distance.  

 

3.2. Ensemble Classifiers 

 

Because of the methodological diversity of the classifiers, the PQ prediction accuracy of distinct PR 

classifiers varies across data sets. The optimum working categorization technique for multiple 

datasets cannot be predicted. To address this issue, ensemble learners are built using a diverse range 

of classifiers that can vote on decision making. These models can provide maximum prediction 

accuracy by majority of votes. When identifying a new entity, an ensemble classifier consists of a 
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collection of independently trained models whose estimates are pooled. Boosting is the most often 

used ensemble strategy, and it works with the weighted training dataset. 

 

Table 1. KNN Classifiers 

 
Model K Distance Function Distance (d) 

Fine KNN 1 Euclidean √∑(𝑝𝑖 − 𝑞𝑖)
2

𝑛

𝑖=1

 

Medium KNN 10 Euclidean √∑(𝑝𝑖 − 𝑞𝑖)
2

𝑛

𝑖=1

 

Coarse KNN 100 Euclidean √∑(𝑝𝑖 − 𝑞𝑖)
2

𝑛

𝑖=1

 

Cosine KNN 10 Cosine 
�̅�. �̅�

|�⃗� ||�⃗� |
 

Cubic KNN 10 Cubic (∑|𝑝𝑖 − 𝑞𝑖|
3

𝑚

𝑖=1

)

1
3⁄

 

Weighted KNN 10 Distance Weighting 𝑤 = 1
𝑑2⁄  

 

 
 

Figure 2. Ensemble Classifier 

 

Boosting enhances the weights of poorly classified instances while lowering the weights of correctly 

predicted cases. As a result, instances that have been incorrectly predicted by past learners in the pool 

are picked more frequently than those that have been accurately classified. As an outcome, boosting 

helps in generating models for its ensemble that outperform the present ensemble performance. When 

the boosting process is finished, the ensemble classifier model is available for testing. The unseen 

testing data is applied to the ensemble classifier for PQ classification during the testing phase. Figure 

2 depicts the detailed method of employing an ensemble classifier. 
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Five verity of ensemble methods are built for PQ identification, including bagged trees, boosted trees, 

RusBoosted trees, subspace discriminant KNN and subspace KNN in conjunction with the features 

provided in section 2. Deep trees are used to build bagged and boosted trees, which are slower in 

speed. subspace discriminant KNN and Subspace KNN on the other hand, make use of nearest 

neighbours and discriminant analysis. Weak learners in RusBoosted trees will be enhanced depending 

on arbitrary under sampling. 

 

4. Results & Discussions 

 

For simulations, three different data sets of PQ disturbances are considered.  Dataset 1 consists of 1 

lakh signals each class consists of 10000 signals. Dataset 2 consists of 5000 signals/class and Dataset 

3 have 1000 signals/class. These data sets are considered as large, medium and small data sets in 

representations. Table 2 represents the parameters used in experiments. 

 

Table 2. Parameters 

 

Parameter Description 

PQ event 

 

Swell, Sag, Pure signal, Interruption, Oscillatory 

transient, harmonics, Impulsive transient, 

Sag+harmonics, Swell+harmonics, and flicker. 

Features 

 

Mean energy, Shannon entropy, Max-percentage, Total 

harmonic distortion 

Size of datasets Dataset1 (10000 Signals/class), Dataset2 (5000 

Signals/class), Dataset2 (1000 Signals/class) 

Training rate 90%,80%,70%,60%,50% 

Performance Measures Accuracy, Recall, Precision, F1 Score and error rate 

Classifiers KNN, Ensemble classifiers 

 

In order to know the performance of a classifier the following performance metrics are considered in 

this paper.  

 

Accuracy =  
TP+TN

TP+TN+FP+FN
        (1) 

 

Precision =  
TP

TP+FP
         (2) 

        

        Recall =  
TP

TP+FN
                (3) 

 

F1 Score =  
2∗ Precision ∗ Recall

Precision + Recall
       (4) 

 

Error rate =  100 − percentage of Accuracy        (5) 
 

 

awhere TP, TN are true positive and negative rates. FP and FN are false positive and negative rates. 

 

The confusion matrices of Fine KNN and Bagged trees at 90% training rate with dataset 1 is shown 

in Fig. 3 and 4 respectively and they achieved an accuracy of 98.4% and 98.5% respectively. 
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Figure 3. Confusion Matrix of Fine KNN at 90% training rate for Dataset1 

 

 
Figure 4. Confusion Matrix of Bagged Trees at 90% training rate for Dataset1 

 

 

Table 3. Performance for Large Dataset (Dataset 1) 

 

Model Classifier 
Training Rate % 

     90    80 70    60    50 

KNN 

Fine 98.4 97.5 97.7 97.6 97.6 

Medium 97.5 96.9 96.7 96.9 96.6 

Coarse  94.5 94 93.2 93.0 92.6 

Cosine 96.1 95.5 95.6 95.4 95.1 

Cubic 97.1 96.8 96.7 96.7 96.5 

Weighted 97.9 97.4 97.3 97.3 97.3 

       

Ensemble 

Boosted Tress 97.4 97 97 97.0 97.1 

Bagged Trees 98.5 98.2 98.4 98.3 98.2 

Subspace Discriminant 93.5 92.4 91.9 92.2 92.6 

Subspace KNN 98.1 97.4 97.9 97.6 97.5 

RUS Boosted Trees 96.7 96.7 96.1 96.3 96.5 
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Table 3 represents the performance of all models at various training and testing rates for large dataset. 

The highest accuracy of KNN Classifier is 98.4% for Fine KNN. The remaining KNN classifiers 

accuracy ranges from 92 to 97.9%. The highest accuracy of Ensemble Classifier is 98.5% for Bagged 

Tree. The remaining Ensembled classifiers accuracy ranges from 92 to 98.1%. 

Table 4 represents the performance of all models at various training and testing rates for medium 

dataset. The highest accuracy of KNN Classifier is 98% for Fine KNN. The remaining KNN 

classifiers accuracy ranges from 87.2 to 97.8%. The highest accuracy of Ensembled Classifier is 

98.1% for Bagged Tree. The remaining Ensembled classifiers accuracy ranges from 87.4% to 98%. 

 

Table 4. Performance for Medium Dataset (Dataset 2) 

 

 

Table 5. Performance for Small Dataset (Dataset 3) 

 

 
Table 5 represents the performance of all models at various training and testing rates for small data 

set. The highest accuracy of KNN Classifier is 98.4% for Fine KNN. The remaining KNN classifiers 

Model Classifier 
Training Rate % 

          50 60 70     80     90 

KNN 

Fine 95.4 98 97.6 97.7 97.8 

Medium 93.4 96.9 96 96 96 

Coarse  87.2 91.6 91.7 91.1 91 

Cosine 91.6 91.4 94.9 95.2 94.7 

Cubic 93 92.5 95.5 97.9 95.7 

Weighted 94.4 97.6 97 97.5 97.1 

       

Ensemble 

Boosted Tress 93.4 97.1 97 97.3 97.4 

Bagged Trees 97.2 98 98 98 98.1 

Subspace Discriminant 87.4 92.7 92.7 92.8 92.7 

Subspace KNN 97 97.5 97.1 97.5 97.8 

RUS Boosted Trees 92.4 96.3 96.1 96.4 96.3 

Model Classifier 
Training Rate % 

      50 60 70      80      90 

KNN 

Fine 93.5 95 97.7 98 98.4 

Medium 91 94 94.3 95 96 

Coarse  72 73 74 83 83.2 

Cosine 93.6 93.8 94 94.7 95 

Cubic 94.3 94.4 95 95.7 97 

Weighted 92 95.3 97 97.5 98 

       

Ensemble 

Boosted Tress 95.5 95.8 95.8 98.4 98.4 

Bagged Trees 95.7 95.9 96.4 97.8 98.5 

Subspace Discriminant 91 92.7 92.7 92.9 93.3 

Subspace KNN 92 95.5 96.3 97.5 97.8 

RUS Boosted Trees 94.8 95.3 95.3 96.4 96.5 
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accuracy ranges from 72% to 98%. The highest accuracy of Ensembled Classifier is 98.5% for 

Bagged Tree. The remaining Ensembled classifiers accuracy ranges from 91% to 98.4%. 

 

Fig. 5, 6 and 7 represents the performance comparison of different KNN classifiers for Dataset 1, 2, 

and 3 respectively. From these figures it is observed that Fine KNN, Weighted KNN are the superior 

classifiers among all KNNs for PQ classification.  

 
Figure 5. Performance comparision of KNN classifiers for Dataset 1 

 
Figure 6. Performance comparision of KNN classifiers for Dataset 2 

 

Table 6. Performance metrics of Fine KNN at 90% training rate (dataset 1) 

 

PQ Class 
Accuracy 

(%) 

Precision 

(%) 

Error 

Rate (%) 

Recall 

(%) 

F1 Score 

(%) 

Flicker 96.8 100 3.2 96.8 98.4 

harmonics 100 100 0 100 100 

impulsive transient 100 100 0 100 100 

interruption 100 100 0 100 100 

oscillatory transient 99.6 100 0.4 99.6 99.8 

pure sinusoidal 100 96.9 0 100 99.4 

sag 100 100 0 100 98.4 

sag harmonics 96 91.9 4 96 93.9 

swell 100 100 0 100 100 

swell harmonic 91 93 9 91 91.9 
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Figure 7. Performance comparision of KNN classifiers for Dataset 3 

 

The performance metrics of Fine KNN and Weighted KNN at 90% training rate are shown in Table 

6 and 7 respectively. Table 6 and 7 represents the performance metrics for each PQ class signals. 
 

Table 7. Performance metrics of Weighted KNN at 90% training rate (dataset 1) 

 
Fig. 8, 9 and 10 represents the performance comparison of different Ensemble classifiers for Dataset 

1, Dataset 2, and Dataset 3 respectively. From these figures it is observed that Boosted Trees and 

Bagged Trees are the superior classifiers among all Ensemble classifiers for PQ classification.  

 

The performance metrics of Boosted Trees and Bagged Trees at 90% training rate are shown in Table 

8 and 9 respectively. Table 8 and 9 represents the performance metrics for each PQ class signals. 

 

Table 10 represents the performance comparison of proposed classifiers with other existing 

classifiers. However, some of the works proposed CNN based deep learning architectures 

[12,13,16,17] the accuracy is improved but the computational complexity and the number of layers 

in the network are very high.  

 

PQ Class 
Accuracy 

(%) 

Precision 

(%) 

Error Rate 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Flicker 95 100 5 95 97.4 

harmonics 100 99 0 100 99.4 

impulsive transient 100 100 0 100 100 

interruption 100 100 0 100 100 

oscillatory transient 100 100 0 100 100 

pure sinusoidal 100 95 0 100 97.4 

sag 100 99 0 100 99.4 

sag harmonics 92 93 7 92 92.4 

swell 100 100 0 100 100 

swell harmonic 92 92 8 92 92 
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Figure 8. Performance comparision of Ensemble classifiers for Dataset 1 

 
 

Figure 9. Performance comparision of Ensemble classifiers for Dataset 2 

 
 

Figure 10. Performance comparision of Ensemble classifiers for Dataset 3 
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Table 8. Performance Analysis of Boosted Trees at 90% Training rate (dataset 1) 

 

Table 9. Performance Analysis of Bagged Trees at 90% Training rate (dataset 1) 

 

Table 10. Performance Comparison with other methods 
 

Ref No. Method No. of Features Accuracy (%) 

[4] W-ELM 4 98 

[5] ST, Fuzzy C-means & APSO 6 96.33 

[6] ST&PNN 7 96.10 

[7] WPT& ANN 7 95.25 

[8] DWT 8 98.18 

[9] DT - CT 3 71.64 

[10] PNN-adaptive AABC 9 64.65 - 99 

[11] SVM - 87.28* 

[12] CNN - 99.2* 

[13] CNN - 98.13* 

[14] ST + FCM + DT  - 96.85* 

[15] WT + PNN + ABC - 93.60* 

[16] hybrid deep learning (CNN) - 97.54* 

[17] Bi-GRU - 98* 

[18] ACMP + GOA + SVM - 97.13* 

Proposed 
KNN Classifier 

Ensembled Classifier 6 
98.4 

98.5 

*Performance at 20 dB SNR 

PQ Class 
Accuracy 

(%) 

Precision 

(%) 

Error Rate 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Flicker 93 100 7 93 96.3 

harmonics 100 100 0 100 100 

impulsive transient 100 100 0 100 100 

interruption 99 99 1 99 99 

oscillatory transient 99 99 1 99 99 

pure sinusoidal 100 94 0 100 96.9 

sag 99 98 1 99 98.4 

sag harmonics 95 88 5 95 91.3 

swell 100 100 0 100 100 

swell harmonic 89 94 11 89 91.4 

PQ Class 
Accuracy 

(%) 

Precision 

(%) 

Error Rate 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Flicker 99.6 100 0.4 99.6 99.8 

harmonics 100 100 0 100 100 

impulsive transient 100 100 0 100 100 

interruption 100 99 0 100 99.4 

oscillatory transient 100 100 0 100 100 

pure sinusoidal 100 99.6 0 100 99.8 

sag 100 100 0 100 100 

sag harmonics 93.2 92.1 6.8 93.2 92.6 

swell 100 100 0 100 100 

swell harmonic 92 93.1 8 92 92.6 
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Deep learning architectures required conversion of time domain signals in to time-frequency plots for 

the purpose of classification. From these simulations it is observed that the with six features, the 

proposed classifiers achieved better performance than the others with less computational complexity. 

 

5. Conclusion 

 

To categorize PQ disturbances, several KNN Classifiers and Ensembled Classifiers are developed in 

this paper. DWT has been used to extract six features from the data for training and testing. By taking 

into account the combination of disturbances, It is examined the performance of each model at various 

training rates ranging from 90% to 50% and testing rates ranging from 10% to 50%. As per the 

simulation findings, a maximum accuracy of 98.4 percent is obtained for Fine KNN and 98.5 percent 

for bagged trees, while the remaining classifiers accuracy varies from 94 percent to 98 percent for 

Dataset 1 and 100 percent for Dataset 3. It is also proved that the new approaches' accuracies 

outperform the existing approaches. Further, the accuracy can be improved by incorporating the 

feature selection algorithms along with ML classifiers and/or by applying deep learning architectures.  
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