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ABSTRACT 
 

In this study, trigonometric quintic B-spline collocation method is constructed for computing numerical solutions of the 

reaction-diffusion system (RDS). Schnakenberg, Gray-Scott and Brusselator models are special cases of reaction-diffusion 

systems considered as examples in this paper. Crank-Nicolson formulae is used for the time discretization of the generalized 

RDS and the nonlinear terms in time-discretized form of RDS are linearized using the Taylor expansion. The fully integration 

of the generalized system is carried out using the collocation method based on the trigonometric quintic B-splines. The method 

is tested on different problems to illustrate the accuracy. The error norms are calculated for the linear problem whereas the 

relative error is given for nonlinear problems. Both simple and easy B-spline algorithms are illustrated to give the solutions of 

RDS and also the graphical representation of the efficient solutions are presented for the nonlinear RDSs. Combination of the 

quintic B-splines and the collocation method is shown to present numerical solutions of the RDS successfully. With the 

presented method, it is possible to get approximate solutions as well as their derivatives up to an order of four on the problem 

domain. 
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1. INTRODUCTION 
 

In various disciplines, phenomena such as pattern formation, autocatalytic chemical reactions and 

population dynamics are modelled by the reaction-diffusion (RD) equation systems. These RDSs are 

mathematical models of chemical exchange reactions some of which of them also generates various 

patterns in biology, geology, physics and ecology. RDSs exhibit very rich dynamics behavior including 

periodic and quasi-periodic solutions. Theoretical studies have been developed to describe such dynamic 

behaviors. Most diffusion systems include the nonlinear reaction term making it difficult to solve 

analytically. Attempts have been made to look for the numerical solutions to reveal more dynamic 

behaviors of RDSs. Various numerical methods also have been used to find the numerical solutions of 

RDSs. 

In the past, implicit-explicit method was designed to obtain some type of patterns, as a solution of RD 

equations by Ruuth [1]. An adaptive moving mesh method and a moving grid finite element method 

were produced for the numerical solutions of RDS respectively [2, 3]. Operator splitting methods were 

set up to solve RDSs in the studies [4, 5]. Both a Crank-Nicholson method with a Multi-Grid solver 

(CN-MG) and the implicit integration factor method were presented in the study [6]. Galerkin finite 

element method was constructed for getting numerical solutions of the RDSs [7]. Additionally, the 

differential quadrature (DQ) method was constructed for calculating numerical solutions of RDSs by 

Mittal et all. [8] and Jiwari et all. [9]. Recently, Jiwari presented a kind of DQ method for capturing 

various patterns [10]. 

https://orcid.org/0000-0001-9193-7189
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The spline functions of various degrees are accompanied to construct numerical methods for solving 

differential equations of certain order. Since the resulting matrix obtained for application of the spline 

related numerical method to the differential equation is always diagonal, it can be solved easily. High 

order continuous differentiable approximate solutions can be produced by way of using high order spline 

functions for solutions of the differential equations. B-splines are defined as a basis of the spline 

space[11]. Polynomial B-splines are extensively used for finding numerical solutions of differential 

equations, function approximation and computer-aided design. The numerical procedure based on the 

B-spline collocation method has been increasingly applied for nonlinear evolution equations in various 

fields of science [12]-[16]. The numerical methods for solving types of ordinary differential equations 

with trigonometric quadratic and cubic B-spline were given by A. Nikolis [17, 18]. Numerical solutions 

of RD systems with polynomial B-spline collocation method (PQBCM) was presented in the work of 

Sahin [19]. Exponential cubic B-spline algorithm for the system of RD equations was presented by 

Ersoy O. and Dag I.[20] and trigonometric cubic B-spline algorithm was studied by Onarcan et all [21]. 

Specific RDS models were studied with finite element methods by the researchers [22, 23]. Very 

recently Hepson O.E. and others applied quartic trigonometric tension B-spline collocation method to 

get some numerical simulations of RDS [24]. 

In this study, we use the fifth degree trigonometric B-spline termed as trigonometric quintic B-spline 

(TQB) to establish a collocation method to find numerical solutions of a reaction-diffusion equation 

systems. In the literature review, it has been found that few studies have been done with trigonometric 

quintic of B-spline [25]-[28]. With the TQB based collocation method that we presented, it is possible 

to get approximate solutions as well as its derivatives up to an order of four at each point of the problem 

domain. Linear problem and nonlinear Brusselator [29], Schnakenberg [30] and Gray-Scott [31] models 

are studied with the proposed TQB collocation method. 

One dimensional time-dependent reaction-diffusion equation systems can be defined as follows:  

𝜕𝑈

𝜕𝑡
= 𝐷𝑢

𝜕2𝑈

𝜕𝑥2
+ 𝐹(𝑈, 𝑉) 

   

(1) 𝜕𝑉

𝜕𝑡
= 𝐷𝑣

𝜕2𝑉

𝜕𝑥2
+ 𝐺(𝑈, 𝑉) 

where 𝑈 = 𝑈(𝑥, 𝑡), 𝑉 = 𝑉(𝑥, 𝑡) and 𝛺 ⊂ 𝑅2 is the problem domain, 𝐷𝑢 is the diffusion coefficient of 𝑈 

and 𝐷𝑣 is the diffusion coefficients of 𝑉 also 𝐹 and 𝐺 indicates the growth and interaction functions that 

represent the reactions of the system. 𝐹 and 𝐺 are, in general, nonlinear functions. A general one 

dimensional RD equation system which includes all test problems mentioned in this paper, is expressed 

as:  

𝜕𝑈

𝜕𝑡
= 𝑎1

𝜕2𝑈

𝜕𝑥2
+ 𝑏1𝑈 + 𝑐1𝑉 + 𝑑1𝑈

2𝑉 + 𝑒1𝑈𝑉 +𝑚1𝑈𝑉
2 + 𝑛1 

 
 (2) 

𝜕𝑉

𝜕𝑡
= 𝑎2

𝜕2𝑉

𝜕𝑥2
+ 𝑏2𝑈 + 𝑐2𝑉 + 𝑑2𝑈

2𝑉 + 𝑒2𝑈𝑉 +𝑚2𝑈𝑉
2 + 𝑛2 

For computational purpose, solution space of the problems (−∞,∞) should be limited to interval 

(𝑥0, 𝑥𝑁). In this case, system (2)’s initial conditions are either the homogenous boundary conditions of 

Dirichlet  

𝑈(𝑥0, 𝑡) = 𝑈(𝑥𝑁 , 𝑡) = 0, 𝑉(𝑥0, 𝑡) = 𝑉(𝑥𝑁 , 𝑡) = 0, (3) 

 or homogeneous Neumann boundary conditions  
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𝑈𝑥(𝑥0, 𝑡) = 𝑈𝑥(𝑥𝑁, 𝑡) = 0, 𝑉𝑥(𝑥0, 𝑡) = 𝑉𝑥(𝑥𝑁, 𝑡) = 0 (4) 

 

The coefficients of the system (2) are depicted in Table 1, matching the coefficients of the test problems 

appropriately according to the characteristics of each test problem. 

 

Table  1:  Matching the coefficients of test problems with the model system 

Test Problem  𝒂𝟏 𝒂𝟐 𝒃𝟏 𝒃𝟐 𝒄𝟏 𝒄𝟐 𝒅𝟏 𝒅𝟐 𝒆𝟏 𝒆𝟐 𝒎𝟏 𝒎𝟐 𝒏𝟏 𝒏𝟐 

Linear  𝑑 𝑑 −𝑎 0 1 −𝑏 0 0 0 0 0 0 0 0 

Brusselator  𝜀1 𝜀2 −(𝐵 + 1) 𝐵 0 0 1 −1 0 0 0 0 𝐴 0 

Schnakenberg  1 𝑑 −𝜁 0 0 0 𝜁 −𝜁 0 0 0 0 𝜁𝑎 𝜁𝑏 

Gray-Scott  𝜀1 𝜀2 −𝑓 0 0 −𝑘 0 0 0 0 −1 1 𝑓 0 

 

2. TRIGONOMETRIC QUINTIC B-SPLINE METHOD 

 

Consider the solution domain of the differential problem [𝑎 = 𝑥0, 𝑏 = 𝑥𝑁] is partitioned into a mesh of 

uniform length ℎ = 𝑥𝑚+1 − 𝑥𝑚 by knots 𝑥𝑚, where 𝑚 = −2,… ,𝑁 + 2. On this partition, together with 

additional knots 𝑥𝑁−2, 𝑥𝑁−1, 𝑥𝑁+1, 𝑥𝑁+2 outside the problem domain, the trigonometric quintic B-spline 

𝑇𝑚
5(𝑥) basis functions at knots are given as: 

 

𝑇𝑚
5(𝑥) =

1

𝜃

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

𝜌5(𝑥𝑚−3),                                                                                                     𝑥 ∈ [𝑥𝑚−3, 𝑥𝑚−2]

−𝜌4(𝑥𝑚−3)𝜌(𝑥𝑚−1) − 𝜌
3(𝑥𝑚−3)𝜌(𝑥𝑚)𝜌(𝑥𝑚−3)                                 

−𝜌2(𝑥𝑚−3)𝜌(𝑥𝑚+1)𝜌
2(𝑥𝑚−2) − 𝜌(𝑥𝑚−3)𝜌(𝑥𝑚+2)𝜌

3(𝑥𝑚−2)           

−𝜌(𝑥𝑚+3)𝜌
4(𝑥𝑚−2),                                                                                    𝑥 ∈ [𝑥𝑚−2, 𝑥𝑚−1]

𝜌3(𝑥𝑚−3)𝜌
2(𝑥𝑚) + 𝜌

2(𝑥𝑚−3)𝜌(𝑥𝑚+1)𝜌(𝑥𝑚−2)𝜌(𝑥𝑚)                       

+𝜌2(𝑥𝑚−3)𝜌
2(𝑥𝑚+1)𝜌(𝑥𝑚−1) + 𝜌(𝑥𝑚+3)𝜌(𝑥𝑚+2)𝜌

2(𝑥𝑚−2)𝜌(𝑥𝑚)

+𝜌(𝑥𝑚−3)𝜌(𝑥𝑚+2)𝜌(𝑥𝑚−2)𝜌(𝑥𝑚+1)𝜌(𝑥𝑚−1) + 𝜌(𝑥𝑚−3)𝜌
2(𝑥𝑚+2)𝜌

2(𝑥𝑚−1)          

+𝜌(𝑥𝑚+3)𝜌
3(𝑥𝑚−2)𝜌(𝑥𝑚) + 𝜌(𝑥𝑚+3)𝜌

2(𝑥𝑚−2)𝜌(𝑥𝑚+1)𝜌(𝑥𝑚−1)       

+𝜌(𝑥𝑚+3)𝜌(𝑥𝑚−2)𝜌(𝑥𝑚+2)𝜌
2(𝑥𝑚−1) + 𝜌

2(𝑥𝑚+3)𝜌
3(𝑥𝑚−1),               𝑥 ∈ [𝑥𝑚−1, 𝑥𝑚]

−𝜌2(𝑥𝑚−3)𝜌
3(𝑥𝑚+1) − 𝜌(𝑥𝑚−3)𝜌(𝑥𝑚+2)𝜌(𝑥𝑚−2)𝜌

2(𝑥𝑚+1)                

−𝜌(𝑥𝑚−3)𝜌
2(𝑥𝑚+2)𝜌(𝑥𝑚−1)𝜌(𝑥𝑚+1) − 𝜌(𝑥𝑚−3)𝜌

3(𝑥𝑚+2)𝜌(𝑥𝑚)                             

−𝜌(𝑥𝑚+3)𝜌
2(𝑥𝑚−2)𝜌

2(𝑥𝑚) − 𝜌(𝑥𝑚+3)𝜌(𝑥𝑚−2)𝜌(𝑥𝑚+2)𝜌(𝑥𝑚−1)𝜌(𝑥𝑚+1)             

−𝜌(𝑥𝑚+3)𝜌(𝑥𝑚−2)𝜌
2(𝑥𝑚+2)𝜌(𝑥𝑚) − 𝜌

2(𝑥𝑚+3)𝜌
2(𝑥𝑚−3)                                           

−𝜌2(𝑥𝑚+3)𝜌(𝑥𝑚−1)𝜌(𝑥𝑚+2)𝜌(𝑥𝑚) − 𝜌
3(𝑥𝑚+3)𝜌

2(𝑥𝑚),                       𝑥 ∈ [𝑥𝑚, 𝑥𝑚+1]

𝜌(𝑥𝑚−3)𝜌
4(𝑥𝑚+2)                                                                                      

+𝜌(𝑥𝑚+3)𝜌(𝑥𝑚−2)𝜌
3(𝑥𝑚+2) + 𝜌

2(𝑥𝑚+3)𝜌(𝑥𝑚−1)𝜌
2(𝑥𝑚+2)          

+𝜌3(𝑥𝑚+3)𝜌(𝑥𝑚)𝜌(𝑥𝑚+2) + 𝜌
4(𝑥𝑚+3)𝜌(𝑥𝑚+1),                                   𝑥 ∈ [𝑥𝑚+1, 𝑥𝑚+2]

−𝜌5(𝑥𝑚+3),                                                                                                        𝑥 ∈ [𝑥𝑚+2, 𝑥𝑚+3]

0,                                                                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (5) 

  

where 𝜌(𝑥𝑚), 𝜃 and  𝑚 are; 
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 𝜌(𝑥𝑚) = 𝑠𝑖𝑛(
𝑥−𝑥𝑚

2
), 

 𝜃 = 𝑠𝑖𝑛(
5ℎ

2
)𝑠𝑖𝑛(2ℎ)𝑠𝑖𝑛(

3ℎ

2
)𝑠𝑖𝑛(ℎ)𝑠𝑖𝑛(

ℎ

2
), 

 𝑚 = 𝑂(1)𝑁. 

The 𝑇𝑚
5(𝑥)  functions and its principle derivatives vanish outside the region [𝑥𝑚−3, 𝑥𝑚+3] . The set of 

those B-splines 𝑇𝑚
5(𝑥) , 𝑚 = −2, . . . , 𝑁 + 2 are a basis for the trigonometric spline space. An 

approximate solution 𝑈𝑁(𝑥, 𝑡) and 𝑉𝑁(𝑥, 𝑡) to the unknown solution 𝑈(𝑥, 𝑡) and 𝑉(𝑥, 𝑡) can be assumed 

as the forms 

𝑈𝑁(𝑥, 𝑡) = ∑

𝑁+2

𝑖=−2

𝑇𝑖
5(𝑥)𝛿𝑖(𝑡), 𝑉𝑁(𝑥, 𝑡) = ∑

𝑁+2

𝑖=−2

𝑇𝑖
5(𝑥)𝛾𝑖(𝑡) (6) 

  

Where 𝛿𝑖 and 𝛾𝑖 are time dependent parameters to be determined using the collocation method on the 

points 𝑥𝑖, 𝑖 = 0, . . . , 𝑁 together with boundary and initial conditions. 𝑇𝑚
5(𝑥) trigonometric quintic B-

spline functions are zero outside the interval [𝑥𝑚−3, 𝑥𝑚+3] and 𝑇𝑚
5(𝑥) functions sequentially covers six 

elements in the interval [𝑥𝑚−3, 𝑥𝑚+3] so that, each [𝑥𝑚, 𝑥𝑚+1] finite element is covered by the six 

𝑇𝑚−2
5 , 𝑇𝑚−1

5 , 𝑇𝑚
5 , 𝑇𝑚+1

5 , 𝑇𝑚+2
5 , and 𝑇𝑚+3

5  trigonometric quintic B-spline. In this case the approach (6) can 

be written as ; 

 𝑈𝑁(𝑥, 𝑡) = ∑

𝑚+3

𝑖=𝑚−2

𝑇𝑖
5(𝑥)𝛿𝑖 = 𝑇𝑚−2

5 (𝑥)𝛿𝑚−2 + 𝑇𝑚−1
5 (𝑥)𝛿𝑚−1 + 𝑇𝑚

5(𝑥)𝛿𝑚 + 𝑇𝑚+1
5 (𝑥)𝛿𝑚+1

                                   +𝑇𝑚+2
5 (𝑥)𝛿𝑚+2 + 𝑇𝑚+3

5 (𝑥)𝛿𝑚+3 

   𝑉𝑁(𝑥, 𝑡) = ∑

𝑚+3

𝑖=𝑚−2

𝑇𝑖
5(𝑥)𝛾𝑖 = 𝑇𝑚−2

5 (𝑥)𝛾𝑚−2 + 𝑇𝑚−1
5 (𝑥)𝛾𝑚−1 + 𝑇𝑚

5(𝑥)𝛾𝑚 + 𝑇𝑚+1
5 (𝑥)𝛾𝑚+1

                                   +𝑇𝑚+2
5 (𝑥)𝛾𝑚+2 + 𝑇𝑚+3

5 (𝑥)𝛾𝑚+3

 

 

(7) 

In these numerical approaches, the approximate solutions and its first, second, third and fourth derivative 

at the knots can be written in terms of the time parameters using 𝑇𝑚
5(𝑥) and Eq.(6) as given in the 

following relationships: 

 𝑈𝑚 = 𝛼1𝛿𝑚−2 + 𝛼2𝛿𝑚−1 + 𝛼3𝛿𝑚 + 𝛼2𝛿𝑚+1 + 𝛼1𝛿𝑚+2 

(8) 

 𝑈𝑚
′ = −𝛼4𝛿𝑚−2 − 𝛼5𝛿𝑚−1 + 𝛼5𝛿𝑚+1 − 𝛼4𝛿𝑚+2 

 𝑈𝑚
′′ = 𝛼6𝛿𝑚−2 + 𝛼7𝛿𝑚−1 + 𝛼8𝛿𝑚 + 𝛼7𝛿𝑚+1 + 𝛼6𝛿𝑚+2 

 𝑈𝑚
′′′ = −𝛼9𝛿𝑚−2 + 𝛼10𝛿𝑚−1 − 𝛼10𝛿𝑚+1 − 𝛼9𝛿𝑚+2 

 𝑈𝑚
′′′′ = 𝛼11𝛿𝑚−2 + 𝛼12𝛿𝑚−1 + 𝛼13𝛿𝑚 + 𝛼12𝛿𝑚+1 + 𝛼11𝛿𝑚+2 

 𝑉𝑚 = 𝛼1𝛾𝑚−2 + 𝛼2𝛾𝑚−1 + 𝛼3𝛾𝑚 + 𝛼2𝛾𝑚+1 + 𝛼1𝛾𝑚+2 

 𝑉𝑚
′ = −𝛼4𝛾𝑚−2 − 𝛼5𝛾𝑚−1 + 𝛼5𝛾𝑚+1 + 𝛼4𝛾𝑚+2 

 𝑉𝑚
′′ = 𝛼6𝛾𝑚−2 + 𝛼7𝛾𝑚−1 + 𝛼8𝛾𝑚 + 𝛼7𝛾𝑚+1 + 𝛼6𝛾𝑚+2 

 𝑉𝑚
′′′ = −𝛼9𝛾𝑚−2 + 𝛼10𝛾𝑚−1 − 𝛼10𝛾𝑚+1 + 𝛼9𝛾𝑚+2 

 𝑉𝑚
′′′′ = 𝛼11𝛾𝑚−2 + 𝛼12𝛾𝑚−1 + 𝛼13𝛾𝑚 + 𝛼12𝛾𝑚+1 + 𝛼11𝛾𝑚+2 
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where the coefficients are: 

𝛼1 =
𝑠𝑖𝑛5(

ℎ
2)

𝜃

𝛼2 =
2𝑠𝑖𝑛5(

ℎ
2
)𝑐𝑜𝑠(

ℎ
2
)(16𝑐𝑜𝑠2(

ℎ
2
) − 3)

𝜃

𝛼3 =
2(1 + 48𝑐𝑜𝑠4(

ℎ
2
) − 16𝑐𝑜𝑠2(

ℎ
2
)𝑠𝑖𝑛5(

ℎ
2
))

𝜃

𝛼4 =

5
2
𝑠𝑖𝑛4(

ℎ
2
)𝑐𝑜𝑠(

ℎ
2
)

𝜃

𝛼5 =
5𝑠𝑖𝑛4(

ℎ
2
)𝑐𝑜𝑠2(

ℎ
2
)(8𝑐𝑜𝑠2(

ℎ
2
) − 3)

𝜃

𝛼6 =

5
4 𝑠𝑖𝑛

3(
ℎ
2)(5𝑐𝑜𝑠

2(
ℎ
2) − 1)

𝜃

𝛼7 =

5
2
𝑠𝑖𝑛3(

ℎ
2
)(𝑐𝑜𝑠(

ℎ
2
)(−15𝑐𝑜𝑠2(

ℎ
2
) + 3 + 16𝑐𝑜𝑠4(

ℎ
2
))

𝜃

𝛼8 =
−
5
2
𝑠𝑖𝑛3(

ℎ
2
)(16𝑐𝑜𝑠6(

ℎ
2
) − 5𝑐𝑜𝑠6(

ℎ
2
) + 1)

𝜃

𝛼9 =

5
8
𝑠𝑖𝑛2(

ℎ
2
)𝑐𝑜𝑠(

ℎ
2
)(25𝑐𝑜𝑠2(

ℎ
2
) − 13)

𝜃

𝛼10 =
−
5
4 𝑠𝑖𝑛

2(
ℎ
2)(𝑐𝑜𝑠

2(
ℎ
2)(8𝑐𝑜𝑠

4(
ℎ
2) − 35𝑐𝑜𝑠

2(
ℎ
2) + 15)

𝜃

𝛼11 =

5
16 (125𝑐𝑜𝑠

4(
ℎ
2) − 114𝑐𝑜𝑠

2(
ℎ
2) + 13)𝑠𝑖𝑛(

ℎ
2))

𝜃

𝛼12 =
−
5
8 𝑠𝑖𝑛(

ℎ
2)𝑐𝑜𝑠(

ℎ
2)(176𝑐𝑜𝑠

6(
ℎ
2) − 137𝑐𝑜𝑠

4(
ℎ
2) − 6𝑐𝑜𝑠

2(
ℎ
2) + 15)

𝜃

𝛼13 =

5
8 (92𝑐𝑜𝑠

6(
ℎ
2) − 117𝑐𝑜𝑠

4(
ℎ
2) + 62𝑐𝑜𝑠

2(
ℎ
2) − 13)(−1 + 4𝑐𝑜𝑠

2(
ℎ
2)𝑠𝑖𝑛(

ℎ
2))

𝜃

 (9) 

  

 The Crank–Nicholson formulas are used for time discretization.  

𝑈𝑡 =
𝑈𝑛+1 − 𝑈𝑛

𝛥𝑡
, 𝑈 =

𝑈𝑛+1 + 𝑈𝑛

2
,  𝑉𝑡 =

𝑉𝑛+1 − 𝑉𝑛

𝛥𝑡
, 𝑉 =

𝑉𝑛+1 + 𝑉𝑛

2
 (10) 

The unknown 𝑈 and 𝑉 functions and their derivatives are discretized to yield time integrated reaction-

diffusion system: 
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𝑈𝑛+1 − 𝑈𝑛

𝛥𝑡
− 𝑎1

𝑈𝑥𝑥
𝑛+1 + 𝑈𝑥𝑥

𝑛

2
− 𝑏1

𝑈𝑛+1 + 𝑈𝑛

2
− 𝑐1

𝑉𝑛+1 + 𝑉𝑛

2
− 𝑑1

(𝑈2𝑉)𝑛+1 + (𝑈2𝑉)𝑛

2

− 𝑒1
(𝑈𝑉)𝑛+1 + (𝑈𝑉)𝑛

2
−𝑚1

(𝑈𝑉2)𝑛+1 + (𝑈𝑉2)𝑛

2
− 𝑛1 = 0 

 
(11) 

𝑉𝑛+1 − 𝑉𝑛

𝛥𝑡
− 𝑎2

𝑉𝑥𝑥
𝑛+1 + 𝑉𝑥𝑥

𝑛

2
− 𝑏2

𝑈𝑛+1 + 𝑈𝑛

2
− 𝑐2

𝑉𝑛+1 + 𝑉𝑛

2
− 𝑑2

(𝑈2𝑉)𝑛+1 + (𝑈2𝑉)𝑛

2

− 𝑒2
(𝑈𝑉)𝑛+1 + (𝑈𝑉)𝑛

2
−𝑚2

(𝑈𝑉2)𝑛+1 + (𝑈𝑉2)𝑛

2
− 𝑛2 = 0 

 

where 𝑈𝑛+1 = 𝑈(𝑥, 𝑡)𝑛+1  and 𝑉𝑛+1 = 𝑉(𝑥, 𝑡)𝑛+1 are solutions of the equations at the (𝑛 + 1)th time 

level. Here 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡 and 𝛥𝑡 is the time step, superscripts denote the n th level 𝑡𝑛 = 𝑛𝛥𝑡. 

The nonlinear terms (𝑈2𝑉)𝑛+1, (𝑈𝑉2)𝑛+1and (𝑈𝑉)𝑛+1 in equation (11) are linearized by using the 

Rubin-Graves [33] forms:  

(𝑈2𝑉)𝑛+1 = 𝑈𝑛+1𝑈𝑛𝑉𝑛 +𝑈𝑛𝑈𝑛+1𝑉𝑛 + 𝑈𝑛𝑈𝑛𝑉𝑛+1 − 2𝑈𝑛𝑈𝑛𝑉𝑛 

(12) (𝑈𝑉2)𝑛+1 = 𝑈𝑛+1𝑉𝑛𝑉𝑛 + 𝑈𝑛𝑉𝑛+1𝑉𝑛 + 𝑈𝑛𝑉𝑛𝑉𝑛+1 − 2𝑈𝑛𝑉𝑛𝑉𝑛 

(𝑈𝑉)𝑛+1 = 𝑈𝑛+1𝑉𝑛 + 𝑈𝑛𝑉𝑛+1 − 𝑈𝑛𝑉𝑛 

  

Then we substitute (12) in (11) and the linearized model of the equation system (2) results in the 

following form: 

−
𝑎1
2
𝑈𝑥𝑥
𝑛+1 + 𝛽𝑚1𝑈

𝑛+1 + 𝛽𝑚2𝑉
𝑛+1 =

𝑎1
2
𝑈𝑥𝑥
𝑛 + 𝛽𝑚3𝑈

𝑛 + 𝛽𝑚4𝑉
𝑛 + 𝑛1 

 
(13) 

−
𝑎2
2
𝑉𝑥𝑥
𝑛+1 + 𝛽𝑚5𝑈

𝑛+1 + 𝛽𝑚6𝑉
𝑛+1 =

𝑎2
2
𝑉𝑥𝑥
𝑛 + 𝛽𝑚7𝑈

𝑛 + 𝛽𝑚8𝑉
𝑛 + 𝑛2 

 

 where  

𝛽𝑚1 =
1

𝛥𝑡
−
𝑏1
2
− 𝑑1𝑈

𝑛𝑉𝑛 −
𝑒1
2
𝑉𝑛 −

𝑚1

2
(𝑉𝑛)2 

(14) 

𝛽𝑚2 =
1

𝛥𝑡
−
𝑐1
2
−
𝑑1
2
(𝑈𝑛)2 −

𝑒1
2
𝑈𝑛 −𝑚1𝑈

𝑛𝑉𝑛 

𝛽𝑚3 =
1

𝛥𝑡
+
𝑏1

2
−
𝑚1

2
(𝑉𝑛)2 

𝛽𝑚4 =
𝑐1

2
−
𝑑1

2
(𝑈𝑛)2 

𝛽𝑚5 = −
𝑏2
2
− 𝑑2𝑈

𝑛𝑉𝑛 −
𝑒2
2
𝑉𝑛 −

𝑚2

2
(𝑉𝑛)2 

𝛽𝑚6 =
1

𝛥𝑡
−
𝑐2
2
−
𝑑2
2
(𝑈𝑛)2 −

𝑒2
2
𝑈𝑛 −𝑚2𝑈

𝑛𝑉𝑛 

𝛽𝑚7 =
𝑏2
2
−
𝑚2

2
(𝑉𝑛)2 

𝛽𝑚8 =
1

𝛥𝑡
+
𝑐2
2
−
𝑑2
2
(𝑈𝑛)2. 
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We substitute the approximate solutions (8) into (13) which yields the fully-discretized equations in 

space.  

𝜇𝑚1𝛿𝑚−2
𝑛+1 + 𝜇𝑚2𝛾𝑚−2

𝑛+1 + 𝜇𝑚3𝛿𝑚−1
𝑛+1 + 𝜇𝑚4𝛾𝑚−1+

𝑛+1 + 𝜇𝑚5𝛿𝑚
𝑛+1 + 𝜇𝑚6𝛾𝑚

𝑛+1 + 

 (15) 

𝜇𝑚7𝛿𝑚+1
𝑛+1 + 𝜇𝑚8𝛾𝑚+1

𝑛+1 + 𝜇𝑚9𝛿𝑚+2
𝑛+1 + 𝜇𝑚10𝛾𝑚+2

𝑛+1 = 

𝜇𝑚11𝛿𝑚−2
𝑛 + 𝜇𝑚12𝛾𝑚−2

𝑛 + 𝜇𝑚13𝛿𝑚−1
𝑛 + 𝜇𝑚14𝛾𝑚−1

𝑛 + 𝜇𝑚15𝛿𝑚
𝑛 + 𝜇𝑚16𝛾𝑚

𝑛 +  

𝜇𝑚17𝛿𝑚+1
𝑛 + 𝜇𝑚18𝛾𝑚+1

𝑛 + 𝜇𝑚19𝛿𝑚+2
𝑛 + 𝜇𝑚20𝛾𝑚+2

𝑛 + 𝑛1 

 

𝜇𝑚21𝛿𝑚−2
𝑛+1 + 𝜇𝑚22𝛾𝑚−2

𝑛+1 + 𝜇𝑚23𝛿𝑚−1
𝑛+1 + 𝜇𝑚24𝛾𝑚−1

𝑛+1 + 𝜇𝑚25𝛿𝑚
𝑛+1 + 𝜇𝑚26𝛾𝑚

𝑛+1 +  

𝜇𝑚27𝛿𝑚+1
𝑛+1 + 𝜇𝑚28𝛾𝑚+1

𝑛+1 + 𝜇𝑚29𝛿𝑚+2
𝑛+1 + 𝜇𝑚30𝛾𝑚+2

𝑛+1 = 

𝜇𝑚31𝛿𝑚−2
𝑛 + 𝜇𝑚32𝛾𝑚−2

𝑛 + 𝜇𝑚33𝛿𝑚−1
𝑛 + 𝜇𝑚34𝛾𝑚−1

𝑛 + 𝜇𝑚35𝛿𝑚
𝑛 + 𝜇𝑚36𝛾𝑚

𝑛 + 

𝜇𝑚37𝛿𝑚+1
𝑛 + 𝜇𝑚38𝛾𝑚+1

𝑛 + 𝜇𝑚39𝛿𝑚+2
𝑛 + 𝜇𝑚40𝛾𝑚+2

𝑛 + 𝑛2 

where the 𝜇𝑚 coefficients are: 

μm1 = βm1α1 −
a1
2
α6 μm11 = βm3α1 +

a1
2
α6  μm21 = βm5α1 μm31 = βm7α1 

(16) 

μm2 = βm2α1 μm12 = βm4α1 μm22 = βm6α1 +
a2
2
α6 μm32 = βm8α1 −

a2
2
α6 

μm3 = βm1α2 −
a1
2
α7 μm13 = βm3α2 +

a1
2
α7 μm23 = βm5α2 μm33 = βm7α2 

μm4 = βm2α2 μm14 = βm4α2 μm24 = βm6α2 +
a2
2
α7 μm34 = βm8α2 −

a2
2
α7 

μm5 = βm1α3 −
a1
2
α8 μm15 = βm3α3 +

a1
2
α8 μm25 = βm5α3 μm35 = βm7α3 

μm6 = βm2α3 μm16 = βm4α3 μm26 = βm6α3 +
a2
2
α8 μm36 = βm8α3 −

a2
2
α8 

μm7 = βm1α2 −
a1
2
α7 μm17 = βm3α2 +

a1
2
α7 μm27 = βm5α2 μm37 = βm7α2 

μm8 = βm2α2 μm18 = βm4α2 μm28 = βm6α2 +
a2
2
α7 μm38 = βm8α2 −

a2
2
α7 

μm9 = βm1α1 −
a1
2
α6 μm19 = βm3α1 +

a1
2
α6 μm29 = βm5α1 μm39 = βm7α1 

μm10 = βm2α1 μm20 = βm4α1 μm30 = βm6α1 +
a2
2
α6 μm40 = βm8α1 −

a2
2
α6 

 

The system (15) can be written in the following form of a ten banded matrix system: 

 

 𝐴𝒙𝑛+1 = 𝐵𝒙𝑛 + 𝐹 (17) 
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𝐴 =  

[
 
 
 
 
 
 
 
𝜇𝑚1 𝜇𝑚2 𝜇𝑚3 𝜇𝑚4 𝜇𝑚5 𝜇𝑚6 𝜇𝑚7 𝜇𝑚8 𝜇𝑚9 𝜇𝑚10
𝜇𝑚21 𝜇𝑚22 𝜇𝑚23 𝜇𝑚24 𝜇𝑚25 𝜇𝑚26 𝜇𝑚27 𝜇𝑚28 𝜇𝑚29 𝜇𝑚30

𝜇𝑚1 𝜇𝑚2 𝜇𝑚3 𝜇𝑚4 𝜇𝑚5 𝜇𝑚6 𝜇𝑚7 𝜇𝑚8 𝜇𝑚9 𝜇𝑚10
𝜇𝑚21 𝜇𝑚22 𝜇𝑚23 𝜇𝑚24 𝜇𝑚25 𝜇𝑚26 𝜇𝑚27 𝜇𝑚28 𝜇𝑚29 𝜇𝑚30

… … … … … … … … … … …
𝜇𝑚1 𝜇𝑚2 𝜇𝑚3 𝜇𝑚4 𝜇𝑚5 𝜇𝑚6 𝜇𝑚7 𝜇𝑚8 𝜇𝑚9 𝜇𝑚10
𝜇𝑚21 𝜇𝑚22 𝜇𝑚23 𝜇𝑚24 𝜇𝑚25 𝜇𝑚26 𝜇𝑚27 𝜇𝑚28 𝜇𝑚29 𝜇𝑚30]

 
 
 
 
 
 
 

 

 

𝐵 = (18) 

[
 
 
 
 
 
 
 
𝜇𝑚11 𝜇𝑚12 𝜇𝑚13 𝜇𝑚14 𝜇𝑚15 𝜇𝑚16 𝜇𝑚17 𝜇𝑚18 𝜇𝑚19 𝜇𝑚20
𝜇𝑚31 𝜇𝑚32 𝜇𝑚33 𝜇𝑚34 𝜇𝑚35 𝜇𝑚36 𝜇𝑚37 𝜇𝑚38 𝜇𝑚39 𝜇𝑚40

𝜇𝑚11 𝜇𝑚12 𝜇𝑚13 𝜇𝑚14 𝜇𝑚15 𝜇𝑚16 𝜇𝑚17 𝜇𝑚18 𝜇𝑚19 𝜇𝑚20
𝜇𝑚31 𝜇𝑚32 𝜇𝑚33 𝜇𝑚34 𝜇𝑚35 𝜇𝑚36 𝜇𝑚37 𝜇𝑚38 𝜇𝑚39 𝜇𝑚40

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝜇𝑚11 𝜇𝑚12 𝜇𝑚13 𝜇𝑚14 𝜇𝑚15 𝜇𝑚16 𝜇𝑚17 𝜇𝑚18 𝜇𝑚19 𝜇𝑚20
𝜇𝑚31 𝜇𝑚32 𝜇𝑚33 𝜇𝑚34 𝜇𝑚35 𝜇𝑚36 𝜇𝑚37 𝜇𝑚38 𝜇𝑚39 𝜇𝑚40]

 
 
 
 
 
 
 

 

 

 

 

The system (17) contains 2𝑁 + 2 equations and 2𝑁 + 10 unknowns with the vectors 𝑥𝑛+1, 𝑥𝑛 and 𝐹 

as:  

𝒙𝑛+1 = [𝛿−2
𝑛+1, 𝛾−2

𝑛+1, 𝛿−1
𝑛+1, 𝛾−1

𝑛+1, 𝛿0
𝑛+1, 𝛾0

𝑛+1. . . , 𝛿𝑁+1
𝑛+1, 𝛾𝑁+1

𝑛+1, 𝛿𝑁+2
𝑛+1, 𝛾𝑁+2

𝑛+1]𝑇 (19) 

𝒙𝑛 = [𝛿−2
𝑛 , 𝛾−2

𝑛 , 𝛿−1
𝑛 , 𝛾−1

𝑛 , 𝛿0
𝑛, 𝛾0

𝑛. . . , 𝛿𝑁+1
𝑛 , 𝛾𝑁+1

𝑛 , 𝛿𝑁+2
𝑛 , 𝛾𝑁+2

𝑛 ]𝑇 (20) 

𝐹 = [𝑛1, 𝑛2, 𝑛1, 𝑛2, … , 𝑛1, 𝑛2]
𝑇 (21) 

To make the above system solvable, we need additional eight constraints. On the system (17), by 

imposing both Dirichlet and Neumann boundary conditions helps us to eliminate parameters: 𝛿−2, 

𝛿−1, 𝛿𝑁+1, 𝛿𝑁+2, 𝛾−2, 𝛾−1, 𝛾𝑁+1, 𝛾𝑁+2 . So that, resulting (2𝑁 + 2) × (2𝑁 + 2) matrix system will be 

solvable with Matlab program by the Gauss elimination algorithm. 

In order to begin the iteration process for calculating the numerical solution, the initial parameters; 𝒙0 =

(𝛿−2
0 , 𝛾−2

0 , 𝛿−1
0 , 𝛾−1

0 , 𝛿0
0, 𝛾0

0, . . . , 𝛿𝑁+1
0 , 𝛾𝑁+1

0 , 𝛿𝑁+2
0 , 𝛾𝑁+2

0 )  must be found once by using both initial and 

boundary conditions. The recurrence relationship (17) gives the time evolution of vector 𝒙𝑛. Thus the 

nodal values 𝑈𝑁(𝑥, 𝑡) and 𝑉𝑁(𝑥, 𝑡) can be computed via the equations (8). 

 

3.  RESULTS OF THE NUMERICAL SOLUTIONS  

 

The aim of this section is to show the efficiency of the algorithm by studying on four different RDS and 

comparing the accuracy of the suggested method on the selected problems. The accuracy of the 

suggested method is measured with the discrete error norm for the problems which have an analytical 

solution: 

𝐿2  = |𝑈 − 𝑈𝑁|2 = √ℎ∑
𝑁
𝑗=0 (𝑈𝑗 − (𝑈𝑁)𝑗

𝑛) , 
(22) 

𝐿∞ = |𝑈 − 𝑈𝑁|∞ = 𝑚𝑎𝑥
𝑗
|𝑈𝑗 − (𝑈𝑁)𝑗

𝑛|. (23) 
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Also, the relative error is used to measure the error if there is no analytic solution of the system. 

𝑅𝐸 = √
∑𝑁𝑗=0 |𝑈𝑗

𝑛+1 −𝑈𝑗
𝑛|2

∑𝑁𝑗=0 |𝑈𝑗
𝑛+1|2

 (24) 

The efficiency of the algorithm is exhibited by studying four different RD mechanism. For the purpose 

of observing the stability of the recursive system (17), the matrix stability analysis is performed and 

system (17) is written as in the converted matrix form as below:  

 𝒙𝑛+1 = 𝑊𝒙𝑛 + 𝑄 (25) 

Here, the iterative converted matrix is 𝑊 = 𝐴−1 and its eigenvalues 𝜆𝑖 are expected to be 𝑚𝑎𝑥|𝜆𝑖| < 1 

to satisfy the criteria for the stability. Accordingly, eigenvalues |𝜆𝑖| of 𝑊 are computed and depicted in 

Figures 1-2 for the nonlinear problems; Brusselator and Schnakenberg Models. 

 

Figure  1. Eigenvalues of W obtained for Brusselator model when 𝑁 = 400, 𝛥𝑡 = 0.01, 𝑡 = 15. 

 

 
Figure  2. Eigenvalues of W obtained for Schnakenberg model when 𝑁 = 200, 𝛥𝑡 = 5 × 10−6, 𝑡 = 2.5 
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During the run of the algorithm, we have observed that the absolute values of the eigenvalues are almost 

less than 1 at all time steps. Therefore the demonstrated eigenvalues in the Figs.1-2 are calculated at a 

specific time step. When similar treatments are performed for other test problems, it is observed that the 

absolute values of the eigenvalues are less than 1. In this way, the solution scheme of the recursive 

formula is unconditionally stable. 

 

3.1.  Linear Problem 

 

It is stated that the terms 𝐹(𝑈, 𝑉) and 𝐺(𝑈, 𝑉) are nonlinear in the system (1). However it is not possible 

to calculate the error norms due to the limitations of the analytical solutions of the nonlinear system. 

Here, the linear problem with known analytical solutions is selected and has the form 

𝜕𝑈

𝜕𝑡
= 𝑑

𝜕2𝑈

𝜕𝑥2
− 𝑎𝑈 + 𝑉 

(26) 
𝜕𝑉

𝜕𝑡
= 𝑑

𝜕2𝑉

𝜕𝑥2
− 𝑏𝑉. 

 and the known analytical exact solutions are;  

𝑈(𝑥, 𝑡) = (𝑒−(𝑎+𝑑)𝑡 + 𝑒−(𝑏+𝑑)𝑡)𝑐𝑜𝑠(𝑥),    𝑉(𝑥, 𝑡) = (𝑎 − 𝑏)(𝑒−(𝑏+𝑑)𝑡)𝑐𝑜𝑠(𝑥). (27) 

   

The (26) system’s initial conditions are induced from the analytical solution by taking t = 0 in the 

solutions of (27). Solution space is taken as [0,
𝜋

2
] and the set of boundary conditions which is used for 

eliminating the unknown parameters are: 

𝑈𝑥(0, 𝑡) = 0,         𝑈 (
𝜋

2
, 𝑡) = 0, 𝑉𝑥(0, 𝑡) = 0, 𝑉 (

𝜋

2
, 𝑡) = 0, 

(28) 

𝑈𝑥𝑥𝑥(0, 𝑡) = 0,     𝑈𝑥𝑥 (
𝜋

2
, 𝑡) = 0, 𝑉𝑥𝑥𝑥(0, 𝑡) = 0, 𝑉𝑥𝑥(𝜋/2, 𝑡) = 0. 

To analyze the dominance of reaction or diffusion, three different cases are considered. The reaction-

diffusion mechanism (26) is numerically calculated with different values of parameters 𝑎, 𝑏, and 𝑑. 

Respectively, considered cases and parameters are;  

    • Case of diffusion dominated (𝑎 = 0.1, 𝑏 = 0.01 and 𝑑 = 1)  

    • Case of reaction dominated (𝑎 = 2, 𝑏 = 1, 𝑑 = 0.001)  

    • Case of reaction dominated with stiff reaction (𝑎 = 100, 𝑏 = 1, 𝑑 = 0.001)  

To get numerical results, software program is run up to time level 𝑡 = 1 for various 𝑁 and 𝛥𝑡. The 

boundary and initial conditions are chosen to coincide with the PQBCM [19]. The obtained results for 

𝑈 and 𝑉 in terms of 𝐿2 and 𝐿∞ norms are given in Tables 2, 3 and 4 also with comparison of the results 

[19] and [6] when 𝑁 = 512 and 𝛥𝑡. It is observed that the accuracy of the obtained results for function 

𝑉 are slightly efficient than results for function 𝑈. The proposed method has a better accuracy than the 

ones given in Tables 2, 3 ,4 under the same conditions. In conclusion presented algorithm produces 

similar error norms with those of the polinomial quintic B-spline collocation [19] and Implicit integrator 

factor and Multi-grid solver[6]. 
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Table 2. Error norms 𝐿2 and 𝐿∞ for the case of diffusion dominated when 𝑎 = 0.1, 𝑏 = 0.01, 𝑑 = 1, 𝑁 = 512 

 𝑼(𝑻𝑸𝑩) 𝑽(𝑻𝑸𝑩) 𝑼(𝑷𝑸𝑩𝑪𝑴) 𝑽(𝑷𝑸𝑩𝑪𝑴) 

𝜟𝒕 𝑳𝟐 × 𝟏𝟎
𝟒 𝑳∞ × 𝟏𝟎

𝟒 𝑳𝟐 × 𝟏𝟎
𝟔 𝑳∞ × 𝟏𝟎

𝟔 𝑳𝟐 × 𝟏𝟎
𝟒 𝑳∞ × 𝟏𝟎

𝟒 𝑳𝟐 × 𝟏𝟎
𝟔 𝑳∞ × 𝟏𝟎

𝟔 

0.005 0.008090 0.009120 0.029344 0.033079 0.015123 0.017048 0.062416 0.070361 

0.01 0.053460 0.060265 0.216594 0.244162 0.060493 0.068193 0.249667 0.281444 

0.02 0.234949 0.264853 0.965627 1.088530 0.241983 0.272782 0.998702 1.125815 

0.04 0.961033 1.083353 3.962253 4.466566 0.968068 1.091283 3.995334 4.503855 

 𝑼(𝑪𝑵−𝑴𝑮 𝒎𝒆𝒕𝒉𝒐𝒅) 

0.005  0.0116  

0.01  0.0627  

0.02  0.267  

0.04  1.09  

 

Table 3. Error norms L2 and L∞ for the case of reaction dominated when 𝑎 = 2, 𝑏 = 1, 𝑑 = 0.001, 𝑁 = 512 

         𝑼(𝑻𝑸𝑩) 𝑽(𝑻𝑸𝑩) 𝑼(𝑷𝑸𝑩𝑪𝑴) 𝑽(𝑷𝑸𝑩𝑪𝑴) 

𝜟𝒕 𝑳𝟐 × 𝟏𝟎
𝟒 𝑳∞ × 𝟏𝟎

𝟒 𝑳𝟐 × 𝟏𝟎
𝟓 𝑳∞ × 𝟏𝟎

𝟓 𝑳𝟐 × 𝟏𝟎
𝟒 𝑳∞ × 𝟏𝟎

𝟒 𝑳𝟐 × 𝟏𝟎
𝟑 𝑳∞ × 𝟏𝟎

𝟑 

0.005 0.026827 0.030241 0.068087 0.076753 0.026832 0.030247 0.068124 0.076795 

0.01 0.107324 0.120984 0.272462 0.307141 0.107329 0.120989 0.272499 0.307183 

0.02 0.429339 0.483984 1.089996 1.228729 0.429344 0.483990 1.090033 1.228771 

0.04 1.717837 1.936481 4.360663 4.915683 1.717842 1.936487 4.360700 4.915725 

 𝑼(𝑪𝑵−𝑴𝑮 𝒎𝒆𝒕𝒉𝒐𝒅) 

0.005  0.0302       

0.01  0.121       

0.02  0.484       

0.04  1.94       

 

Table 4. Error norms L2 and L∞ for the case of diffusion dominated with stiff reaction when 𝑎 = 100, 𝑏 = 1, 𝑑 = 0.001, 

𝑁 = 512 

  𝑼(𝑻𝑸𝑩) 𝑽(𝑻𝑸𝑩) 𝑼(𝑷𝑸𝑩𝑪𝑴) 𝑽(𝑷𝑸𝑩𝑪𝑴) 

𝜟𝒕  𝑳𝟐 × 𝟏𝟎
𝟓 𝑳∞ × 𝟏𝟎

𝟓 𝑳𝟐 × 𝟏𝟎
𝟑 𝑳∞ × 𝟏𝟎

𝟑 𝑳𝟐 × 𝟏𝟎
𝟓 𝑳∞ × 𝟏𝟎

𝟓 𝑳𝟐 × 𝟏𝟎
𝟑 𝑳∞ × 𝟏𝟎

𝟑 

0.005  0.068087  0.076753  0.067406  0.075986  0.068124  0.076795  0.067443  0.076027  

0.01  0.272462  0.307141  0.269738  0.304070  0.272499  0.307183  0.269774  0.304111  

0.02  1.089996  1.228729  1.079096  1.216442  1.090033  1.228771  1.079133  1.216484  

0.04  4.360663  4.915684  4.317057  4.866527  4.360700  4.915725  4.317093  4.866568  

   𝑽(𝑪𝑵 −𝑴𝑮 𝒎𝒆𝒕𝒉𝒐𝒅)  

0.005         0.0760          

0.01         0.304          

0.02         1.22          

0.04          4.87          

 

3.2.  Brusselator Model 

 

Brusselator model is mainly defined to get a kinetic model having a limit cycle. It was also shown to 

represents steady state, oscillatory and chaotic solutions and mentioned by Prigogine and Lefever in 

the study [29]. This type of RD mechanism exhibits Turing instability and large-scale studies have 

been conducted on this model being investigated both analytically and numerically. The general 1D 

reaction-diffusion equation system for this type of model is given as [3] 
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𝜕𝑈

𝜕𝑡
= 𝜀1

𝜕2𝑈

𝜕𝑥2
+ 𝐴 + 𝑈2𝑉 − (𝐵 + 1)𝑈 

(29) 
𝜕𝑉

𝜕𝑡
= 𝜀2

𝜕2𝑉

𝜕𝑥2
+ 𝐵𝑈 − 𝑈2𝑉 

where 𝜀1, 𝜀2 are diffusion parameters, 𝑥 is the spatial coordinate and 𝑈, 𝑉 are functions of 𝑥 and 𝑡 
representing concentrations. Initial conditions are specified as in the reference [3];  

U(𝑥, 0) = 0.5,         𝑉(𝑥, 0) = 1 + 5𝑥. (30) 

Following boundary conditions are considered at the end points of the problem domain:  

𝑈𝑥(𝑥0, 𝑡) = 0, 𝑈𝑥(𝑥𝑁, 𝑡) = 0,  𝑉𝑥(𝑥0, 𝑡) = 0,  𝑉𝑥(𝑥𝑁, 𝑡) = 0. 
(31) 

𝑈𝑥𝑥(𝑥0, 𝑡) = 0, 𝑈𝑥𝑥(𝑥𝑁, 𝑡) = 0, 𝑉𝑥𝑥(𝑥0, 𝑡) = 0  𝑉𝑥𝑥(𝑥𝑁, 𝑡) = 0. 

 

 

Figure  3: Periodic wave motion of U for Brusselator model when 𝑁 = 200, 𝛥𝑡 = 0.01 

 

Figure  4. Periodic wave motion for V for Brusselator model when 𝑁 = 200, 𝛥𝑡 = 0.01 

Suggested algorithm is performed for the equation system (29), taking the parameters as 𝜀1 = 𝜀2 =
10−4, 𝐴 = 1, 𝐵 = 3.4, over the region 𝑥 ∈ [0,1]. Computation is carried out until 𝑡 = 15. Split points 
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𝑁 = 200, time step 𝛥𝑡 = 0.01 are used for space and time discretization respectively. Obtained 

solutions are depicted in Figure 3 and Figure 4. They show changes of the density of the functions of U 

and V.  It has been observed that both U and V wave motions exhibits periodic waves under these 

conditions. 

 

Obtained density values for periodic motion are presented in Table 5. We found that the period of this 

wave action is about 7.8 with the proposed method, whereas the period 7.7 is found when the PQBCM 

[19] is implemented which is shown in the Tables 5- 6. Proposed method produces equivalent patterns 

with the references [9,19, 20]. 
 

Table  5. Density values of periodic motion when TQB is implemented. 

 
  𝐃𝐞𝐧𝐬𝐢𝐭𝐲  𝐭  𝐱 = 𝟎. 𝟎  𝐱 = 𝟎. 𝟐  𝐱 = 𝟎. 𝟒  𝐱 = 𝟎. 𝟔  𝐱 = 𝟎. 𝟖  𝐱 = 𝟏. 𝟎 

𝐔 3  0.284595   0.317799   0.377380   0.604709   1.623703   0.691906  

 10.8  0.344555   0.321243   0.376194   0.605486   1.715194   0.716792  

       6  0.400865  0.687572   2.884364   0.549937   0.323697   0.348838  

 13.8  0.398971   0.680057   2.911740   0.533798   0.322405   0.347582  

𝐕 3 3.363723 4.250910 5.066610 5.546754 1.650507 2.507119 

 10.8 3.309473 4.240150 5.062313 5.651837 1.591938 2.473710 

 6 5.258678 5.632343 1.073700 2.739517 4.300681 4.755329 

 13.8 5.241915 5.634312 1.065232 2.769906 4.269058 4.737755 

 

Table  6. Density values of periodic motion when PQBCM [19] is implemented. 

 
 𝐃𝐞𝐧𝐬𝐢𝐭𝐲 𝐭 𝐱 = 𝟎. 𝟎 𝐱 = 𝟎. 𝟐 𝐱 = 𝟎. 𝟒 𝐱 = 𝟎. 𝟔 𝐱 = 𝟎. 𝟖 𝐱 = 𝟏. 𝟎 

𝐔 3 0.284657 0.317966 0.377959 0.612881 1.519483 0.648434 

 10.7 0.347747 0.321168 0.376204 0.611218 1.626310 0.680742 

 6 0.401741 0.706734 2.716642 0.510302 0.326204 0.352411 

 13.7 0.398904 0.691408 2.769059 0.500480 0.324523 0.350579 

𝐕 3 3.363896 4.251219 5.066734 5.537413 1.732740 2.580615 

 10.7 3.299664 4.233913 5.056668 5.637796 1.659946 2.534846 

 6 5.257254 5.606791 1.137215 2.825295 4.355469 4.798749 

 13.7 5.234725 5.613815 1.119445 2.846165 4.317357 4.774541 

 
 

3.3.  Schnakenberg Model 

 

The Schnakenberg model is used to model autocatalytic chemical reaction with possible oscillatory 

behaviors and it is a relatively easy system for modelling the reaction-diffusion mechanism. Firstly it 

was put forward by Schakenberg [30] and can be stated as follows:  

𝜕𝑈

𝜕𝑡
=
𝜕2𝑈

𝜕𝑥2
+ 𝜁(𝑎 − 𝑈 + 𝑈2𝑉) 

(32) 
𝜕𝑉

𝜕𝑡
= 𝑑

𝜕2𝑉

𝜕𝑥2
+ 𝜁(𝑏 − 𝑈2𝑉) 

Here, 𝑈 and 𝑉 represent the concentration of activator and inhibitor respectively, 𝑑 is a diffusion 

coefficient, 𝜁, 𝑎 and 𝑏 are rate parameters of the biochemical reactions. The results of the proposed 

method were obtained by studying the oscillation problem in the Schnakenberg Model. Accordingly, 

the parameters are taken as 𝑎 = 0.126779, 𝑏 = 0.792366, 𝑑 = 10 and 𝜁 = 104 for system (32). 

Graphical solutions are obtained on the interval [−1,1] and the initial conditions are taken as: 

𝑈(𝑥, 0) = 0.919145 + 0.001∑

25

𝑗=1

𝑐𝑜𝑠(2𝜋𝑗𝑥)

𝑗
 (33) 
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𝑉(𝑥, 0) = 0.937903 + 0.001∑

25

𝑗=1

𝑐𝑜𝑠(2𝜋𝑗𝑥)

𝑗
 

 

The boundary conditions are taken as:  

𝑈𝑥(𝑥0, 𝑡) = 0, 𝑈𝑥(𝑥𝑁, 𝑡) = 0, 𝑉𝑥(𝑥0, 𝑡) = 0 𝑉𝑥(𝑥𝑁, 𝑡) = 0, 
(34) 

𝑈𝑥𝑥𝑥(𝑥0, 𝑡) = 0, 𝑈𝑥𝑥𝑥(𝑥𝑁, 𝑡) = 0, 𝑉𝑥𝑥𝑥(𝑥0, 𝑡) = 0, 𝑉𝑥𝑥𝑥(𝑥𝑁, 𝑡) = 0. 

 

Computations are performed until 𝑡 = 2.5 for space/time combinations. Obtained relative errors are 

depicted in Table 7 together with the errors results of the PQBCM [19]. 

 
Table  7. Obtained values of relative errors for Schnakenberg model when 𝑁 = 100 and  𝑡 = 2,5. 

 
𝚫𝐭 Nu. of step 𝐔 𝐔[19] 𝐕 𝐕[19] 

5 × 10−6  500000  0   5.7160 × 10−14   5.4418 × 10−17   5.4564 × 10−14  

5 × 10−5  50000  6.2202 × 10−17   1.5653 × 10−10   1.6794 × 10−16   1.1105 × 10−10  

1 × 10−4  25000  1.7593 × 10−16   9.8744 × 10−10   2.4423 × 10−16   8.8599 × 10−10  

1.20 × 10−4  20833  1.5668 × 10−16   1.5055 × 10−09   2.2996 × 10−16   1.3790 × 10−09  

1.32 × 10−4  18939  1.4610 × 10−16   1.0564 × 10−01   2.9664 × 10−16   1.0301 × 10−01  

1 × 10−3  2500  2.5895 × 10−14   -   2.0341 × 10−14   -  

2 × 10−3  1250  5.4591 × 10−09   -   3.9448 × 10−09   -  

5 × 10−3  500  5.4960 × 10−06   -   4.7003 × 10−06   -  

 

The algorithm produces quite accurate results even when the time step is larger as observed in Table 7. 

Small error values are achieved even for a 𝛥𝑡 as large as one with method of TQB. PQBCM needs time 

steps that are a factor of 200 times smaller than TQB to achieve the same accuracy. TQB method is more 

efficient than PQBCM method in terms of Schnakenberg Model. Graphics of Figure 5 show the oscillation 

movements for time increment 𝛥𝑡 = 5 × 10−5 and split points of 𝑁 = 100 and 𝑁 = 200 respectively. 

The functions 𝑈 and 𝑉 make 9 oscillations when 𝑁 = 100 and 𝑁 = 200 as depicted in Figure 5. This result 

and the references [1] and [2] show that a finer mesh is necessary for accurate solutions. 

  

 
(a) (b) 

Figure  5. The oscillation waves of U and V for Schnakenberg model, when (a) 𝑁 = 100, 𝑡 = 2.5    (b) 𝑁 = 200, 𝑡 = 2.5 
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3.4.  Gray-Scott Model 

 

The Gray-Scott model is a widely known type of reaction-diffusion system which models some spatial 

patterns to be formed by several chemical species in nature. Formerly it was presented by Gray and 

Scott [31] and defined:  

𝜕𝑈

𝜕𝑡
= 𝜀1

𝜕2𝑈

𝜕𝑥2
− 𝑈2𝑉 + 𝑓(1 − 𝑈), 

(35) 
𝜕𝑉

𝜕𝑡
= 𝜀2

𝜕2𝑉

𝜕𝑥2
+ 𝑈2𝑉 − 𝑘𝑉 

The proposed method is implemented on the repeating spot patterns exhibited by the Gray-Scott model. 

The parameters are selected in accordance with the reference [32] for the system (35)  

𝜀1 = 1,        𝜀2 = 0.01,        𝑎 = 9,        𝑏 = 0.4,        𝑓 = 𝜀2𝑎,        𝑘 = 𝜀2
1/3
𝑏 (36) 

Also the initial conditions of the system (35) are selected as:  

𝑈(𝑥, 0) = 1 −
1

2
𝑠𝑖𝑛100 (𝜋

(𝑥 − 𝐿)

2𝐿
),    𝑉(𝑥, 0) =

1

4
𝑠𝑖𝑛100(𝜋

(𝑥 − 𝐿)

2𝐿
) (37) 

Space discretization 𝑁 = 400 and time discretization 𝛥𝑡 = 0.2 are taken and solutions are computed in 

𝐿 ∈ [−50,50]. Dirichlet and additional Neuman boundary conditions  

𝑈(𝑥0, 𝑡) = 1, 𝑈(𝑥𝑁 , 𝑡) = 1, 𝑉(𝑥0, 𝑡) = 0, 𝑉(𝑥𝑁 , 𝑡) = 0, 
(38) 

𝑈𝑥(𝑥0, 𝑡) = 0, 𝑈𝑥(𝑥𝑁, 𝑡) = 0, 𝑉𝑥(𝑥0, 𝑡) = 0, 𝑉𝑥(𝑥𝑁, 𝑡) = 0. 

are applied. The self replicating waves are obtained when the program is run until to the time level 𝑡 =
1000. Under these initial conditions, primarily two pulses are created and separated from each other, 

then each pulse at the edges are being split into two again to form four pulses, as shown in Figure 6 until 

time 𝑡 = 1000, as time evolved. These self-replicating process goes on to cover the spatial domain. The 

replicating process of 𝑈 and 𝑉 functions due to time and space are presented in Figures 6(a)(b)(c). 

 

The intensity changes of functions 𝑈 and 𝑉 due to time and space are presented respectively in Figure 

7 and Figure 8. These spatial patterns, which are kind of growing Turing patterns, initially starting with 

two waves of splitting movement, seem to cover the whole domain with branching over time. The 

obtained patterns are similar and compatible with [19, 32] 
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(a) (b) 

 
(c) 

Figure  6. The replicating process of spot patterns for Gray-Scott model when (𝑎) 𝑡 = 100, (b) 𝑡 = 500 and (c) 𝑡 = 1000   

 

 

Figure  7. Graphical illustration of 𝑈 for Gray-Scott model, when 𝑁 = 200, 𝛥𝑡 = 0.01 

  



Tok Onarcan et al. / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 24 (2) – 2023 
 

137 

 

Figure 8. Graphical illustration of 𝑉 for Gray-Scott model, when 𝑁 = 200, 𝛥𝑡 = 0.01 

 

4. CONCLUSION 

 

The continuum problem represented by the reaction-diffusion system is transformed into a discrete 

problem with a finite number of variables such that suggested method replaces the continuous problem 

with an algebraic system. The proposed method is well suited for approximating accurate solutions of 

the reaction-diffusion systems for pattern formation. For the validation of the suggested algorithm, 

approximate solutions of linear and nonlinear RD systems are shown on the models of certain chemical 

and biological problems. Firstly the method is conducted for getting numerical solution of the linear 

reaction diffusion system, for which the analytical solution exists. 𝐿2 norms of the computational 

solutions are quite satisfactory and are similar with the reported work of the polynomial quintic B-spline 

collocation method and better than the Crank-Nicolson-multigrid method when the same parameters are 

used. Nonlinear reaction-diffusion systems known as the Brusselator model, Schnakenberg model and 

Gray-Scott models are also simulated suitably. Solutions of the nonlinear problems, which have no 

analytical solutions in general, are given graphically. All of model solutions are represented fairly and 

can be compared with the equivalent graphs given in the studies [1-3, 19, 20, 32]. Also approximate 

solution of the Schnakenberg model with proposed method produced better error values. Use of the 

trigonometric quintic B-spline having continuity of order four allows us to have an approximate 

functions in order of four. Therefore, differential equations in order of four can be solved numerically 

by using the trigonometric B-spline functions to have solutions of continuity in order of four. 

 

Computational cost of the algorithm depends on the gauss elimination method while solving the matrix 

system. As a computational cost, number of the basic operations can be calculated as 𝑂((2𝑁 +

1)2 ×
𝑡

𝛥𝑡
). Since the resulting matrix is band matrix, it is solved by the Gauss elimination method, so 

the storage capacity is reduced and speed of the algorithm is accelerated. Therefore the method is easily 

implemented for such reaction-diffusion models. Consequently, the TQB collocation method produces 

fairly acceptable results for numerical investigation of RD systems. Thus, it is also recommended for 

finding solutions of other partial differential equations and fractional partial differential equations. 

 

ACKNOWLEDGMENT 

 

A part of this study was orally presented in the International Conference on Applied Mathematics and 

Analysis, ICAMA 2016, Ankara, Turkey. 



Tok Onarcan et al. / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 24 (2) – 2023 
 

138 

CONFLICT OF INTEREST 

 

The authors stated that there are no conflicts of interest regarding the publication of this article. 

 

AUTHORSHIP CONTRIBUTIONS 

 

The algorithm design of the non linear problem was suggested by Idiris Dağ. The numerical solutions 

of the problem, algorithm construction and coding as well as the writing of the article in English, were 

carried out by Aysun Tok Onarcan. Nihat Adar provided support during the coding phase and writing 

of the article. 

 

 

REFERENCES 

[1] Ruuth SJ. Implicit-explicit methods for reaction-diffusion problems in pattern formation. J Math 

Bio 1995; 34: 148-176. 

 

[2] Madzvamuse A, Wathen AJ, Maini PK. A moving grid finite element method applied to a 

biological pattern generator. J Comp Phys 2003; 190: 478-500. 

 

[3] Zegeling PA, Kok HP. Adaptive moving mesh computations for reaction-diffusion systems. J 

Comp App Math 2004; 168: 519-528. 

 

[4] Ropp DL, Shadid JN, Ober CC. Studies of the accuracy of time integration methods for reaction-

diffusion equations. J Comp Phys 2004; 194(2): 544-574. 

 

[5] Ropp DL, Shadid JN. Stability of operator splitting methods for systems with indefinite operators: 

reaction-diffusion systems. J Comp Phys 2005; 203(2): 449-466. 

 

[6] Chou CS, Zhang Y, Zhao R, Nie Q. Numerical Methods for Stiff Reaction-Diffusion Systems. 

Discrete and Continuous Dynamical Systems-Series B 2007;7: 515-525. 

 

[7] Yadav OP, Jiwari R. A finite element approach for analysis and computational modelling of 

coupled reaction diffusion models. Numerical Methods for Partial Differential Equations 2019; 

35 (2): 830-850. 

 

[8] Mittal RC, Rohila R. Numerical Simulation of Reaction-Diffusion Systems by Modified Cubic 

B-spline Differential Quadrature Method. Chaos, Solitons and Fractals 2016; 92 (1): 1339-1351. 

 

[9] Jiwari R, Singh S, Kumar A. Numerical simulation to capture the pattern formation of coupled 

reaction-diffusion models. Chaos, Solitons and Fractals 2017; 103: 422-439. 

 

[10] Jiwari R, Gerisch A. A local radial basis function differential quadrature semidiscretisation 

technique for the simulation of time-dependent reaction-diffusion problems. Eng Comp 2016; 38 

(6): 2666-2691. 

 

[11] Schoenberg IJ. On Trigonometric Spline Interpolation. J Math Mech 1964;13: 795-826. 

 

[12] Hamid NNA, Majid AA, Ismail AIM. Cubic Trigonometric B-spline Applied to Linear Two-

Point Boundary Value Problems of Order Two. World Academy of Science, Engineering and 

Technology 2010; 47: 478-803. 

 



Tok Onarcan et al. / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 24 (2) – 2023 
 

139 

[13] Gupta Y, Kumar MA Computer Based Numerical Method for Singular Boundary Value 

Problems. Int J  Comp App 2011;1: 0975-8887. 

 

[14] Zin SM, Abbas M, Majid AA, Ismail AIM. A New Trigonometric Spline Approach to Numerical 

Solution of Generalized Nonlinear Klien-Gordon Equation. PLoS one, 2014;9(5): e95774. 

 

[15] Abbas M, Majid AA, Ismail AIM, Rashid A. Numerical Method Using Cubic Trigonometric B-

Spline Technique for Nonclassical Diffusion Problems. Abstract and Applied Analysis, 2014; 

Article ID 849682. 

 

[16] Yağmurlu NM, Karakaş AS. Numerical solutions of the equal width equation by trigonometric 

cubic B‐spline collocation method based on Rubin–Graves type linearization. Num Meth Part 

Diff Eqs, 2020; 36(5): 1170-1183. 

 

[17] Nikolis A. Numerical Solutions of Ordinary Differential Equations with Quadratic Trigonometric 

Splines. App Maths E-Notes 2004;4: 142-149. 

 

[18] Nikolis A, Seimenis I. Solving Dynamical Systems with Cubic Trigonometric Splines. App Maths 

E-notes, 2005; 5: 116-123. 

 

[19] Sahin A. Numerical solutions of the reaction-diffusion equations with B-spline finite element 

method. PhD, Eskişehir Osmangazi University, Eskişehir, Turkey, 2009. 

 

[20] Ersoy O, Dag I. Numerical Solutions of the Reaction Diffusion System by Using Exponential 

Cubic B-spline Collocation Algorithms. Open Phys 2015; 13: 414-427. 

 

[21] Onarcan AT, Adar N, Dag I. Trigonometric cubic B-spline collocation algorithm for numerical 

solutions of reaction–diffusion equation systems. Comp App Math 2018; 37: 6848–6869. 

 

[22] Tok-Onarcan A, Adar N, Dag I. Wave simulations of Gray-Scott reaction-diffusion system. Math 

Meth in the App Sci 2019; 19: 5566–5581. 

 

[23] Kaur N, Joshi V. Numerical solution to the Gray-Scott Reaction-Diffusion equation using 

Hyperbolic B-spline. J  Phys: Conference Series 2022: 2267. 

 

[24] Hepson ÖE, Yiğit G, Allahviranloo T. Numerical simulations of reaction–diffusion systems in 

biological and chemical mechanisms with quartic-trigonometric B-splines. Comp App Math 

2021; 40(4): 1-23. 

 

[25] Hepson ÖE, Numerical solutions of the Gardner equation via trigonometric quintic B-spline 

collocation method, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2018; 22 (6): 1576–

1584. 

 

[26] Chandrasekharan Nair L, Awasthi A. Quintic trigonometric spline based numerical scheme for 

nonlinear modified Burgers’ equation, Num Meth for Part Diff Eq 2019; 35(3): 1269–1289. 

 

[27] Khater MMA, Nisar KS, Mohamed MS. Numerical investigation for the fractional nonlinear 

space-time telegraph equation via the trigonometric Quintic B-spline scheme. Math Meth in App 

Sci 2021; 44(6); 4598–4606. 

 

[28] Alam MP, Kumar D, Khan A. Trigonometric quintic B-spline collocation method for singularly 

perturbed turning point boundary value problems. Int J Comp Math 2021;98(5): 1029–1048. 



Tok Onarcan et al. / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 24 (2) – 2023 
 

140 

 

[29] Prigogine I, Lefever R. Symmetry Breaking Instabilities in Dissipative Systems. J Chem Phys 

1968; 48:1695-1700. 

 

[30] Schnakenberg J. Simple Chemical Reaction Systems with Limit Cycle Behavior. J Theo Bio 

1979; 81: 389-400. 

 

[31] Gray P, Scott SK. Autocatalytic Reactions in The Isothermal, Continuous Stirred Tank Reactor: 

Oscillations and Instabilities in the system A+2B 3B, B C. Chem Eng Sci, 1984;39: 1087-1097. 

 

[32] Craster RV, Sassi R. Spectral Algorithms for Reaction-Diffusion Equations. Technical Report. 

Note del Polo 2006: No:99. 

 

[33] Rubin SG, Graves Jr RA. A cubic spline approximation for problems in fluid mechanics. 

Technical Report, Nasa, Washington, 1975. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


