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ABSTRACT

Spatial clusters and spatial outliers play an important role in the study of the spatial distribution patterns of
geochemical data. They characterize the fundamental properties of mineralization processes, the spatial distribution
of mineral deposits, and ore element concentrations in mineral districts. In this study, a new method for the study
of spatial distribution patterns of multivariate data is proposed based on a combination of robust Mahalanobis
distance and local Moran’s 1. In order to construct the spatial matrix, the Moran’s I spatial correlogram was
first used to determine the range. The robust Mahalanobis distances were then computed for an association of
elements. Finally, local Moran’s [, statistics was used to measure the degree of spatial association and discover
the spatial distribution patterns of associations of Cu, Au, Mo, Ag, Pb, Zn, As, and Sb elements including spatial
clusters and spatial outliers. Spatial patterns were analyzed at six different spatial scales (2km, 4 km, 6 km, 8 km,
10 km and 12 km) for both the raw data and Box-Cox transformed data. The results show that identified spatial
cluster and spatial outlier areas using local Moran’s I, and the robust Mahalanobis accord the objective reality and
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have a good conformity with known deposits in the study area.

1. Introduction

The properties of living beings are distributed
neither uniformly nor at random. They are aggregated
in patches or formed gradients or other kinds of spatial
patterns (Legendre and Fortin, 1989). Spatial patterns
have been widely used in different research fields
such as biometrics (Fuentes et al., 2006), landscape
ecology (Bagchi et al., 2011; Irl et al., 2015), regional
economics (Monastiriotis, 2009) and medicine
(Waller and Gotway, 2004; McLaughlin and Boscoe,
2007; Goovaerts and Jacquez, 2004) etc. Extraction
of spatial information for mineral exploration can
be achieved through the study of spatial distribution
patterns of regional geochemical elements such
as spatial structures, spatial variability and spatial
association patterns (spatial clustering and spatial
outliers). Various methods and techniques have been
proposed for spatial cluster and outlier identification
such as Getis’s G index (Getis and Ord, 1992), Geary’s
C (Geary, 1954), spatial scan statistics (Ishioka et al.,
2007) and Tango’s C index (Tango, 1995). The local

Moran’s I is by far the most commonly used test
statistic (Anselin, 1995; Getis and Ord, 1996). The
local Moran’s I statistic has been successfully applied
to the spatial cluster identification of diseases (Ruiz
et al., 2004; Goovaerts and Jacquez, 2004), mortality
rates (James et al., 2004; McLaughlin and Boscoe,
2007), environmental planning (Brody et al., 2000),
and environmental sciences (McGrath and Zhang,
2003; Zhang and McGrath, 2004).

Many traditional methods for detecting outliers
have been used for many years (Hawkins, 1980).
However, the determination of outliers is still being
extremely difficult (Rose et al., 1979; Reimann et
al., 2005). A number of study (Rocke and Woodruff,
1996; Rousseeuw and Leroy, 1987 and Tyler, 1991)
have shown that there have been many methods for the
detection of multivariate outliers. Recently, Filzmoser
et al. (2005) followed an idea of Gervini (2003) for
increasing the efficiency of the robust estimation
of multivariate location and scatter. However, this
method can be seen as an automation of the method
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proposed by Garrett (1989). Filzmoser and Hron
(2013) used the Mahananobis as a reliable distance
measure for the analysis of multivariate data. For
identifying outliers, it is crucial to estimate the mean
and covariance from the data. However, geochemical
data is a spatial data, all of the aforementioned methods
have a common drawback that is they do not take the
spatial distribution of data into account. Nguyen et al.
(2014) identified spatial patterns for Cu geochemical
univariable using local Moran’s I, however, distance
bands were chosen randomly without scientific basis
and the effectiveness of spatial pattern identification
for geochemical multiviables using local Moran’s I
was not investigated. Therefore, in this study, focuses
will be made on the identification of spatial patterns of
geochemical multivariables by means of a combination
of robust Mahalanobis distance and local Moran’s I
statistic using 1341 stream sediment samples collected
at scale of 1:200.000 in Jiurui copper mining area.

2. General Geological Setting of Study Area and
Data Used

Jiurui area is a mining district in Jiangxi province
(southeast China). Jiurui is rich in copper reserves.
The Cu deposits in the Jiurui district are an important
component of the Middle-Lower Yangtze River
metallogenic belt, extending from Daye in Hubei
Province in the west to Zhenjiang in Jiangsu Province
in the east. Jiurui area are located at the edge of the
active zone on the para platform. The exposed strata
are Ordovician limestone, shale, sandstone in upper
Silurian system, Huang long formation conglomeratic
sandstone in upper carboniferous system, sandstone,
dolomite, limestone, limestone in lower Daye,
Changxing group’s limestone, lower Triassic system
Daye group’s limestone, middle Jialing river group’s
limestone, dolomite limestone. Iron copper deposits
in the area are one of the main ore deposits in the
downstream. They are divided into two metallogenetic
series: (i) submarine exhalative activities-related
metallogenetic series are any hydrothermal deposits
from the injection to the bottom of the sea environment,
(i1) intermediate acid hypabyssal intrusive activities-
activities-related ore deposits; refers to the formation
of intrusive rocks of Carboniferous sand Triassic
strata in contact zone and rock deposits. The main
types are of skarn type iron and copper deposits,
porphyry copper deposit, key, vein copper, gold
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deposits. Porphy, skarn, copper deposits in the study
area belong to this series.

According to requirements of 1:200.000 regional
stream sediment survey, a multi-element sediment
geochemical survey of streams was carried out
in Jiurui area. A total of 1482 composite samples
representing about 5364 km? were collected. Some
sampling areas at the upper part of the study area
were not able to access. The sampling density was 1
composite sample per 4 km?. There are more than 20
indexes in a composite sample, including Ag, As, Au,
Be, Cd, Cu, Hg, Li, Mn, Mo, Nb, Pb, Sb, Sn, Th, V, W,
Y, Zn,ALO,,
three ore-forming elements. One of three geochemical

Ca0, K,0, Na,O. Silver, gold, copper are

associations of elements caused anomalous area in
the study area is Cu, Au, Mo, Ag, Pb, Zn, As and
Sb elements. There are two metallogenic series in
the study area. A total of 13 ore deposits were found
marked by numeric characters from 1 to 13 (Figure 1).

3. Methodology
3.1. Spatial Correlogram

Spatial correlation of a single variable can be
measured by using Moran’s 1 (1950) or Geary’s ¢
(1954) spatial correlation statistics (Cliff and Ord,
1981). The Moran’s I seems to be the most commonly
used statistic (Anselin, 1995; Getis and Ord, 1996),
which is given by:

ﬂZ%il T Wy (x; — ®)(x; — %)
So L (x —X)?

where: x,and X, are the values of the observed variables
at sites i and /, X is the average of an observed variable,
d 1is the distance class considered in the calculation,
S is the sum of the weights w, and N stands for the
number of observations.

1(d) = (1)

Spatial correlation coefficients I(d) are tested for
statistical significance by computing the expected
values (E) and the variance of the 1.

3.2. Robust Distance-based Local Spatial Outlier and
Cluster Identification

Standard methods for multivariate outlier detection
are based on the Mahalanobis distance (Filzmoser,
2005) which is defined as
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Figure 1- Location map of 1482 stream sedim

MD, = ((x; — C(x; — 1))z )

for a p-dimensional observation x, andi =1, 2,..., n. t
is the multivariate arithmetic mean, the centroid, and
C is the sample covariance matrix. The Mahalanobis
distance is sensitive to the presence of outliers
(Rousseeuw and Van Zomeren, 1990)

Using robust estimators of location and scatter in
the formula for the Mahalanobis distance equation
(2) leads to the so-called robust distances (RDs).
Rousseeuw and Van Zomeren (1990) used these RDs
for multivariate outlier detection. A global outlier is a
measured sample point that has a very high or a very
low value relative to all of the values in a dataset. If the
squared RD for an observation is larger than X%;o.t)s,
it can be declared a global outlier. In the study, local
outliers were considered. The robust Mahanalobis
distance for the geochemical association of elements
was first used as an investigated variable. Local spatial
clusters and outliers were then identified by local
Moran statistic using RD. Moran I statistic (Moran,
1948; Cliff and Ord, 1973, 1981) gives a formal
indication of the degree of linear association between
a vector of observed values y and a weighted average
of the neighboring values, or spatial lag, Wy. When
the spatial weight matrix is row-standardized such that
the elements in each row sum to 1, Moran I is defined
as (Anselin, 1995):

ent samples and 13 ore deposits at scale 1:200.000.

(€)

where, the y is in deviations from their mean, (x; — X).
and Sy = N. I is formally equivalent to the regression
coefficient in a regression of Wy on y. A high positive
local Moran’s I value implies that the location under
study has similarly high or low values as its neighbors,
thus the locations are spatial clusters (Zhang et al.,
2008). If p(I)<a, 1>0 and x; — x>0, then x, and
Xjesi belong to association between high values
(high-high clusters) (Figure 2-a). If p(I)<a, 1>0 and
X; —X<0, then x, and x;e; belong to association
between low values (low-low clusters) (Figure 2-d).
Spatial outliers are those values that are significantly
different from the wvalues of their surrounding
locations (Lalor and Zhang, 2001). If p(I)<a, 1.<0 and
x; — X>0,thenhighvalue,x issurroundedbylowvalues,
Xjesi (high-low outliers) (Figure 2-¢). If p(1)<a,[.<0Oand
x; — x>0, low value, x, is surrounded by high values,
Xjesi (low-high outliers) (Figure 2-b).

3.3. Data Processing

The robust Mahalanobis distances, the descriptive
statistical parameters and exploratory data analysis
plots were performed and conducted using the
StatDA and MASS packages of Statistical Modeling
and Computing - R Language (version 1386 2.15.0).
Moran’s I spatial correlograms were carried out using
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Figure 2- Spatial cluster and outlier schematic diagram (Zhang
etal., 2008).

the ncf packages in R. The increment of the distance
classes were 2 km. Testing for the significance of
correlograms with each distance class was performed
by arandomization test using 500 permutations. Spatial
weight matrix and local Moran’s I statistic were carried
out with spatial statistics software - GeoDA (version

0951). The local Moran’s I statistic was tested using
999 permutations, and the significance level (p-value)
was set to 0.05 (5%). The results of spatial clusters and
outliers were visualized using ArcGIS 9.3.

4. Results and Discussions
4.1. Distribution of Robust Mahalanobis Distances

Robust Mahalanobis distances (RMD) for
original data were calculated using equation (2) are
approximately chi-square distributed with a degree
of freedom of 8. The distributions of RMDs can be
seen in figure 3. The distribution of RMD is obviously
strongly right-skewed, as a result typical asymmetrical
(Figure 3a). The data points do not follow a straight
line of normal Q-Q plots (Figure 3b). Box-Cox
transformation was applied to make the distribution
of RMD close to normality. The transformed RMD
results in a symmetrical distribution and the histogram
and density trace show symmetry as shown in figure
3c. The transformed data mostly follow straight lines
of Q-Q plots (Figure 3d).
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Figure 3- Histogram, density trace, 1-D scatter and Q-Q plot for the RMD of association of Cu, Au, Mo, Ag, Pb, Zn, As, Sb elements: raw data

(upper), transformed data (lower).
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4.2. Spatial Variability Analysis of RMDs

Both Moran correlograms for RMD and
transformed RMD show a phenomenon that Moran
correlation coefficients gradually decrease as distances
get longer (Figure 4). Moran spatial correlogram found
the strongest, positive and significant correlation at
distance band ranging from 0 to 2 km for both non-
transformed and transformed data. Spatial correlation
decreased as distances increased. No significant spatial
correlation was found at a distance above 11.1 km for
non-transformed data (Figure 4a) and above 14.8 km
for Box-Cox transformed data (Figure 4b). It can be
concluded that spatial correlation for non-transformed
RMDs and transformed RMDs are available when the
distance is below 11.1 km. A distance of 12 km was
thus applied to construct a spatial weight matrix.

4.3. Spatial Cluster and Outlier Analysis

Six different distance bands were used to construct
spatial weights matrix including d =2, 4, 6, 8, 10 and
12 km. The weights for neighboring locations were
assigned 1 if the distances were within the band d,
otherwise the weights were 0. To reduce the influence
of high values (extreme values and outliers), Box-Cox
transformation was applied for the identification of
spatial clusters and outliers.

Table 1 shows the results of the identification of
spatial clusters and spatial outliers for the association
of elements. It can be seen that the number of
significant spatial clusters (high-high, low-low) and
spatial outliers (low-high, high-low) increased as
distance bands increased for both the raw data and
Box-Cox transformed data.

Table 1- Summary table of spatial clusters and outliers for association
of Cu, Au, Mo, Ag, Pb, Zn, As and Sb elements using the
raw RMD and Box-Cox transformed data.

Distance ~ not hi_gh— low-low lo_w— high-
bands (km) | significant high high low
d=2 1191 65 145 26 4
d=4 1003 78 301 41 8
d=6 785 101 439 80 26
d=8 676 106 501 110 38
d=10 591 109 544 144 43
d=12 585 94 534 170 48
d*=2 1118 160 112 18 23
d*=4 908 231 199 38 55
d*=6 762 267 255 57 90
d*=8 643 274 295 82 137
d*=10 511 282 356 106 176
d*=12 464 284 384 107 192

For the raw data, the majority of samples were
not significant, indicating no presence of spatial
correlation or spatial dependence as distance bands
were short, such as at 2 km with 1191 insignificant
samples, at 4 km with 1003 insignificant samples and
at 6 km with 785 insignificant samples in the southern
part of the study area (Table 1 and Figure 5-1a, 1b,
Ic). There were only 65 high-high samples clustered
and 26 low-high, 4 high-low spatial outliers were
detected at distance band of 2km (Figure 5-1a). When
the distance band increased to 4 km, the number of
clusters and outliers increased to 78 high-high samples
clustered, 41 low-high and 8 high-low outliers (Figure
5-1a). Following this pattern, the number of clusters
and outliers increased as distance bands increased to
6, 8, 10 and 12 km. Most of high-high spatial clusters
were found in the north and in the east together with
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Figure 4- Moran correlograms for original Mahalanobis distance (a) and Box-Cox transformed one (b) of
associations of Cu, Au, Mo, Ag, Pb, Zn, As and Sb elements.
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Figure 5- Spatial distribution maps of clusters and outliers of association of Cu, Au, Mo, Ag, Pb, Zn, As, Sb elements for Mahalanobis
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distances using raw data (1-a,b,c,d,e,f) and Box-Cox transformed data (2-a,b,c,d,e,f) at six different distance bands d = 2, 4,
6,8, 10 and 12 km.
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many low-high spatial outliers, where a metallogenic
belt was found including Cu and multi-metal deposits
marked by 6, 1,9, 10,2, 13,7 and 8 in the east-northern
part (Figure 5-1a, b, ¢, e, and f) except at a distance 8
km (Figure 5-1d). Moran’s 1. also detected a significant
high-high spatial cluster and low-high spatial outlier
area in the north-west. Several significant high-low
outliers were detected in the west, the south-west
and the east, especially as distance bands increased.
Significant low-low spatial clusters indicate that local
stability occurred in these areas where no known ore
deposits were found. The area of high-low outliers
detected does not have conformity with known
occurrences. It is therefore concluded that high-low
spatial outliers played no role in the identification of
ore deposits. No significant high-high clusters were
found in the southern part where ore deposits 4 and 5
were located (Figure 5-1a, b, ¢, d, e, and f).

For Box-Cox transformed data, compared with the
results of using the raw data, the number of spatial
clusters and spatial outliers detected by local Moran’s
L. are much more than that of non-transformed data.
For example, at a distance of 2 km, there were 160
high-high spatial clusters, 18 low-high and 23 high-
low spatial outliers for Box-Cox transformed data.
There were 65 high-high spatial clusters, 26 low-
high and 4 high-low spatial outliers for the raw data.
In this case, high-low spatial outliers came into play.
Moran’s I, did not detect spatial outliers or spatial
clusters at distance bands of 2, 4 and 6 km where ore
deposit 3 was found before (Figure 5-2a, b, and c),
but it detected significant high-low spatial clusters at
distances of 2 km, 4 km and 6 km (Figure 5-2d, e, and
f). Also contrary to the case of non-transformed data,
some significant high-high clusters were found in the
southern part for Box-Cox transformed data where ore
deposits 4 and 5 were located (Figure 5-2a, b, c, d, e,
and f).

5. Conclusions

In this study, a new method to study spatial
distribution patterns of multivariate data in an
association of elements was proposed using robust
Mahalanobis distance and local Moran’s L. Four
important issues can be concluded: (1) The results
of the identification of spatial distribution patterns
of clusters and outliers were strongly affected by the
existence of high values (extreme values and outliers),
as well as data transformation. It is suggested that data

should be transformed first or high values (especially
outliers) should be removed before calculation to
reduce their influences on the results; (2) The results
of the identification of spatial distribution patterns
were also influenced by the construction of a spatial
weights matrix. Generally, the number of spatial
clusters and spatial outliers increased as distance bands
increased. Therefore, it is suggested to study spatial
distribution patterns at different bands; (3) High-high
spatial clusters and low-high spatial outliers played
an important role in the identification of local spatial
instability and spatial heterogeneity in geochemical
data. They may be influenced by extraneous and exotic
processes such as those related to rare rock types
and mineral deposit formation processes. High-high
spatial clusters and low-high spatial outliers provided
significant ore-finding information, which can help
geochemists to have a better understanding of the
potential for mineralization of element associations in
the study area; (4) Low-high spatial outliers are a kind
of multivariate outliers indicating the existence of
local spatial instability and spatial heterogeneity, but
they did not come into play in providing ore-finding
information.
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