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Abstract. In this study, we show that the system of difference equations

xn =
xn−2yn−3

yn−1 (a+ bxn−2yn−3)
,

yn =
yn−2zn−3

zn−1 (c+ dyn−2zn−3)
, n ∈ N0,

zn =
zn−2xn−3

xn−1 (e+ fzn−2xn−3)
,

where the initial values x−i, y−i, z−i, i = 1, 3 and the parameters a, b, c, d, e,

f are non-zero real numbers, can be solved in closed form. Moreover, we obtain
the solutions of above system in explicit form according to the parameters a,

c and e are equal 1 or not equal 1. In addition, we get periodic solutions
of aforementioned system. Finally, we define the forbidden set of the initial

conditions by using the acquired formulas.

1. Introduction

In recent years, many authors have been interested in non-linear difference equa-
tions and non-linear systems of difference equations [1–3, 5, 6, 8–10, 12–14, 20–23,
25–41]. One of the important topics in this field is the solvability of non-linear
difference equations or non-linear difference equations systems. There are different
methods for obtaining solutions of non-linear difference equations and non-linear
systems of difference equations (two-dimensional or three-dimensional). One of the
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methods for solving non-linear difference equations and non-linear difference equa-
tions systems is to use the change of variables. Then, aforementioned difference
equations or their systems can be reduced to a linear difference equation with con-
stant or variable coefficients. The other method is to use induction method. For
instance, El-Metwally et al. solved the following non-linear difference equations

xn+1 =
xn−1xn−2

xn (±1± xn−1xn−2)
, n ∈ N0, (1)

by using induction method in [7]. In addition, they investigated the behavior of the
solutions of difference equations in (1).

In addition, Ibrahim et al. in [15] obtained the solutions of the following differ-
ence equation

xn+1 =
xn−1xn−2

xn (an + bnxn−1xn−2)
, n ∈ N0, (2)

where initial conditions x−2, x−1, x0 are non-zero real numbers and (an)n∈N0
, (bn)n∈N0

are real two-periodic sequences. They used induction method to acquire the solu-
tions of equation (2).

Ahmed et al. in [4], investigated the periodic character and the form of the
solutions of the following two-dimensional difference equations systems

xn+1 =
xn−1yn−2

yn (−1± xn−1yn−2)
, yn+1 =

yn−1xn−2

xn (±1± yn−1xn−2)
, n ∈ N0, (3)

by induction with x−j , y−j , j = 0, 2 are nonzero real numbers.

A few years ago, in [16], Kara and Yazlik showed that the following two-dimensional
difference equations system

xn =
xn−2yn−3

yn−1 (an + bnxn−2yn−3)
, yn =

yn−2xn−3

xn−1 (αn + βnyn−2xn−3)
, n ∈ N0, (4)

where the initial conditions x−j , y−j , j ∈ {1, 2, 3} and the sequences (an)n∈N0
,

(bn)n∈N0
, (αn)n∈N0

, (βn)n∈N0
are non-zero real numbers can be solved in closed-

form. In addition, they acquired the forbidden set of the initial values x−j , y−j ,
j = 1, 3 for system (4) and gave a study of the long-term behavior of its solutions
when for every n ∈ N0, all the sequences (an) , (bn) , (αn) , (βn) are constant. They
used the change of variables to acquire the solutions of system (4).

Recently, the authors of [11], obtained exact formulas for the solutions of the
two-dimensional system of difference equations

xn+1 =
xn−k+1yn−k

yn (an + bnxn−k+1yn−k)
, yn+1 =

xn−kyn−k+1

xn (cn + dnyn−kyn−k+1)
, n ∈ N0, (5)
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where (an)n∈N0
, (bn)n∈N0

, (cn)n∈N0
and (dn)n∈N0

are non-zero real sequences. Note

that, system (4) can be obtained by taking k = 2 in system (5).

In addition, Kara and Yazlik showed that the following two-dimensional system
of non-linear difference equations

xn =
xn−kyn−k−l

yn−l (an + bnxn−kyn−k−l)
, yn =

yn−kxn−k−l

xn−l (αn + βnyn−kxn−k−l)
, n ∈ N0, (6)

where k, l ∈ N, (an)n∈N0
, (bn)n∈N0

, (αn)n∈N0
, (βn)n∈N0

and the initial values x−i,

y−i, i = 1, k + l, are real numbers can be solved in [17]. Also, by using these ob-
tained formulas, they investigated the asymptotic behavior of well-defined solutions
of system (6) for the case k = 2, l = k. They used the change of variables to obtain
the solutions of system (6).

Quite recently, authors of [18] showed that three-dimensional system of difference
equations

xn =
xn−2zn−3

zn−1 (an + bnxn−2zn−3)
,

yn =
yn−2xn−3

xn−1 (αn + βnyn−2xn−3)
, n ∈ N0, (7)

zn =
zn−2yn−3

yn−1 (An +Bnzn−2yn−3)
,

where the initial values x−j , y−j , z−j , j ∈ {1, 2, 3} and the sequences (an)n∈N0
,

(bn)n∈N0
, (αn)n∈N0

, (βn)n∈N0
, (An)n∈N0

, (Bn)n∈N0
are non-zero real numbers, can

be solved in closed form. They used the change of variables to acquire the solutions
of system (7).

Finally, in [19], Kara et al. obtained explicit formulas for the well defined solu-
tions of the following system of difference equations

xn+1 =

∏k
j=0 zn−3j∏k

j=1 xn−(3j−1)

(
an + bn

∏k
j=0 zn−3j

) ,
yn+1 =

∏k
j=0 xn−3j∏k

j=1 yn−(3j−1)

(
cn + dn

∏k
j=0 xn−3j

) , n ∈ N0, (8)

zn+1 =

∏k
j=0 yn−3j∏k

j=1 zn−(3j−1)

(
en + fn

∏k
j=0 yn−3j

) ,
where k ∈ N0, the initial conditions x−i, y−i, z−i, i = 0, 3k and the sequences
(an)n∈N0

, (bn)n∈N0
, (cn)n∈N0

, (dn)n∈N0
, (en)n∈N0

, (fn)n∈N0
are real numbers. They
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used change of variables to obtain the solutions of system (8).

In this paper, we study the following three-dimensional system of difference
equations

xn =
xn−2yn−3

yn−1 (a+ bxn−2yn−3)
,

yn =
yn−2zn−3

zn−1 (c+ dyn−2zn−3)
, n ∈ N0, (9)

zn =
zn−2xn−3

xn−1 (e+ fzn−2xn−3)
,

where the initial values x−i, y−i, z−i, i = 1, 3 and the parameters a, b, c, d, e, f
are non-zero real numbers. We solve system (9) in closed form by using convenient
transformation. We obtain the solutions of system (9) in explicit form according to
the parameters a, c and e are equal 1 or not equal 1. In addition, we get periodic
solutions of system (9). Finally, we define the forbidden set of the initial conditions
by using the obtained formulas. Note that system (9) is three-dimensional form of
equation (2) and system (4).

Definition 1. (Periodicity) Let (xn, yn, zn)n≥−3 be solution to difference equa-

tions system (9). The solution (xn, yn, zn)n≥−3 is said to be eventually periodic p if

xn+p = xn, yn+p = yn, zn+p = zn for all n ≥ n0 where n0 ∈ Z, p ∈ Z+. If n0 = −3
is said that the solution is periodic with period p.

Lemma 1. [24] Let (αn)n∈N0
and (βn)n∈N0

be two sequences of real numbers and

the sequences x2m+i, i ∈ {0, 1}, be solutions of the equations

x2m+i = α2m+ix2(m−1)+i + β2m+i, m ∈ N0. (10)

Then, for each fixed i ∈ {0, 1} and m ≥ −1, equation (10) has the general solution

x2m+i = xi−2

m∏
j=0

α2j+i +

m∑
l=0

β2l+i

m∏
j=l+1

α2j+i.

Further, if (αn)n∈N0
and (βn)n∈N0

are constant and i ∈ {0, 1}, then

x2m+i =

{
αm+1xi−2 + β 1−αm+1

1−α , if α ̸= 1,

xi−2 + β (m+ 1) , if α = 1.

2. The Solutions of System (9) in Closed Form

Let {(xn, yn, zn)}n≥−3 be a solution of system (9). If at least one of the initial

conditions x−j , y−j , z−j , j = 1, 3, is equal to zero, then the solution of system
(9) is not defined. For example, if x−3 = 0, then z0 = 0 and so y1 is not defined.
Similarly, if y−3 = 0 (or z−3 = 0), then x0 = 0 (or y0 = 0) and so z1 (or x1)
is not defined. For j = 1, 2, the other cases are similar. On the other hand, if
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xn0
= 0 (n0 ∈ N0), xn ̸= 0, for −3 ≤ n ≤ n0 − 1, and xk, yk and zk are defined for

−3 ≤ k ≤ n0 − 1, then according to the first equation in (9) we get that yn0−3 = 0.
If n0 − 3 ≤ −1, then y−j0 = 0, for j0 ∈ {1, 2, 3}. If 3 ≤ n0 ≤ 5 then from this and
the second equation in (9) we have that yn0−5 = 0 or zn0−6 = 0. If n0 − 5 ≤ 0,
then z−j0 = 0, for j0 ∈ {1, 2, 3} and y−j1 = 0, for j1 ∈ {1, 2}. If n0 > 5 from
this and first equation in (9) we have that yn0−5 = 0 or zn0−6 = 0. If n0 > 5
and zn0−6 = 0 from this and third, second, first equations in (9) we have that
xn0−2 = 0, which is a contradiction. The other cases (yn1 = 0 and zn2 = 0) can
be similarly proved. Thus, for every well-defined solution of system (9) we have
that xnynzn ̸= 0, n ≥ −3, if and only if x−iy−iz−i ̸= 0, for i = 1, 3. Note that the
system (9) can be written in the form

1

xnyn−1
=
a+ bxn−2yn−3

xn−2yn−3
,

1

ynzn−1
=
c+ dyn−2zn−3

yn−2zn−3
, n ∈ N0, (11)

1

znxn−1
=
e+ fzn−2xn−3

zn−2xn−3
.

Using the following variables

un =
1

xnyn−1
, vn =

1

ynzn−1
, wn =

1

znxn−1
, n ≥ −2, (12)

then system (11) transforms to the following linear difference equations

un = aun−2 + b, vn = cvn−2 + d, wn = ewn−2 + f, n ∈ N0, (13)

From Lemma 1, the solutions of equations in (13) are

u2m+i =

{
am+1ui−2 +

1−am+1

1−a b, if a ̸= 1,

ui−2 + (m+ 1) b if a = 1,

v2m+i =

{
cm+1vi−2 +

1−cm+1

1−c d, if c ̸= 1,

vi−2 + (m+ 1) d, if c = 1,
m ∈ N0, (14)

w2m+i =

{
em+1wi−2 +

1−em+1

1−e f, if e ̸= 1,

wi−2 + (m+ 1) f, if e = 1,

for i ∈ {0, 1}. From equations in (12) we get

x2m+i =
v2m+i−1

u2m+i

u2m+i−3

w2m+i−2

w2m+i−5

v2m+i−4
x2(m−3)+i,

y2m+i =
w2m+i−1

v2m+i

v2m+i−3

u2m+i−2

u2m+i−5

w2m+i−4
y2(m−3)+i, m ∈ N,

z2m+i =
u2m+i−1

w2m+i

w2m+i−3

v2m+i−2

v2m+i−5

u2m+i−4
z2(m−3)+i,
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where i ∈ {1, 2}, and consequently

x6m+l =
v6m+l−1

u6m+l

u6m+l−3

w6m+l−2

w6m+l−5

v6m+l−4
x6(m−1)+l, m ∈ N0,

y6m+l =
w6m+l−1

v6m+l

v6m+l−3

u6m+l−2

u6m+l−5

w6m+l−4
y6(m−1)+l, m ∈ N0, (15)

z6m+l =
u6m+l−1

w6m+l

w6m+l−3

v6m+l−2

v6m+l−5

u6m+l−4
z6(m−1)+l, m ∈ N0,

where l = 3, 8, as far as 6m+ l ≥ 3. From (15), we have that

x6m+l = xl−6

m∏
s=0

v6s+l−1

u6s+l

u6s+l−3

w6s+l−2

w6s+l−5

v6s+l−4
,

y6m+l = yl−6

m∏
s=0

w6s+l−1

v6s+l

v6s+l−3

u6s+l−2

u6s+l−5

w6s+l−4
, (16)

z6m+l = zl−6

m∏
s=0

u6s+l−1

w6s+l

w6s+l−3

v6s+l−2

v6s+l−5

u6s+l−4
,

where m ≥ −1 and l = 3, 8. From (16), we get

x6m+2t+k = x2t+k−6

m∏
s=0

v6s+2t+k−1

u6s+2t+k

u6s+2t+k−3

w6s+2t+k−2

w6s+2t+k−5

v6s+2t+k−4
,

y6m+2t+k = y2t+k−6

m∏
s=0

w6s+2t+k−1

v6s+2t+k

v6s+2t+k−3

u6s+2t+k−2

u6s+2t+k−5

w6s+2t+k−4
, (17)

z6m+2t+k = z2t+k−6

m∏
s=0

u6s+2t+k−1

w6s+2t+k

w6s+2t+k−3

v6s+2t+k−2

v6s+2t+k−5

u6s+2t+k−4
,

for t ∈ {1, 2, 3} and k ∈ {1, 2}. Employing (14) in (17), we get solutions of system
(9).

3. Particular Cases of System (9)

Now, we will examine the solutions in 8 different cases depending on whether
the parameters a, c and e are equal 1 or not equal 1.
3.1. Case a ̸= 1, c ̸= 1, e ̸= 1
In this case, the solutions of system (9) can be written in the following form

x6m+2t+1 = x2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

c3s+t+1 ((1− c)− y−2z−3d) + y−2z−3d

a3s+t+1 ((1− a)− x−1y−2b) + x−1y−2b

× a3s+t ((1− a)− x−2y−3b) + x−2y−3b

e3s+t ((1− e)− x−2z−1f) + x−2z−1f

× e3s+t−1 ((1− e)− x−3z−2f) + x−3z−2f

c3s+t−1 ((1− c)− y−1z−2d) + y−1z−2d
,
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x6m+2t+2 = x2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

c3s+t+1 ((1− c)− y−1z−2d) + y−1z−2d

a3s+t+2 ((1− a)− x−2y−3b) + x−2y−3b

× a3s+t ((1− a)− x−1y−2b) + x−1y−2b

e3s+t+1 ((1− e)− x−3z−2f) + x−3z−2f

× e3s+t−1 ((1− e)− x−2z−1f) + x−2z−1f

c3s+t ((1− c)− y−2z−3d) + y−2z−3d
,

y6m+2t+1 = y2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

e3s+t+1 ((1− e)− x−3z−2f) + x−3z−2f

c3s+t+1 ((1− c)− y−1z−2d) + y−1z−2d

× c3s+t ((1− c)− y−2z−3d) + y−2z−3d

a3s+t ((1− a)− x−1y−2b) + x−1y−2b

× a3s+t−1 ((1− a)− x−2y−3b) + x−2y−3b

e3s+t−1 ((1− e)− x−2z−1f) + x−2z−1f
,

y6m+2t+2 = y2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

e3s+t+1 ((1− e)− x−2z−1f) + x−2z−1f

c3s+t+2 ((1− c)− y−2z−3d) + y−2z−3d

× c3s+t ((1− c)− y−1z−2d) + y−1z−2d

a3s+t+1 ((1− a)− x−2y−3b) + x−2y−3b

× a3s+t−1 ((1− a)− x−1y−2b) + x−1y−2b

e3s+t ((1− e)− x−3z−2f) + x−3z−2f
,

z6m+2t+1 = z2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

a3s+t+1 ((1− a)− x−2y−3b) + x−2y−3b

e3s+t+1 ((1− e)− z−1x−2f) + z−1x−2f

× e3s+t ((1− e)− z−2x−3f) + z−2x−3f

c3s+t ((1− c)− y−1z−2d) + y−1z−2d

× c3s+t−1 ((1− c)− y−2z−3d) + y−2z−3d

a3s+t−1 ((1− a)− y−2x−1b) + y−2x−1b
,

z6m+2t+2 = z2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

a3s+t+1 ((1− a)− y−2x−1b) + y−2x−1b

e3s+t+2 ((1− e)− z−2x−3f) + z−2x−3f

× e3s+t ((1− e)− z−1x−2f) + z−1x−2f

c3s+t+1 ((1− c)− y−2z−3d) + y−2z−3d

× c3s+t−1 ((1− c)− y−1z−2d) + y−1z−2d

a3s+t ((1− a)− y−3x−2b) + y−3x−2b
,
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for m ≥ −1 and t ∈ {1, 2, 3}.
3.2. Case a = 1, c ̸= 1, e ̸= 1
In this case, solutions of system (9) are as follows

x6m+2t+1 = x2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

c3s+t+1 ((1− c)− y−2z−3d) + y−2z−3d

1 + x−1y−2(3s+ t+ 1)b

× 1 + x−2y−3(3s+ t)b

e3s+t ((1− e)− x−2z−1f) + x−2z−1f

× e3s+t−1 ((1− e)− x−3z−2f) + x−3z−2f

c3s+t−1 ((1− c)− y−1z−2d) + y−1z−2d
,

x6m+2t+2 = x2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

c3s+t+1 ((1− c)− y−1z−2d) + y−1z−2d

1 + x−2y−3(3s+ t+ 2)b

× 1 + x−1y−2(3s+ t)b

e3s+t+1 ((1− e)− x−3z−2f) + x−3z−2f

× e3s+t−1 ((1− e)− x−2z−1f) + x−2z−1f

c3s+t ((1− c)− y−2z−3d) + y−2z−3d
,

y6m+2t+1 = y2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

e3s+t+1 ((1− e)− x−3z−2f) + x−3z−2f

c3s+t+1 ((1− c)− y−1z−2d) + y−1z−2d

× c3s+t ((1− c)− y−2z−3d) + y−2z−3d

1 + x−1y−2(3s+ t)b

× 1 + x−2y−3(3s+ t− 1)b

e3s+t−1 ((1− e)− x−2z−1f) + x−2z−1f
,

y6m+2t+2 = y2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

e3s+t+1 ((1− e)− x−2z−1f) + x−2z−1f

c3s+t+2 ((1− c)− y−2z−3d) + y−2z−3d

× c3s+t ((1− c)− y−1z−2d) + y−1z−2d

1 + x−2y−3(3s+ t+ 1)b

× 1 + x−1y−2(3s+ t− 1)b

e3s+t ((1− e)− x−3z−2f) + x−3z−2f
,

z6m+2t+1 = z2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + x−2y−3(3s+ t+ 1)b

e3s+t+1 ((1− e)− x−2z−1f) + x−2z−1f

× e3s+t ((1− e)− x−3z−2f) + x−3z−2f

c3s+t ((1− c)− y−1z−2d) + y−1z−2d

× c3s+t−1 ((1− c)− y−2z−3d) + y−2z−3d

1 + x−1y−2(3s+ t− 1)b
,
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z6m+2t+2 = z2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + x−1y−2(3s+ t+ 1)b

e3s+t+2 ((1− e)− x−3z−2f) + x−3z−2f

× e3s+t ((1− e)− x−2z−1f) + x−2z−1f

c3s+t+1 ((1− c)− y−2z−3d) + y−2z−3d

× c3s+t−1 ((1− c)− y−1z−2d) + y−1z−2d

1 + x−2y−3(3s+ t)b
,

for m ≥ −1 and t ∈ {1, 2, 3}.

3.3. Case a ̸= 1, c = 1, e ̸= 1
In this case, the solutions of system (9) can be written in the following form

x6m+2t+1 = x2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + y−2z−3(3s+ t+ 1)d

a3s+t+1 ((1− a)− x−1y−2b) + x−1y−2b

× a3s+t ((1− a)− x−2y−3b) + x−2y−3b

e3s+t ((1− e)− x−2z−1f) + x−2z−1f

× e3s+t−1 ((1− e)− x−3z−2f) + x−3z−2f

1 + y−1z−2(3s+ t− 1)d
,

x6m+2t+2 = x2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + y−1z−2(3s+ t+ 1)d

a3s+t+2 ((1− a)− x−2y−3b) + x−2y−3b

× a3s+t ((1− a)− x−1y−2b) + x−1y−2b

e3s+t+1 ((1− e)− x−3z−2f) + x−3z−2f

× e3s+t−1 ((1− e)− x−2z−1f) + x−2z−1f

1 + y−2z−3(3s+ t)d
,

y6m+2t+1 = y2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

e3s+t+1 ((1− e)− x−3z−2f) + x−3z−2f

1 + y−1z−2(3s+ t+ 1)d

× 1 + y−2z−3(3s+ t)d

a3s+t ((1− a)− x−1y−2b) + x−1y−2b

× a3s+t−1 ((1− a)− x−2y−3b) + x−2y−3b

e3s+t−1 ((1− e)− x−2z−1f) + x−2z−1f
,

y6m+2t+2 = y2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

e3s+t+1 ((1− e)− x−2z−1f) + x−2z−1f

1 + y−2z−3(3s+ t+ 2)d

× 1 + y−1z−2(3s+ t)d

a3s+t+1 ((1− a)− x−2y−3b) + x−2y−3b
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× a3s+t−1 ((1− a)− x−1y−2b) + x−1y−2b

e3s+t ((1− e)− x−3z−2f) + x−3z−2f
,

z6m+2t+1 = z2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

a3s+t+1 ((1− a)− x−2y−3b) + x−2y−3b

e3s+t+1 ((1− e)− x−2z−1f) + x−2z−1f

× e3s+t ((1− e)− x−3z−2f) + x−3z−2f

1 + y−1z−2(3s+ t)d

× 1 + y−2z−3(3s+ t− 1)d

a3s+t−1 ((1− a)− x−1y−2b) + x−1y−2b
,

z6m+2t+2 = z2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

a3s+t+1 ((1− a)− x−1y−2b) + x−1y−2b

e3s+t+2 ((1− e)− x−3z−2f) + x−3z−2f

× e3s+t ((1− e)− x−2z−1f) + x−2z−1f

1 + y−2z−3(3s+ t+ 1)d

× 1 + y−1z−2(3s+ t− 1)d

a3s+t ((1− a)− x−2y−3b) + x−2y−3b
,

for m ≥ −1 and t ∈ {1, 2, 3}.

3.4. Case a ̸= 1, c ̸= 1, e = 1
In this case, solutions of system (9) are as follows

x6m+2t+1 = x2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

c3s+t+1 ((1− c)− y−2z−3d) + y−2z−3d

a3s+t+1 ((1− a)− x−1y−2b) + x−1y−2b

× a3s+t ((1− a)− x−2y−3b) + x−2y−3b

1 + x−2z−1(3s+ t)f

× 1 + x−3z−2(3s+ t− 1)f

c3s+t−1 ((1− c)− y−1z−2d) + y−1z−2d
,

x6m+2t+2 = x2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

c3s+t+1 ((1− c)− y−1z−2d) + y−1z−2d

a3s+t+2 ((1− a)− x−2y−3b) + x−2y−3b

× a3s+t ((1− a)− x−1y−2b) + x−1y−2b

1 + x−3z−2(3s+ t+ 1)f

× 1 + x−2z−1(3s+ t− 1)f

c3s+t ((1− c)− y−2z−3d) + y−2z−3d
,

y6m+2t+1 = y2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + x−3z−2(3s+ t+ 1)f

c3s+t+1 ((1− c)− y−1z−2d) + y−1z−2d
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× c3s+t ((1− c)− y−2z−3d) + y−2z−3d

a3s+t ((1− a)− x−1y−2b) + x−1y−2b

× a3s+t−1 ((1− a)− x−2y−3b) + x−2y−3b

1 + x−2z−1(3s+ t− 1)f
,

y6m+2t+2 = y2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + x−2z−1(3s+ t+ 1)f

c3s+t+2 ((1− c)− y−2z−3d) + y−2z−3d

× c3s+t ((1− c)− y−1z−2d) + y−1z−2d

a3s+t+1 ((1− a)− x−2y−3b) + x−2y−3b

× a3s+t−1 ((1− a)− x−1y−2b) + x−1y−2b

1 + x−3z−2(3s+ t)f
,

z6m+2t+1 = z2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

a3s+t+1 ((1− a)− x−2y−3b) + x−2y−3b

1 + x−2z−1(3s+ t+ 1)f

× 1 + x−3z−2(3s+ t)f

c3s+t ((1− c)− y−1z−2d) + y−1z−2d

× c3s+t−1 ((1− c)− y−2z−3d) + y−2z−3d

a3s+t−1 ((1− a)− x−1y−2b) + x−1y−2b
,

z6m+2t+2 = z2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

a3s+t+1 ((1− a)− x−1y−2b) + x−1y−2b

1 + x−3z−2(3s+ t+ 2)f

× 1 + x−2z−1(3s+ t)f

c3s+t+1 ((1− c)− y−2z−3d) + y−2z−3d

× c3s+t−1 ((1− c)− y−1z−2d) + y−1z−2d

a3s+t ((1− a)− x−2y−3b) + x−2y−3b
,

for m ≥ −1 and t ∈ {1, 2, 3}.

3.5. Case a = 1, c = 1, e ̸= 1
In this case, the solution of system (9) can be written in the following form

x6m+2t+1 = x2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + y−2z−3(3s+ t+ 1)d

1 + x−1y−2(3s+ t+ 1)b

× 1 + x−2y−3(3s+ t)b

e3s+t ((1− e)− x−2z−1f) + x−2z−1f

× e3s+t−1 ((1− e)− x−3z−2f) + x−3z−2f

1 + y−1z−2(3s+ t− 1)d
,
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x6m+2t+2 = x2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + y−1z−2(3s+ t+ 1)d

1 + x−2y−3(3s+ t+ 2)b

× 1 + x−1y−2(3s+ t)b

e3s+t+1 ((1− e)− x−3z−2f) + x−3z−2f

× e3s+t−1 ((1− e)− x−2z−1f) + x−2z−1f

1 + y−2z−3(3s+ t)d
,

y6m+2t+1 = y2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

e3s+t+1 ((1− e)− x−3z−2f) + x−3z−2f

1 + y−1z−2(3s+ t+ 1)d

× 1 + y−2z−3(3s+ t)d

1 + x−1y−2(3s+ t)b

1 + x−2y−3(3s+ t− 1)b

e3s+t−1 ((1− e)− x−2z−1f) + x−2z−1f
,

y6m+2t+2 = y2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

e3s+t+1 ((1− e)− x−2z−1f) + x−2z−1f

1 + y−2z−3(3s+ t+ 2)d

× 1 + y−1z−2(3s+ t)d

1 + x−2y−3(3s+ t+ 1)b

1 + x−1y−2(3s+ t− 1)b

e3s+t ((1− e)− x−3z−2f) + x−3z−2f
,

z6m+2t+1 = z2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + x−2y−3(3s+ t+ 1)b

e3s+t+1 ((1− e)− x−2z−1f) + x−2z−1f

× e3s+t ((1− e)− x−3z−2f) + x−3z−2f

1 + y−1z−2(3s+ t)d

1 + y−2z−3(3s+ t− 1)d

1 + x−1y−2(3s+ t− 1)b
,

z6m+2t+2 = z2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + x−1y−2(3s+ t+ 1)b

e3s+t+2 ((1− e)− x−3z−2f) + x−3z−2f

× e3s+t ((1− e)− x−2z−1f) + x−2z−1f

1 + y−2z−3(3s+ t+ 1)d

1 + y−1z−2(3s+ t− 1)d

1 + x−2y−3(3s+ t)b
,

for m ≥ −1 and t ∈ {1, 2, 3}.

3.6. Case a = 1, c ̸= 1, e = 1
In this case, solutions of system (9) are as follows

x6m+2t+1 = x2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

c3s+t+1 ((1− c)− y−2z−3d) + y−2z−3d

1 + x−1y−2(3s+ t+ 1)b

× 1 + x−2y−3(3s+ t)b

1 + x−2z−1(3s+ t)f

1 + x−3z−2(3s+ t− 1)f

c3s+t−1 ((1− c)− y−1z−2d) + y−1z−2d
,
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x6m+2t+2 = x2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

c3s+t+1 ((1− c)− y−1z−2d) + y−1z−2d

1 + x−2y−3(3s+ t+ 2)b

× 1 + x−1y−2(3s+ t)b

1 + x−3z−2(3s+ t+ 1)f

1 + x−2z−1(3s+ t− 1)f

c3s+t ((1− c)− y−2z−3d) + y−2z−3d
,

y6m+2t+1 = y2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + x−3z−2(3s+ t+ 1)f

c3s+t+1 ((1− c)− y−1z−2d) + y−1z−2d

× c3s+t ((1− c)− y−2z−3d) + y−2z−3d

1 + x−1y−2(3s+ t)b

1 + x−2y−3(3s+ t− 1)b

1 + x−2z−1(3s+ t− 1)f
,

y6m+2t+2 = y2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + x−2z−1(3s+ t+ 1)f

c3s+t+2 ((1− c)− y−2z−3d) + y−2z−3d

× c3s+t ((1− c)− y−1z−2d) + y−1z−2d

1 + x−2y−3(3s+ t+ 1)b

1 + x−1y−2(3s+ t− 1)b

1 + x−3z−2(3s+ t)f
,

z6m+2t+1 = z2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + x−2y−3(3s+ t+ 1)b

1 + x−2z−1(3s+ t+ 1)f

× 1 + x−3z−2(3s+ t)f

c3s+t ((1− c)− y−1z−2d) + y−1z−2d

× c3s+t−1 ((1− c)− y−2z−3d) + y−2z−3d

1 + x−1y−2(3s+ t− 1)b
,

z6m+2t+2 = z2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + x−1y−2(3s+ t+ 1)b

1 + x−3z−2(3s+ t+ 2)f

× 1 + x−2z−1(3s+ t)f

c3s+t+1 ((1− c)− y−2z−3d) + y−2z−3d

× c3s+t−1 ((1− c)− y−1z−2d) + y−1z−2d

1 + x−2y−3(3s+ t)b
,

for m ≥ −1 and t ∈ {1, 2, 3}.

3.7. Case a ̸= 1, c = 1, e = 1
In this case, the solution of system (9) can be written in the following form

x6m+2t+1 = x2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + y−2z−3(3s+ t+ 1)d

a3s+t+1 ((1− a)− x−1y−2b) + x−1y−2b
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× a3s+t ((1− a)− x−2y−3b) + x−2y−3b

1 + x−2z−1(3s+ t)f

1 + x−3z−2(3s+ t− 1)f

1 + y−1z−2(3s+ t− 1)d
,

x6m+2t+2 = x2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + y−1z−2(3s+ t+ 1)d

a3s+t+2 ((1− a)− x−2y−3b) + x−2y−3b

× a3s+t ((1− a)− x−1y−2b) + x−1y−2b

1 + x−3z−2(3s+ t+ 1)f

1 + x−2z−1(3s+ t− 1)f

1 + y−2z−3(3s+ t)d
,

y6m+2t+1 = y2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + x−3z−2(3s+ t+ 1)f

1 + y−1z−2(3s+ t+ 1)d

× 1 + y−2z−3(3s+ t)d

a3s+t ((1− a)− x−1y−2b) + x−1y−2b

× a3s+t−1 ((1− a)− x−2y−3b) + x−2y−3b

1 + x−2z−1(3s+ t− 1)f
,

y6m+2t+2 = y2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + x−2z−1(3s+ t+ 1)f

1 + y−2z−3(3s+ t+ 2)d

× 1 + y−1z−2(3s+ t)d

a3s+t+1 ((1− a)− x−2y−3b) + x−2y−3b

× a3s+t−1 ((1− a)− x−1y−2b) + x−1y−2b

1 + x−3z−2(3s+ t)f
,

z6m+2t+1 = z2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

a3s+t+1 ((1− a)− x−2y−3b) + x−2y−3b

1 + x−2z−1(3s+ t+ 1)f

× 1 + x−3z−2(3s+ t)f

1 + y−1z−2(3s+ t)d

1 + y−2z−3(3s+ t− 1)d

a3s+t−1 ((1− a)− x−1y−2b) + x−1y−2b
,

z6m+2t+2 = z2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

a3s+t+1 ((1− a)− x−1y−2b) + x−1y−2b

1 + x−3z−2(3s+ t+ 2)f

× 1 + x−2z−1(3s+ t)f

1 + y−2z−3(3s+ t+ 1)d

1 + y−1z−2(3s+ t− 1)d

a3s+t ((1− a)− x−2y−3b) + x−2y−3b
,

for m ≥ −1 and t ∈ {1, 2, 3}.

3.8. Case a = 1, c = 1, e = 1
In this case, solutions of system (9) are as follows



476 M. KARA AND Ö. AKTAŞ

x6m+2t+1 = x2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + y−2z−3(3s+ t+ 1)d

1 + x−1y−2(3s+ t+ 1)b

× 1 + x−2y−3(3s+ t)b

1 + x−2z−1(3s+ t)f

1 + x−3z−2(3s+ t− 1)f

1 + y−1z−2(3s+ t− 1)d
,

x6m+2t+2 = x2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + y−1z−2(3s+ t+ 1)d

1 + x−2y−3(3s+ t+ 2)b

× 1 + x−1y−2(3s+ t)b

1 + x−3z−2(3s+ t+ 1)f

1 + x−2z−1(3s+ t− 1)f

1 + y−2z−3(3s+ t)d
,

y6m+2t+1 = y2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + x−3z−2(3s+ t+ 1)f

1 + y−1z−2(3s+ t+ 1)d

× 1 + y−2z−3(3s+ t)d

1 + x−1y−2(3s+ t)b

1 + x−2y−3(3s+ t− 1)b

1 + x−2z−1(3s+ t− 1)f
,

y6m+2t+2 = y2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + x−2z−1(3s+ t+ 1)f

1 + y−2z−3(3s+ t+ 2)d

× 1 + y−1z−2(3s+ t)d

1 + x−2y−3(3s+ t+ 1)b

1 + x−1y−2(3s+ t− 1)b

1 + x−3z−2(3s+ t)f

z6m+2t+1 = z2t−5

m∏
s=0

x−1y−1z−1

x−3y−3z−3

1 + x−2y−3(3s+ t+ 1)b

1 + x−2z−1(3s+ t+ 1)f

× 1 + x−3z−2(3s+ t)f

1 + y−1z−2(3s+ t)d

1 + y−2z−3(3s+ t− 1)d

1 + x−1y−2(3s+ t− 1)b
,

z6m+2t+2 = z2t−4

m∏
s=0

x−3y−3z−3

x−1y−1z−1

1 + x−1y−2(3s+ t+ 1)b

1 + x−3z−2(3s+ t+ 2)f

× 1 + x−2z−1(3s+ t)f

1 + y−2z−3(3s+ t+ 1)d

1 + y−1z−2(3s+ t− 1)d

1 + x−2y−3(3s+ t)b
,

for m ≥ −1 and t ∈ {1, 2, 3}.

Lemma 2. If a ̸= 1, c ̸= 1, e ̸= 1, b ̸= 0, d ̸= 0 and f ̸= 0, then the system (9)
has 6−periodic solutions.



ON SOLUTIONS OF SYSTEM OF DIFFERENCE EQUATIONS 477

Proof. Let

αn = xn−2yn−3, βn = yn−2zn−3 and γn = zn−2xn−3, n ∈ N0.

Then from (9) we get

αn+2 =
αn

a+ bαn
, βn+2 =

βn

c+ dβn

and γn+2 =
γn

e+ fγn

, n ∈ N0. (18)

If b ̸= 0, d ̸= 0 and f ̸= 0, then system (18) has a unique equilibrium solution which(
α, β, γ

)
is different from (0, 0, 0), that is,

αn = α =
1− a

b
̸= 0, βn = β =

1− c

d
̸= 0, γn = γ =

1− e

f
̸= 0, n ∈ N0.

If α = 0 or β = 0 or γ = 0, then system (9) has not well-defined solutions. From
(18), we have

xn−2 =
1− a

byn−3
=

(1− a)d

b(1− c)
zn−4 =

(1− a)d(1− e)

b(1− c)fxn−5
,

=
d(1− e)

(1− c)f
yn−6 =

1− e

fzn−7
= xn−8, n ≥ 5,

yn−2 =
1− c

dzn−3
=

(1− c)f

d(1− e)
xn−4 =

(1− c)f(1− a)

d(1− e)byn−5

=
f(1− a)

(1− e)b
zn−6 =

1− a

bxn−7
= yn−8, n ≥ 5,

zn−2 =
1− e

fxn−3
=

(1− e)b

f(1− a)
yn−4 =

(1− e)b(1− c)

f(1− a)dzn−5

=
b(1− c)

(1− a)d
xn−6 =

1− c

dyn−7
= zn−8, n ≥ 5,

from which along with the assumptions in Lemma 2, the results can be easily
seen. □

The following theorem give the forbidden set of the initial conditions for system
(9).

Theorem 1. Assume that a ̸= 0, b ̸= 0, c ̸= 0, d ̸= 0, e ̸= 0, f ̸= 0. The forbidden
set of the initial values for system (9) is given by the set

F =
⋃

m∈N0

1⋃
i=0

{ 1

xi−2yi−3
= f̂−m−1

(
− b

a

)
,

1

yi−2zi−3
= g−m−1

(
−d

c

)
,

1

zi−2xi−3
= h−m−1

(
−f

e

)}⋃ 3⋃
j=1

{(
x⃗−(3,1), y⃗−(3,1), z⃗−(3,1)

)
∈ R9 : (19)

x−j = 0 or y−j = 0 or z−j = 0
}
,
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where x⃗−(3,1) = (x−3, x−2, x−1), y⃗−(3,1) = (y−3, y−2, y−1), z⃗−(3,1) = (z−3, z−2, z−1).

Proof. We have obtained that the set

3⋃
j=1

{(
x⃗−(3,1), y⃗−(3,1), z⃗−(3,1)

)
∈ R9 : x−j = 0 or y−j = 0 or z−j = 0

}
,

where x⃗−(3,1) = (x−3, x−2, x−1), y⃗−(3,1) = (y−3, y−2, y−1), z⃗−(3,1) = (z−3, z−2, z−1),
belongs to the forbidden set of the initial values for system (9) at the beginning
of Section 2. If x−j ̸= 0, y−j ̸= 0 and z−j ̸= 0, j ∈ {1, 2, 3}, then system (9) is
undefined if and only if

a+ bxn−2yn−3 = 0, c+ dyn−2zn−3 = 0, e+ fzn−2xn−3 = 0, n ∈ N0.

By taking into account the change of variables (12), we can write the corresponding
conditions

un−2 = − b

a
, vn−2 = −d

c
and wn−2 = −f

e
, n ∈ N0. (20)

Therefore, we can determine the forbidden set of the initial values for system (9)
by using system (13). We know that the statements

u2m+i = f̂m+1 (ui−2) , (21)

v2m+i = gm+1 (vi−2) , (22)

w2m+i = hm+1 (wi−2) , (23)

where m ∈ N0, i ∈ {0, 1}, f̂ (x) = ax + b, g (x) = cx + d and h (x) = ex + f ,
characterize the solutions of system (9). By using the conditions (20) and the
statements (21)-(23), we have

ui−2 = f̂−m−1

(
− b

a

)
, (24)

vi−2 = g−m−1

(
−d

c

)
, (25)

wi−2 = h−m−1

(
−f

e

)
, (26)

where m ∈ N0, i ∈ {0, 1} and abcdef ̸= 0. This means that if one of the conditions
in (24)-(26) holds, then m−th iteration or (m+ 1)−th iteration in system (9) can
not be calculated. Consequently, we obtain the result in (19). □

4. Conclusion

In this paper, we have solved the following three-dimensional system of difference
equations

xn =
xn−2yn−3

yn−1 (a+ bxn−2yn−3)
,
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yn =
yn−2zn−3

zn−1 (c+ dyn−2zn−3)
, n ∈ N0,

zn =
zn−2xn−3

xn−1 (e+ fzn−2xn−3)
,

where the initial values x−i, y−i, z−i, i = 1, 3 and the parameters a, b, c, d, e, f are
non-zero real numbers. In addition, we have obtained the solutions of above system
in explicit form according to the parameters a, c and e are equal 1 or not equal
1. Moreover, we have got periodic solutions of aforementioned system. Finally,
we have identified the forbidden set of the initial conditions by using the acquired
formulas.
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