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Abstract. Let D4 be the dihedral group of order 8. In the present study, we
give generators of the algebra of D4 invariants in the polynomial algebra with

four generators over a field of characteristic zero.

1. Introduction

Let K[Xn] be the polynomial algebra of rank n over a field K of characteristic
zero, and let GLn(K) be the general linear group. Hilbert’s fourteen problem (see
[1, 2, 3, 4]) asks whether algebra K[Xn]G of constants of any subgroup G of GLn(K)
is finitely generated. Although it was negated by Nagata [5] in general, Noether
[6] showed that K[Xn]G is finitely generated for finite groups G. Our work was
motivated by the approach above: What are the finite generators of K[Xn]G for
some concrete groups G, in particular when G is a subgroup of the symmetric group
Sn. The dihedral group

D4 = 〈r, s | r2 = s4, rsr = s3〉 = {1, r, s, rs, s2, rs2, s3, rs3}
of order 8 can be realized as a subgroup of the symmertic group S4 by defining
r = (12)(34), s = (1234). In this case we have that

D4 = {(1), (12)(34), (1234), (24), (13)(24), (14)(23), (1432), (13)}.
Let K[X4] = K[x1, x2, x3, x4] be the commmutative unitary polynomial algebra of
rank 4 over K. We define the invariant subalgebra

K[X4]S4 = {f ∈ K[X4] | f(xπ(1), xπ(2), xπ(3), xπ(4)) = f(x1, x2, x3, x4),∀π ∈ S4}

induced by the group S4. The algebra K[X4]S4 is called the algebra of symmetric
polynomials, and each polynomial in K[X4]S4 is called a symmetric polynomial. It
is well known that K[X4]S4 is generated by elementary symmetric polynomials (see
e.g. [7])

α1 = x1 + x2 + x3 + x4 , α2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 ,

α3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 , α4 = x1x2x3x4.
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Elementary symmetric polynomials are algebraically independent. There exists
another set {β1, β2, β3, β4} of generators for K[X4]S4 , where

β1 = x1 + x2 + x3 + x4 , β2 = x2
1 + x2

2 + x2
3 + x2

4 ,

β3 = x3
1 + x3

2 + x3
3 + x3

4 , β4 = x4
1 + x4

2 + x4
3 + x4

4,

that is not algebraically independent. We extend this notation to

βn = xn1 + xn2 + xn3 + xn4

for all 1 ≤ n. Similar to K[X4]S4 , we have that

K[X4]D4 = {f ∈ K[X4] | f(xπ(1), xπ(2), xπ(3), xπ(4)) = f(x1, x2, x3, x4),∀π ∈ D4}

Clearly, K[X4]S4 ( K[X4]D4 , since p(x1, x2, x3, x4) = x1x3 + x2x4 ∈ K[X4]D4 ,
while p /∈ K[X4]S4 . In this paper, we aim to show that K[X4]D4 is generated by
polynomials α1, α2, α3, α4, p.

2. Preliminaries

We give some preliminary results, in this section. Let us define

pa,b = xa1x
b
3 + xb1x

a
3 + xa2x

b
4 + xb2x

a
4 , 0 ≤ a, b.

One may easily check that pa,b ∈ K[X4]D4 , and that p = 1
2p11. We give the next

list of equations without proof which is straightforward.

(2.1) pa,b = pb,a , 0 ≤ a, b

(2.2) pa,b =
1

2
p11pa−1,b−1 − α4pa−2,b−2 , 2 ≤ a, b

(2.3) p2,2 =
1

2
p2

11 − 4α4

(2.4) p1,b+3 =
1

2
α1p1,b+2 −

1

2
p2,b+2 −

1

2
α3βb+1 +

1

2
α4βb +

1

4
p1,1βb+2 , 0 ≤ b

(2.5) p1,3 =
1

2
α1p1,2 −

1

2
p2,2 −

1

2
α3β1 + 2α4 +

1

4
p1,1β2

(2.6) p1,2 =
1

2
α1p1,1 − α3

The next lemma is necessary in the proof of the main result.

Lemma 2.1. K[α1, α2, α3, α4, pa,b | 0 ≤ a, b] = K[α1, α2, α3, α4, p].

Proof. Clearly K[α1, α2, α3, α4, p] ⊂ K[α1, α2, α3, α4, pa,b | 0 ≤ a, b] because

p =
1

2
p1,1 ∈ K[α1, α2, α3, α4, pa,b | 0 ≤ a, b].

In order to complete the proof, it is sufficient to show that pa,b is included in
the algebra generated by α1, α2, α3, α4, p for every 0 ≤ a, b. Initially, using the
equations (2.1), (2.2), (2.3) inductively, we obtain that every polynomial

pa,b ∈ K[α1, α2, α3, α4, p1,1]
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for every 2 ≤ a, b. Now by (2.1), (2.4), (2.5), we have that

p1,b ∈ K[α1, α2, α3, α4, p1,1, p1,2]

for all 3 ≤ b. Finally, we terminate the proof by (2.6) implying that

p1,2 ∈ K[α1, α2, α3, α4, p1,1].

�

3. Main Results

The next theorem is the main result of the paper.

Theorem 3.1. The algebra K[X4]D4 is generated by α1, α2, α3, α4, p.

Proof. It is sufficient to show that K[X4]D4 ⊂ K[α1, α2, α3, α4, pab | 0 ≤ a, b] by
Lemma 2.1. Let

g =
∑

0≤a,b,c,d

εabcdx
a
1x
b
2x
c
3x
d
4

be an arbitrary element of K[X4]D4 of the form g = g1 + g2 + g3 + g4, where

g1 =
∑

0≤a,b,c,d

εabcdx
a
1x
b
2x
c
3x
d
4 , | {a, b, c, d} |= 1,

g2 =
∑

0≤a,b,c,d

εabcdx
a
1x
b
2x
c
3x
d
4 , | {a, b, c, d} |= 2,

g3 =
∑

0≤a,b,c,d

εabcdx
a
1x
b
2x
c
3x
d
4 , | {a, b, c, d} |= 3,

g4 =
∑

0≤a,b,c,d

εabcdx
a
1x
b
2x
c
3x
d
4 , | {a, b, c, d} |= 4.

It is clear that each gi, i = 1, 2, 3, 4, is D4 invariant; i.e.,

gi(xπ(1), xπ(2), xπ(3), xπ(4)) = gi(x1, x2, x3, x4),∀π ∈ D4.

Initially,

g1 =
∑
0≤a

εaaaa(x1x2x3x4)a =
∑
0≤a

εaaaaα
a
4 ∈ K[α4].

On the other hand g2 is of the form g2 = g21 + g22 + g23 + g24, where

g21 =
∑
a<b

εbbaax
b
1x
b
2x
a
3x
a
4 + εaabbx

a
1x
a
2x
b
3x
b
4 + εabbax

a
1x
b
2x
b
3x
a
4 + εbaabx

b
1x
a
2x
a
3x
b
4

g22 =
∑
a<b

εbbabx
b
1x
b
2x
a
3x
b
4 + εbbbax

b
1x
b
2x
b
3x
a
4 + εabbbx

a
1x
b
2x
b
3x
b
4 + εbabbx

b
1x
a
2x
b
3x
b
4

g23 =
∑
a<b

εaaabx
a
1x
a
2x
a
3x
b
4 + εaabax

a
1x
a
2x
b
3x
a
4 + εabaax

a
1x
b
2x
a
3x
a
4 + εbaaax

b
1x
a
2x
a
3x
a
4

g24 =
∑
a<b

εababx
a
1x
b
2x
a
3x
b
4 + εbabax

b
1x
a
2x
b
3x
a
4

One may easily show that no summand in a fixed g2i turns into a summand in g2j ,
i 6= j, under the action of D4. Thus by

g2(xπ(1), xπ(2), xπ(3), xπ(4)) = g2(x1, x2, x3, x4),∀π ∈ D4,

we get that

g2i(xπ(1), xπ(2), xπ(3), xπ(4)) = g2i(x1, x2, x3, x4),∀π ∈ D4, i = 1, 2, 3, 4.
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Easy calculations computing the actions of permutations from D4 gives that all
coefficients in each g2i for a fixed (a, b) are equal; i.e.,

g21 =
∑
a<b

εbbaa(xb1x
b
2x
a
3x
a
4 + xa1x

a
2x
b
3x
b
4 + xa1x

b
2x
b
3x
a
4 + xb1x

a
2x
a
3x
b
4)

g22 =
∑
a<b

εbbab(x
b
1x
b
2x
a
3x
b
4 + xb1x

b
2x
b
3x
a
4 + xa1x

b
2x
b
3x
b
4 + xb1x

a
2x
b
3x
b
4)

g23 =
∑
a<b

εaaab(x
a
1x
a
2x
a
3x
b
4 + xa1x

a
2x
b
3x
a
4 + xa1x

b
2x
a
3x
a
4 + xb1x

a
2x
a
3x
a
4)

g24 =
∑
a<b

εabab(x
a
1x
b
2x
a
3x
b
4 + xb1x

a
2x
b
3x
a
4)

which are in the form

g21 =
1

2

∑
a<b

εbbaa(p2
a,b − p2a,2b − pa+b,a+b)

g22 =
∑
a<b

εbbabα
a
4

(
1

2
pb−a,b−aβb−a − p2(b−a),b−a

)
g23 =

∑
a<b

εaaabα
a
4βb−a

g24 =
1

2

∑
a<b

εababα
a
4pb−a,b−a

Therefore g2 ∈ K[α1, α2, α3, α4, pab | 0 ≤ a, b].

Next, g3 is of the form g3 = g31 + g32 + g33 + g34 + g35 + g36, where

g31 =
∑
a<b<c

(
εaccbx

a
1x
c
2x
c
3x
b
4 + εccbax

c
1x
c
2x
b
3x
a
4 + εcbacx

c
1x
b
2x
a
3x
c
4 + εbaccx

b
1x
a
2x
c
3x
c
4

εcabcx
c
1x
a
2x
b
3x
c
4 + εccabx

c
1x
c
2x
a
3x
b
4 + εbccax

b
1x
c
2x
c
3x
a
4 + εabccx

a
1x
b
2x
c
3x
c
4

)

g32 =
∑
a<b<c

(
εacbbx

a
1x
c
2x
b
3x
b
4 + εcbbax

c
1x
b
2x
b
3x
a
4 + εbbacx

b
1x
b
2x
a
3x
c
4 + εbacbx

b
1x
a
2x
c
3x
b
4

εcabbx
c
1x
a
2x
b
3x
b
4 + εbcabx

b
1x
c
2x
a
3x
b
4 + εbbcax

b
1x
b
2x
c
3x
a
4 + εabbcx

a
1x
b
2x
b
3x
c
4

)
g33 =

∑
a<b<c

(
εaabcx

a
1x
a
2x
b
3x
c
4 + εabcax

a
1x
b
2x
c
3x
a
4 + εbcaax

b
1x
c
2x
a
3x
a
4 + εcaabx

c
1x
a
2x
a
3x
b
4

εaacbx
a
1x
a
2x
c
3x
b
4 + εbaacx

b
1x
a
2x
a
3x
c
4 + εcbaax

c
1x
b
2x
a
3x
a
4 + εacbax

a
1x
c
2x
b
3x
a
4

)
g34 =

∑
a<b<c

εacbcx
a
1x
c
2x
b
3x
c
4 + εcbcax

c
1x
b
2x
c
3x
a
4 + εbcacx

b
1x
c
2x
a
3x
c
4 + εcacbx

c
1x
a
2x
c
3x
b
4

g35 =
∑
a<b<c

εabcbx
a
1x
b
2x
c
3x
b
4 + εbcbax

b
1x
c
2x
b
3x
a
4 + εcbabx

c
1x
b
2x
a
3x
b
4 + εbabcx

b
1x
a
2x
b
3x
c
4

g36 =
∑
a<b<c

εabacx
a
1x
b
2x
a
3x
c
4 + εbacax

b
1x
a
2x
c
3x
a
4 + εacabx

a
1x
c
2x
a
3x
b
4 + εcabax

c
1x
a
2x
b
3x
a
4

Similarly, g3i, i = 1, 2, 3, 4, 5, 6, is D4-invariant, and hence we have that

g31 =
∑
a<b<c

εaccb(pa,cpb,c − pa+b,2c − pa+c,b+c)

g32 =
∑
a<b<c

εacbb(pa,bpb,c − pa+c,2b − pa+b,b+c)

g33 =
∑
a<b<c

εaabc(pa,bpa,c − p2a,b+c − pa+c,a+b)
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g34 =
∑
a<b<c

εacbcα
a
4

(
1

2
pc−a,c−aβb−a − pb+c−2a,c−a

)
g35 =

∑
a<b<c

εabcbα
a
4

(
1

2
pb−a,b−aβc−a − pb+c−2a,b−a

)
g36 =

1

2

∑
a<b<c

εabac(pa,apb,c − 2pa+b,a+c)

and that g3 ∈ K[α1, α2, α3, α4, pab | 0 ≤ a, b].

Finally, g3 is of the form g4 = g41 + g42 + g43, where

g41 =
∑

a<b<c<d

(
εabcdx

a
1x
b
2x
c
3x
d
4 + εbcdax

b
1x
c
2x
d
3x
a
4 + εcdabx

c
1x
d
2x
a
3x
b
4 + εdabcx

d
1x
a
2x
b
3x
c
4

εbadcx
b
1x
a
2x
d
3x
c
4 + εcbadx

c
1x
b
2x
a
3x
d
4 + εdcbax

d
1x
c
2x
b
3x
a
4 + εadcbx

a
1x
d
2x
c
3x
b
4

)

g42 =
∑

a<b<c<d

(
εacbdx

a
1x
c
2x
b
3x
d
4 + εcbdax

c
1x
b
2x
d
3x
a
4 + εbdacx

b
1x
d
2x
a
3x
c
4 + εdacbx

d
1x
a
2x
c
3x
b
4

εcadbx
c
1x
a
2x
d
3x
b
4 + εbcadx

b
1x
c
2x
a
3x
d
4 + εdbcax

d
1x
b
2x
c
3x
a
4 + εadbcx

a
1x
d
2x
b
3x
c
4

)
g43 =

∑
a<b<c<d

(
εabdcx

a
1x
b
2x
d
3x
c
4 + εbdcax

b
1x
d
2x
c
3x
a
4 + εdcabx

d
1x
c
2x
a
3x
b
4 + εcabdx

c
1x
a
2x
b
3x
d
4

εbacdx
b
1x
a
2x
c
3x
d
4 + εdbacx

d
1x
b
2x
a
3x
c
4 + εcdbax

c
1x
d
2x
b
3x
a
4 + εacdbx

a
1x
c
2x
d
3x
b
4

)
Similar computations give that

g41 =
∑

a<b<c<d

εabcdα
a
4(βc−apd−a,b−a − pd−a,b+c−2a − pb−a,d+c−2a)

g42 =
∑

a<b<c<d

εacbdα
a
4(βb−apd−a,c−a − pc−a,b+d−2a − pd−a,b+c−2a)

g43 =
∑

a<b<c<d

εabdcα
a
4(βd−apc−a,b−a − pc−a,b+d−2a − pb−a,d+c−2a)

and that g4 ∈ K[α1, α2, α3, α4, pab | 0 ≤ a, b]. Consequently,

g = g1 + g2 + g3 + g4 ∈ K[α1, α2, α3, α4, pab | 0 ≤ a, b].
�

4. Conclusion

In this study, generators for the algebra of D4-invariants were provided. This
might be an initial approach for determining generators for algebras of G-invariants,
where G is a subgroup of Sn, n ≥ 4.
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