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Abstract   Öz  

The doubly fed induction generator (DFIG) is very 

sensitive to the high voltage and current harmful effects that 

occur during the grid fault. A capacitive bridge type fault 

current limiter (CBFCL) based on the support vector 

machine (SVM), which is one of the machine learning 

(ML) methods, is presented to improve the fault ride-

through (FRT) performance of in three phase-to-ground 

(3LG) symmetric grid fault that may occur in a wind turbine 

based on DFIG working under normal operating conditions 

in this study. The machine learning algorithm based on 

SVM has been implemented in both the control systems of 

DFIG converters and a control system of CBFCL. Four 

different SVM classifier algorithms are applied to generate 

the switching signals of electronic switching elements used 

in rotor side, grid side converter, and circuit topology of 

CBFCL. Fine Gaussian, Quadratic, Cubic and Linear kernel 

functions are preferred in the training of SVM classifiers. 

The developed SVMs have been suitably trained to true 

predict and decide behaviours of converters during normal 

and grid fault conditions. The performance of Fine 

Gaussian and Linear types of SVM is compared to the 

effectiveness of training efficiency for a wind turbine based 

on DFIG. The accuracy rate of the Fine Gaussian of SVM 

is 100 %, while the accuracy rate of Linear SVM is 22 %. 

The simulation results show that the Fine Gaussian SVM 

protects more efficiently from the harmful effects of 3LG 

grid fault compared to the Linear SVM for a wind turbine 

based on DFIG. 

 Çift beslemeli asenkron generatörü (ÇBAG), şebeke arızası 

sırasında meydana gelen yüksek gerilimin ve akımın zararlı 

etkilerine karşı çok hassastır. Makine öğrenmesi (ML) 

yöntemlerinden biri olan destek vektör makineye (DVM) 

dayalı bir kapasitif köprü tipi arıza akım sınırlayıcısı 

(KKTAAS), üç fazlı arızada geçiş (FRT) performansını 

iyileştirmek için önerilmiştir. Bu çalışmada, normal şebeke 

koşullarında çalışan ÇBAG tabanlı bir rüzgâr türbininde 

oluşabilecek faz-toprak (3LG) simetrik şebeke hatası 

DVM' ye dayalı makine öğrenimi algoritması hem ÇBAG 

dönüştürücülerin kontrol sistemlerinde hem de KKTAAS' 

in bir kontrol sisteminde uygulanmıştır. Rotor tarafında, 

şebeke tarafında dönüştürücüde ve KKTAAS' in devre 

topolojisinde kullanılan elektronik anahtarlama 

elemanlarının anahtarlama sinyallerini üretmek için dört 

farklı DVM sınıflandırıcı algoritması uygulanmıştır. DVM 

sınıflandırıcılarının eğitiminde İnce Gauss, Kuadratik, 

Kübik ve Doğrusal kernel fonksiyonları tercih edilmiştir. 

Geliştirilen DVM’ ler, normal ve şebeke arızası koşulları 

sırasında dönüştürücülerin davranışlarını doğru tahmin 

etmek ve karar vermek için uygun şekilde eğitilmiştir. İnce 

gauss ve Doğrusal DVM türlerinin performansı, ÇBAG’ ye 

dayalı bir rüzgâr türbini için eğitim verimliliğinin etkinliği 

ile karşılaştırılmıştır. DVM' in İnce Gaussian' in doğruluk 

oranı %100’dür, Doğrusal DVM' in doğruluk oranı ise 

%22'dir. Simülasyon sonuçları, İnce Gaussian DVM' in, 

ÇBAG tabanlı bir rüzgâr türbini için Doğrusal DVM' ye 

kıyasla 3LG şebeke hatasının zararlı etkilerinden daha 

verimli bir şekilde koruduğunu göstermektedir. 

Keywords: Doubly fed induction generator (DFIG), 

Machine learning (ML), Capacitive bridge type fault 

current limiter (CBFCL), Wind turbine (WT), 

 Anahtar kelimeler: Çift beslemeli asenkron generatör 

(ÇBAG), Makine öğrenmesi (ML), Kapasitif köprü tipi 

arıza akım sınırlayıcı (KKTAAS), Rüzgâr türbini (RT), 

1 Introduction 

In recent years, due to the fluctuations in oil prices, the 

importance of wind power plants has increased day by day. 

Several generator types are used in wind power plants such 

as direct current, permanent magnet synchronous, and 

double feed induction generator (DFIG) [1,2]. 

Grid code is a technical specification, which must meet 

to ensure proper operation, defining parameters like the 

electrical system is safe, secure, and economical. All 

countries have not a common grid code and each country has 

a different grid code [3]. Requirements of the grid code are 

divided into two categories as dynamic and static 

requirements. All electricity generating facilities, including 

independent energy producers such as wind turbines and 

photovoltaic power plants, must comply with the grid code 

[4]. A grid code will determine the required behaviour of a 

connected generator during grid faults. These include 

reactive power supply, power factor limits, and voltage 

regulation [5]. In literature, there have been many studies 

that electricity-generating facilities and consumers remain 

https://orcid.org/0000-0002-5592-4070
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continuously connected to the electrical power grid system 

during grid fault such as the crowbar system [6-8], static 

synchronous compensator (STATCOM) [9,10], static VAR 

compensator (SVC) [11], series dynamic braking resistor 

(SDBR) [12], dynamic voltage restorer (DVR) [13,14]. 

Recently, new modified [15] and new structure [16] models 

have been proposed for the bridge type fault current limiter 

(BFCL). The capacitive-BFCL (CBFCL) method has started 

to be used among the stability methods of electrical power 

grid systems. The CBFCL produces a practical solution to 

protect the wind tribune system from the harmful effects of 

high-level fault currents [17]. The CBFCL has zero 

impedance in the normal operation of the power grid and 

high impedance in the case of a grid fault. There is no power 

loss o grid system during normal operation due to CBFCL. 

In addition, CBFCL has superior features compared to other 

methods such as rapid recovery after fault elimination and 

operating immediately after the fault occurs [18]. 

According to a literature review, traditional control 

methods are predominantly used in control systems of the 

CBFCL and WT. Traditional control methods provide a 

performance suited to a given output. However, traditional 

control systems remain weak in solving complex systems 

such as WT based on DFIG compared to machine learning 

(ML). Recently, ML control system has been applied in 

many renewable energy fields such as wind energy [19], 

solar energy [20-24], and power grid [25,26]. However, the 

ML algorithms have been carried out in a limited number of 

studies in wind turbine protection systems, especially for 

grid faults. Some studies presented in the literature have been 

carried out for the WT’s protection system based on ML 

algorithms. Yun et al. [27] proposed the ice detection of WT 

using a novel adaptive inductive transfer learning. This study 

applied the 5 methods, which are the most general 

classification methods. These methods are Fully-connected 

Neural Networks, Random Forest, AdaBoost, Quadratic, and 

k-Nearest Neighbors (kNN) classifiers. The accuracy value 

of Autoencoder and TrAdaBoost is 0.94. This value is near 

the normal operating value. Hsu et al. [28] applied a 

statistical program control to define the four faults of a WT 

using two machine learning algorithms, such as hydraulic oil 

systems, generators, gearboxes, and rotary blades. The data 

of WT are obtained from normal and abnormal conditions of 

the wind turbine operation. The accuracy rate of the machine 

learning algorithm is higher than 92%. Zhang et al. [29] 

implemented the diagnosis method of the gearbox bearing 

fault of WT using deep learning methods. The bearing fault 

diagnosis method consists of a support vector machine 

(SVM) classifier and a one-dimensional convolutional 

neural network. The above methods in the literature have 

been suggested for different protection systems of WT such 

as ice detection, and gearbox bearing fault. Also, these 

studies are related to outdoor working conditions and the 

reduction of mechanical negative effects. However, indoor 

working conditions of wind turbine based on DFIG have a 

more complex structure than outdoor working conditions. 

Therefore, a CBFCL based on an ML system is proposed to 

protect DFIG from the harmful effects of grid fault in this 

study. In this respect, the subject dealt with is quite different 

and original from the related literature studies. 

This paper introduces a novelty control algorithm using 

machine learning to performance enhance DFIG based on 

WT during 3LG grid fault. A machine learning method based 

on the SVM classifier algorithm is designed to enhance the 

FRT capability of the DFIG based on WT during normal and 

fault operation conditions. SVM has advantages such as 

being productive in multidimensional data analysis, solving 

complex problems with kernel solution functions, and 

producing optimum output even if there is not enough 

information data. Due to these advantages, a performance 

analysis of various SVM techniques has been made to protect 

more efficiently from the harmful effects of 3LG grid fault 

of WT based on DFIG in this study. The main contributions 

of the article work can be summarized as: 

1) Unlike previous studies in the literature, a machine 

learning algorithm is implemented in the control systems of 

both CBFCL and DFIG converters.  

2) Proposed machine learning algorithm has been 

suitably trained to true predict and decide behaviours of 

converters during normal and fault operation conditions. 

3) The accuracy rate of Fine Gaussian of SVM is 100 

%, while the accuracy rate of Linear SVM is 22 %. 

4) The Fine Gaussian of SVM more efficiently 

protects DFIG based on WT from the harmful effect of 3LG 

grid fault compared to Linear SVM. 

2 Wind turbine and mathematical model of DFIG 

WT is a device that converts wind energy into electrical 

energy. WT is designed considering factors such as cost, 

energy output, and low fatigue life. A wind turbine needs to 

achieve the maximum theoretical power output in order to 

effectively generate electrical power. It has been emphasized 

that the different parameters of a WT have different effects 

on the output power of WT in literature studies. If a wind 

speed is represented by v, the conversion coefficient is 

represented Cp, the air density is represented ρ, and the swept 

area is represented by A, the output power of the WT is 

obtained in Equation 1 [30]. 

 

 
3),(

2

1
vACP pm   (1) 

 

If the wind speed is depicted by v and an angular velocity 

of a WT is represented by ωm,  is obtained as the type speed 

ratio in Equation 2 [30]. 

 

 
v

Rm
   (2) 

 

where,  depict a rate between wind speed and angular 

speed of WT. R depict the radius of wind turbine blade in 

Equation 2 [30]. 
DFIG is the most commonly used type of generator in 

WT due to its flexibility and ability to control reactive and 

active power. A mathematical model of DFIG is stated to be 

very useful for analyzing its electrical properties under both 
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normal and fault conditions. The general and widely used 

mathematical model of DFIG has been obtained using the 

transformation model of the Park model. The rotor and stator 

voltages of DFIG are given in a suitable d-q reference frame 

as follows [31,32]: 

 

 
s

s s s e s

d
v R i j

dt


    (3) 

 ( )r

r r r e r r

d
v R i j

dt


       (4) 

 

where, vr and vs are the voltages of the rotor and stator, 

respectively. Rs and Rr depict resistances of rotor and stator, 

respectively. Lr and Ls depict inductances of the rotor and 

stator, respectively. ωe and ωr depict the electrical angular 

velocity and the angular velocity of the rotor, respectively. 

ψr and ψs depict the inductances of the rotor and stator, 

respectively. The flux components of rotor and stator are 

expressed by [31,32]: 

 

 
s s s m rL i L i    (5) 

 
r r r m sL i L i    (6) 

 

where, Lr and Ls depict inductances of rotor and stator, 

respectively. ir and is depict currents of rotor and stator, 

respectively [31,32]. 

3 The design of the proposed system 

A single-line diagram of WT based on DFIG is illustrated 

in Figure 1. Rotor side converter regulates reactive and active 

power of the generator by means of IGBT gate signals, while 

grid side converter regulates DC Link voltage amplitude 

(Vdc) by means of IGBT gate signals. A proportional-integral 

(PI) controller is usually used to obtain the control signal of 

the IGBT gate signal in the literature. The PI controller 

generates optimum output for a given operating condition. 

The conventional control systems are not capable of dealing 

with some challenges in complex systems such as WT based 

on DFIG. The PI control system does not give effective 

results in varying operating conditions such as grid fault due 

to the fact that its parameters have been fixed. The PI has 

difficulty controlling a WT with uncertain operating 

conditions. However, the proposed control technique has 

overcome the uncertainties of a WT based on the DFIG 

system [33]. Therefore, the machine learning control system 

has been applied separately for grid and rotor side converter 

control systems in the study. Machine learning, which is 

considered a part of artificial intelligence, is defined as a 

computer algorithm that improves automatically with the use 

of data and experience. The machine learning algorithm has 

different types due to the fact that each system has a different 

type of task and data or the solve methods of problem. The 

machine learning algorithm has two methods: classifying 

data according to the developed models and making 

predictions for future results based on these models. Machine 

learning algorithm has several types of learning methods 

such as reinforcement, unsupervised and supervised 

learning. 

 

Figure 1. A single line diagram of WT based on DFIG using machine learning. 
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Classification Learner Toolbox in Matlab has various 

classifier types such as SVM, kNN, and ensemble. SVM is 

one of several classification algorithms in the machine 

learning models and is one of the most widely used in the 

supervised learning models that analyze for classification 

and regression. The classifier techniques of the SVM are 

Coarse Gaussian, Medium Gaussian, Fine Gaussian, Cubic, 

Quadratic, and Linear in the Matlab. A support vector 

machine, which is a supervised learning model, is used in 

this study [19]. 

4 Capacitive bridge type fault current limiter based on 

machine learning control 

The circuit topology of the CBFCL based on machine 

learning control is given in Figure 2. CBFCL consists of two 

parts, called the bridge and shunt parts. A shunt part includes 

of Capacitor (Csh) and resistor (Rsh). A shunt part has a high 

impedance. In this study, the best results of the system are 

obtained by choosing the values of capacitance and 

resistance as Csh = 50 µF and Rsh = 10Ω. The bridge part 

consists of four bridge diodes, a small resistor, an inductor 

and a freewheeling diode. The resistor (Rdc) and inductor 

(Ldc) are connected in series and this is called dc reactor. Dc 

reactor is in the middle of four bridge diodes. In this study, 

the best results of the system are obtained by choosing the 

values of inductor and resistance as Ldc = 0.015 H and Rdc = 

0.015 Ω. A freewheeling diode discharges the energy stored 

in the DC reactor when the IGBT switching signal turns on 

[2]. 

5 Simulation Results  

The model of WT based on DFIG is simulated in the 

Matlab/Simulink. Machine learning control method is 

implemented to control system of a 9-MW, 690V DFIG 

based on WT. The wind speed is 15 m/s and DC Link voltage 

is 1150 V. CBFCL based on ML system is applied to protect 

from the harmful effects of overcurrent during a grid fault.  

A comparison of four SVM classification methods is 

given in Table 1. The accuracy rates of Cubic SVM, 

Quadratic SVM, and Fine Gaussian SVM are 100 %. This 

value of the proposed system indicates that the model is more 

effective in classifying the wind turbine. The accuracy rate 

of Linear SVM is 22%. Each type of SVM has 1000 test 

samples in the test set. However, 10 of these test examples 

are given in the confusion matrix in Figure 3.  

 

Table 1. Comparison of different SVM classification 

methods 

SVM Classification Method Accuracy Rate (%) 

Fine Gaussian SVM 100% 

Quadratic SVM 100% 

Cubic SVM 100% 

Linear SVM 22% 

 

The 3LG grid fault, which is called a symmetrical grid fault, 

is the most serious type of grid fault. Therefore, it is vital to 

control this type of grid fault. The 3LG grid fault is applied 

at t = 4 s and cleared after 4.5 s in the study.  

 

 

Figure 2. Circuit topology of the CBFCL based on 

machine learning control. 

 

Table 2. Comparison of tracking the performance of two 

SVM methods for the 3LG grid fault in time t=4.5 

Signal Method 
Peak 
value 

Lowest 
value 

Settling 
time 

Steady 

state 

error 

P(MW) 

Fine 
Gaussian 

SVM 

9.717 8.78 4.75  0.002 

Linear 

SVM 
12.73 1.058 7 0.3 

Q(MVAR) 

Fine 

Gaussian 

SVM 

0.393 -0.24 4.8 0.001 

Linear 

SVM 
3.535 -2.22 4.9 0.39 

Vdc(V) 

Fine 
Gaussian 

SVM 

1171 1145 4.605 0.02 

Linear 

SVM 
1343 1107 4.62 4 

Te (p.u.) 

Fine 

Gaussian 

SVM 

-0.616 -0.95 4.65 0 

Linear 

SVM 
0.3 -2.7 7 0.06 

PCC (p.u.) 

Fine 
Gaussian 

SVM 

1 0.91 4.75 0 

Linear 

SVM 
1.0125 0.18 4.9 0.01 
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(a) (b) 

(c) (d) 

Figure 3. Confusion matrix of different SVM models 

The numerical results in terms of peak value, lowest 

value settling time, and steady-state error are illustrated in 

Table 2. Figure 4(a) illustrates the variations in active power 

of WT with both protection methods. The active power peak 

value of WT with the proposed control algorithm is 9.717 

MW and the active power lowest value of WT with the 

proposed control algorithm is 8.78 MW during the 3LG grid 

fault. Settling time and steady-state error of power of WT 

with the proposed control algorithm are very low compared 

to Linear SVM control algorithm results. Figure 4(b) 

illustrates the variations in the reactive power value of WT. 

The rated value of reactive power is 0 MVAR during normal 

operation. The settling time of the Linear SVM is 0.1 s longer 

than presented control system and then value of reactive 

power returns to the rated value nearly. However, the steady-

state error of the Linear SVM is 0.39. Figure 4(c) illustrates 

the variations in DC link voltage of WT with both protection 

methods. The rated value of DC link voltage is 1150V during 

normal operation. The peak value of DC link voltage with 

the Linear SVM is 1343 V. The electronic switching 

elements can be damaged due to the fact that this value is 

more than the nominal value. Figure 4(d) and (e) illustrate 

the variations in the electromagnetic torque (p.u.) and 

voltage (p.u.) of the PCC, respectively. The lowest value 

voltage of the PCC with the Linear SVM algorithm is 0.18 

p.u. The wind turbine cannot stay connected with the grid 

during 3LG grid fault because the voltage value of PCC with 

the Linear system is significantly reduced. According to 

simulation results, the proposed method is fully capable of 

controlling to 3LG grid fault.  

 

 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 911-918 

A. Gencer 

 

916 

 

(a) (b) 

(c) 
(d) 

(e) 

Figure 4. Dynamic response of a 9MW DFIG with machine learning methods during a 3LG symmetrical fault. 

6 Conclusion  

The model of wind turbine based on DFIG is simulated 

in Matlab/Simulink. The simulation results are obtained in 

real-time. In this paper, a CBFCL based on a machine 

learning algorithm is presented to enhance the FRT 

capability of the wind turbine based on DFIG during normal 

operation conditions and grid fault. The machine learning 

control method is applied to both the control systems of 

DFIG converters and the control system of the CBFCL.  

Fine Gaussian SVM, Quadratic SVM, Cubic SVM, and 

Linear SVM are applied to generate the switching signals of 

electronic switching elements used in the rotor side, grid side 

converter, and circuit topology of the CBFCL. The 

performance of these types of SVM is compared to the 

effectiveness of training efficiency for a wind turbine. The 

accuracy rates of Cubic SVM, Quadratic SVM, and Fine 

Gaussian SVM are 100 % in Table 1. This value of the 

proposed system indicates that the model is more effective 

in classifying the wind turbine. Peak value, lowest value, 

settling time and steady-state error values of WT with the 

proposed control algorithm are very low compared to Linear 

SVM control algorithm results during the 3LG grid fault. 

WT with presented control system can stay connected with 

the grid during the 3LG grid fault due to the fact that the 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 911-918 

A. Gencer 

 

917 

voltage value of the PCC with the proposed control system 

is reduced to an acceptable range. According to simulation 

results, the proposed method has fully capable of controlling 

the 3LG grid fault. The simulation results show that 

presented type of SVM is more efficiently protects the DFIG 

based on wind turbine from the harmful effect of 3LG grid 

fault compared to the other types. 
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