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Abstract: In this study, two-electron one- and two-center Coulomb integrals with the same and
different screening parameters are investigated numerically in the real Slater type orbital (STO)
basis using Fourier transform method. In momentum space firstly, for atomic, i.e. one-center,
Coulomb integrals are calculated, and analytical expressions are obtained in terms of binomial
coefficients. Then, the solutions of the two-center Coulomb integrals are made with the modified
Bessel function of second kind and the results are expressed in terms of binomial and Gaunt
coefficients, irregular solid harmonics, and finite sum of STOs. A computer program is written in
the MATHEMATICA language to determine the accuracy of the analytical expressions that are
highly suitable for programming. The numerical results obtained from the program are given in
the tables, and it is shown that the results agree with the literature.

Key words: Coulomb integral, Fourier transform method, Slater type atomic orbital, Taylor
expansion.

Slater Tipi Orbitaller Bazinda Bir- ve iki-Merkezli Coulomb Integrallerinin
Ozellikleri

Oz: Bu calismada, aym ve farkli perdeleme sabitlerine sahip iki elektronlu bir- ve iki-merkezli
Coulomb integralleri, Fourier dontisiim yontemi kullanilarak reel Slater tipi orbitaller (STO)
bazinda sayisal olarak incelenmistir. Momentum uzayinda ilk olarak atomik, yani tek-merkezli,
Coulomb integralleri i¢in hesaplama yapilmis ve analitik ifadeler binom katsayilar1 cinsinden elde
edilmigtir. Daha sonra, iki-merkezli Coulomb integrallerinin ¢6ziimleri, ikinci tiir modifiye
edilmis Bessel fonksiyonlar1 ile yapilmis ve sonuglar binom ve Gaunt katsayilari, diizensiz kati
harmonikler ve STO’larin sonlu toplamui cinsinden ifade edilmistir. Programlamaya son derece
uygun olan analitik ifadelerin dogrulugunu belirlemek i¢in MATHEMATICA dilinde bir
bilgisayar programi yazilmistir. Programdan elde edilen sayisal sonuglar tablolarda verilmis ve
sonuglarin literatiir ile uyumlu oldugu gosterilmistir.

Anahtar Kelimeler: Coulomb integrali, Fourier doniisiim metodu, Slater tip atomik orbital, Taylor
agilimu.

1. Introduction

Molecular integrals that arise in molecular electronic structure calculations based on the
molecular orbital method, molecular orbitals are built from linear combinations of atomic
orbitals (LCAO-MOQ), are an important research area in quantum mechanics. Here it is
difficult and time consuming that computation of two-electron integrals containing 1/r;,
factor which describes the Coulomb interaction between the electrons. Therefore, the
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further development of the methods used for the calculation of two-electron integrals is
unavoidable.

The wave functions of hydrogen atom obtained from the solution of the Schrodinger
equation satisfy the cusp condition at the nucleus and exponential decay at large distances
from the nucleus [1]. STOs and Gaussian type orbitals (GTOs) are basis functions widely
used as atomic orbitals in calculation of molecular integrals. STOs exactly show the
behavior of the wave functions near the nuclei and at large distances from them. But the
use of STOs is limited due to the difficulty to evaluate efficiently all occurring integrals
in a molecular calculation. GTOs do not provide a cusp represents the electron density at
the nucleus and decay too quickly. However, molecular integrals can be easily calculated
using GTOs. To provide the physical properties, the use of a linear combination of GTOs
versus a single STO increases the number of the integrals to be computed over GTOs. As
aresult, compared to GTOs, STOs have the advantage as they can exhibit the two features
of exact wave function. In reference [2], STOs and GTOs are compared and studies using
STOs in molecular calculations from past to present are given in detail.

There are many methods of integration used for solving the two-electron molecular
integrals. Elliptic coordinate method [3-13] is the transformation of polar coordinates into
the elliptical coordinates. Single-center expansion methods [14-25] are based on the
translation of the orbitals from the one center to another. Fourier transform method [26-
37] evaluates the integrals in momentum space. In the Gaussian expansion method [38,
39], STOs are written as a linear combination of GTOs. Gaussian transform method [40,
41] uses the Laplace transform of the exponential function. The other approaches used in
the calculation of molecular integrals are given in references [42-49].

Fourier transform method, primarily suggested by Prosser and Blanchard [50] for one-
electron integrals and developed by Geller [26-28] for two-electron integrals, is one of
the most important methods used to simplify of the calculation of many-center molecular
integrals. Through this method where integrals are transformed into inverse Fourier
integrals, two-dimensional integrals in coordinate space with non-separable integration
variables can be expressed in one-dimensional integrals in momentum space with easily
separable integration variables. A different class of exponentially decreasing basis
functions is B functions. Although the B functions, defined in terms of the reduced Bessel
functions, have a complicated mathematical structure in coordinate space, their Fourier
transforms are exceptional simplicity [31-33].

In this study, using the Fourier transform method, firstly the atomic Coulomb integrals
over real STOs has been expressed as finite sums of binomial coefficients. Later for the
molecular Coulomb integrals with the same and different screening parameters new
expressions have been obtained in terms of Gegenbauer and Gaunt coefficients, irregular
solid harmonics, and linear combination of STOs. A computer program in the
MATHEMATICA 10.0 software [51] is constructed and the comparisons of numerical
results with literature values have been given in Table 1 and Table 2. Atomic units are
used throughout this article.

2. Material and Method
2.1 General formulas
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As is well known two-electron two-center Coulomb integral includes Coulomb operator
that describes the interactions between the charge distributions of each electron. The
charge distribution is defined as the product of two atomic orbitals located at the same
center. The general formula of two-center Coulomb integral based on STOs is as follows:

]ns lamznglamy

nlllml,nzlzmz (Sa' ga" gb’ gb,; R) =

* 1 *
J] 20, a2, e ) i oo a2, e o) (1)

We will use the normalized real STOs defined as:

" (a,r) = Mr"—le—“wm(e ) 2)
Anl\&,T) = 2! 1 0,9

where n, I, and m are quantum numbers and « is the screening parameter. The principal
quantum number n is a positive integer. There are also studies using non-integer n-STOs
in the literature [53, 54]. Y/™(0, ) is the complex or real spherical harmonic and
described as follows

Y6, 9) = P™ (cos0) Py () 3)

in which Pl'm'(cose) is the normalized associated Legendre polynomial [52]. For real
spherical harmonics ®,,, (¢) is defined by

1 { cosme for m=0

Pm(p) = sinlm|lo for m<0 (4)
n(l + 5m,o)

The product of two real spherical harmonics:

l1+lz L

, @ .
Y0, )Y (6, 9) = Z Z(zlmluzmzuM)A%lmz vMee,9) )

L=|ll—l2| M=-L

where (l;m,|l,m,|LM), so-called generalized Gaunt coefficient and linearized the
product of two spherical harmonics, and Ay, ,,,, are the coefficients obtained with the
integration of the product of three real spherical surface harmonics [10]. The symbol £®
implies that the summation index L proceeds in two steps.

One-center charge distribution which consists of two real STOs centered at the same
nuclei can be expressed as a linear combination of STOs using the Equation (5) in
reference [55]:
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Two-center Coulomb integrals can be written by using the Equation (6) in terms of basic
Coulomb integrals as follows:

]ns lzmg,nylamy
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where the basic Coulomb integrals are defined by:

Cle2M (q, ; R) = ff a () — x,%(ﬁ r,)dr,dr; ®)

If the Fourier transform method defined for the two-electron two-center integrals [26-28]
is applied to Equation (8), the two-center basic Coulomb integrals are obtained in
momentum space as follows [33]:

e—lRp
e @ fiR) = d [ U, (DU, (B, DA ©

where UY, (a, p) denotes the Fourier transform of STOs.

The Fourier transform of STOs is given in terms of regular solid spherical harmonic
defined as S/"(p) = p'Y/™(8,, ¢,,) in reference [56]

2n+l+1 n+1/2

a 1+1

a
F,(n)\/mE,(2n)(a? + p2)n+i+2 e (w/az + p2

Urrlnl(al p) =

)55" (=ip)  (10)

here F;(n) are the binomial coefficients and C;* (x) is Gegenbauer polynomial defined by
the following relation [57, 58];
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[n/2]
Cix) = (=1%as(4,n)(2x)" % (11)

where

=5
2172 4
as(L,n)=F_1A+n—-—s—1FMn-ys)

The Rayleigh expansion of the plane wave is defined by the well-known relation in terms
of spherical Bessel functions j;(pR) and spherical harmonics

oo l
R = 4" N D iRV (60, 0,) V" (Or, or) (12)

2.2 Basic Coulomb integrals in momentum space
2.2.1 One-center basic Coulomb integrals

It is well known that both electrons are centered on the same nuclei in one-center
Coulomb integrals, take the name atomic Coulomb integrals, and determined by R=0 at
Equation (9). In momentum space, atomic Coulomb integrals with the same screening
parameters are given by:

2

ot Uny, (D)
Cniiyl(a,a;0) = 4n f—l ; n,1, (@ P)dp (13)

Substituting Equation (10) into Equation (13), and then by using the orthogonality relation
of the spherical harmonics, we write:

(_1)L122N1+2N2+4a2N1+2N2—L1—L2+1

Cuy o (o, @;0) = 8,1, 8y,
F, (NDFy, (V) JFNl(ZNl)FNZ @Ny)
[N1 L1] [Nz—Lz

Z Z (=D**as(Ly + 1, Ny — L)a, (L + 1, N, — Ly)

(za)25+21"

L1+L2dp
(14)
(az  p2)N1+Np=s—7+2
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When the radial integral is solved easily with the help of the integral tables of reference
[57] atomic Coulomb integrals with the same screening parameters are obtained as follows
[59]:

NszMz
N1L1M1 (0( a; 0) 6L1L26M1Mz

(_1)L122N1+2N2+3

FLl(Nl)FLZ(NZ)\/FNl(ZNl)FNZ(ZNZ)az

[Nl Ll] [Nz Lz]

z Z (=D Tag(Ly + 1, Ny — L)a, (L, + 1, Ny — Lp) (15)
22s+2r (Nl + Nz —Ss—r+ 1)FL1+L2—1(N1 + N2 - S — T')

2

For the atomic Coulomb integrals with the different screening parameters the following
radial integral is acquired:

Cuzy i (B3 0) = 81,1, Om,
Fy, (NDF,, (N,) \/FNl(zzvl)FNz(zzvz)
[N1 Ll] [Nz—Lz
Z Z (—D*"as(Ly + 1, Ny — L)a, (L, + 1, N, — Ly)
L, L Qa)=(2B)*

pL1+L2dp
f (a2 + p2)N1—s+1(B2 4 p2)Na—7+1
0

(16)

Using the Taylor expansion given by Equation (4.1) of reference [33], we can write the
denominator of the integral in terms of simpler functions:

( 1)L122N1+2N2+4 2N1—L1+1/2ﬁ2N2—L2+1/2

a

N LoM
leijlz(a B O) - 6L1L26M1M2

Fy, (NDF,, (N,) JFNl(le)FNZ @Ny)

[Nl L1] [NZ Ly

Z Z ( D**"ag(Ly + 1L, N, — L)a, (L + 1L, N, — Ly)

a)*(2p)*
()M S z (N + Ny —s =7 — vy)! [ pl*hdp
(Nz _ 7‘)' (Nl —s— Ul)! (az _ BZ)N1+N2—s—r—v1+l (az + pZ)v1+1
0

( 1>N1 1 Ny + Ny =5 =7 = v))! [ _phridp .
— S)I z (NZ —r — UZ)! (ﬁZ — a2)N1+N2—S—T‘—’U2+1f (BZ + pZ)’U2+1 ( )
0
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Finally, the radial integrals in Equation (17) by solving like Equation (14), the atomic
Coulomb integral with the different screening parameter is obtained [59]:

(_1)N2 +L2—122N1+2N2 +4a2N1—L1+1/232N2 —Ly +1/2

¢ N2LaM2
N1L1M1 (@,B;0) = 6L1L26M1M2

(Ly + Ly + DF,, (N)F,, (V) JFNI @N)Fy, 2Ny)
M 7]

i S (—D%ag(Ly + 1N — L)ay(Ly + 1, N, — Ly)
(Za)ZS(ZB)ZT(a2 — BZ)N1+N2—s—r+1

s=0

Ni—s NS
aL1+L2_1 Z FNz—T(Nl + Nz —S—Tr— Ul) (1 _ B_)

= Fri+1,+1(vy) a?
1= 2
Noy—r
_ﬁL1+L2—1 Z FNl—S(Nl + N2 —S—1r— vZ) (1 B a_2>‘l72 (18)
— Fri+1,+1(v5) B?
v2=0 2

2.2.2 Two-center basic Coulomb integrals

Two-center Coulomb integrals represent the molecular Coulomb integrals that each one-
center charge distribution centered on different nuclei in configuration space. The integral
obtained as Equation (9) in momentum space is written for the same screening parameters
as follows:

e—lRp
Cu o (@, a; R)-4ﬂlf-};—- Uns, (2, p)UxZ, (@, p)dp (19)

In Equation (9), using the definitions of the FTSTO (Equation (10)), the product of two
real spherical harmonics (Equation (5)), and the Rayleigh expansion (Equation (12)), one
obtains:

Lp;L1+Ly 7+92N1+2N+6 ,,2N1+2Np—L1—Ly+1
CMelaMa (g o RY = (=D™i 2 a
N1L1M1

F, (NDF,, (V) \/FNI(ZM)FNZ @N,)

PP

Z Z (=D Tay(Ly +1,Ny — L) a, (L, +1,N, — Ly)

(Za)25+2r
Li+L, l
@ 1 m
Z (=) <L1M1|L2M2|lm)AM1M2
l=|L1—L2| m=-1
]l pR)p2L+l+2dp

K0, 0) f T § g e @)
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here 2L = L, + L, — [ is an even positive integer or zero. The series expansion of p2L is
given by [33]:

L

b= (-Dh Y (D)

t=0

(a 2+p) 21)

To convert the radial integral in Equation (20) simpler, we use Equation (21) for
numerator and Taylor expansion given by Equation (4.2) in reference [33] for
denominator:

(_1)L27T22N1+2N2+6

N LoM
leLﬁvzlz (a,a;R) =

Fy, (NDF,, (N,) JFNI(ZNl)FNZ(ZNZ)

P

Z z (=D*as(Ly + 1, Ny — L) a,(Ly +1, N, — Ly)

225+2r

Li+L, l

@ tF.(L)

L
(=D
Z (L1My| Lo My | lm)AT] 1, Y™ (6, ) Z T
=iy L, M=t L
© Ni+Np—s—r—t+1

f p'ji(RYdp — Z 0 [ PTEPR)dp

T (22)
2 2)v+1
) i ) (a* +p?)

The first integral in Equation (22) can be proved in terms of irregular solid spherical
harmonics defined as £/*(r) = r~'=1Y™ (8, ¢) [56],

v6.9) [ PRI =3 @l - DIEN®) @3)

Using the integral tables of spherical Bessel functions [57], the second radial integral can
be expressed in terms of modified Bessel function of second kind:

oopl+2jl(pR)dp Rv—l/Zal—v+1/2
(a? + p2)vHl =VT iyl
0

Ki—ys1/2(aR) (24)

Then, this integral with spherical harmonic can be written as a linear combination of STOs
when the series expansion of modified Bessel function of second kind is used:

b I+2; 1-2v— 1/2
P h(PR)dp  «
Ylm(gr (P)f ((12 +p2)v+1 =n 22v+3/2 ngq)(v ql(a R) (25)
0
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where

(I-v+q)! ’(Z(v—q))! (26)

U-v—-—q)'v!q

I _
9vq =

Taking into the account Equations (23) and (25), two-center Coulomb integrals with the
same screening parameters take the following form [59]:

Ly +292N{+2N»+5
N2L2Mz( ) (_1) 21742 1+2Nz+
N1L1M1

a2F,, (NDF,, (V) JFNl(zzvl)FNz(zzvz)

P

Z z (=D*as(Ly + 1, Ny — L) a,(Ly +1, N, — Ly)

225+2r

L1+L

L
)
S Z (LM LMol AT,, ) (~DFF(L)
t=0

= |L1 Lzl m=-1

N{+Ny—s—-r—t+1 ~3/2 1-v
a
QU@ - Y oS ghataeR) @)
v=0 q=0

In the analytical evaluation of two-center Coulomb integrals with the different screening
parameters the radial integrals written in the following form:

( 1)Lz7T22N1+2N2+6a2N1—L1+1/2ﬁ2N2—L2+1/2

Cuginn, (@ B R) =

By, (NDFy, (V) \/FNl(ZNoFNZQNZ)

[Nl Ll] [NZ Ly

Z Z ( D**"ag(Ly + 1L, N, — L)a, (L, + 1L, N, — L)
(a)?s(2p)*

Li+L, l
(2)
(—1)L(L1M1 | L, M,| lm)A’,\Z}lMZ Y™ (6, 9)

l=|L1—L2| m=-1

Ji(pR)p*+*+2dp
f p2(a? + p2)Ni=s+1(B2 4 p2)No—7+1

(28)

The use of Taylor expansion given by Equation (4.4) in reference [33] allows separating
the denominators in Equation (28) as follows:
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( 1)L27T22N1+2N2+6a2N1—L1+1/252N2—L2+1/2

Ch22?(a, B;R) =
F, (NDF,, (V) \/FM(ZNQFNZ @Ny)
] [

(—D**"ag(L; +1,N; — L)a, (L +1,N, — Ly)
Z Z Q2P

L1+L2 l

)
D CDHLM LMol lm)AT, Y (6,0)

l=|L1—L2| m=-1

2L+l+2dp

N{—s (o]
Z (=DN™Fy _ (Ny+ Ny —s —r —vy) [ ji(pR)p

4 (az — ’82)N1+N2—S—T—U1+1 pZ(az + pZ)‘V1+1
V1= 0

2L+l+2dp

Z ( Hh= S+1FN1 s(Ni+ Ny —s—1—1,) ]l(PR)P

aZ)N1+N2 s—=r—vy+1 2(ﬁ2+p2)v2+1 (29)
0

The radial integrals obtained in Equation (29) are the same with the integrals given by
Equation (20) derived for the two-center Coulomb integrals with the same screening
parameters. Accordingly, applying the same steps used to solve the radial integral in
Equation (20) for these integrals, two-center Coulomb integrals with the different
screening parameters can be obtained in terms of irregular solid harmonics and linear
summation of STOs [59]:

( 1)N2+L1_17T222N1+2N2+5a2N1_L1+1/2ﬁ2N2_L2+1/2

N Lo,M
N12L13\/112( ﬁ R) =

F, (NDF,, (V) \/FNI(ZM)FNZ @Ny)

P (—=D%ag(Ly + 1, Ny — L)a, (L + 1, Ny — Ly)
Z Qa)?s(2B)?" (a? — p2)Ni+Nz=s—r+1

s=0

Li+L, l

)
D (LML Mytm) AT, > (~DF(L)

l=|L1—L2| m=-1

N1—s
alitizl Z Fryr (Ny + Ny = s =7 = v) (1 = B2/ a®)™
‘U1=0
_3/2 - —Z1
Q@l-DNE™(aR) — Z 22z1+1/2 Z ng aQ XZI —q1(@,R)
Noy—r

—plattat Z Fupes(y+ Ny =5 =7 = 0)(1 = a?/ )"

V2=
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vy—t -2z

5—3/2
@U=DIEPER = D o > G, Mgy 1(BR) (30)
q2=0

Z7=0

3. Results

To order to calculate two-electron Coulomb integrals over real STOs efficiently and
accurately an algorithm has been described by using the obtained analytical formulas. The
algorithm has been implemented in a computer program written in MATHEMATICA
10.0 programming language. The program has been run for physically significant values
of atomic orbital parameters by using Intel(R) Core (TM) i7-6500U CPU @ 2.50 Ghz
computer. Numerical results that we obtained for line-up coordinate system have been
reported in Table 1 and Table 2 for atomic Coulomb integrals given with 15 decimal
digits and two-center molecular Coulomb integrals with 35 decimal digits, respectively.
As can be seen from Table 1 and Table 2, all the calculations have been made in range of
1<n<25 0<I1<9 and —2<m <9 and for the arbitrary values of screening
parameters and internuclear distances. In the tables the first row of the numeric results
column shows the numeric values obtained in this study. For the calculations of the atomic
Coulomb integral, in Table 1, in the case of same screening Equation (15) and in the case
of different screening Equation (18) have been used. In Table 2, where the numerical
results of the two-center Coulomb integrals are given, for the same and different screening
parameters the expressions of Equation (27) and Equation (30) in terms of the modified
Bessel function of second kind have been used.

In the computer program, the modified Bessel function of second kind has been computed
with the series expansion given below [57] taking into account the case n is negative and
positive integer

n
3 (n+j)!
K, xX)= |—e™™* Z - - - 31
w2 = {5 L it = i) &y
]:
Table 1. The values of one-center Coulomb integrals over STOs using by Equations (15) and (18).
ny/ny, L/, my/my, e./eq, ng/ng 3/l mg/my, /e, Numerical results
5.437500000000000
11 0/0 0/0 8.7/8.7 11 0/0 0/0 8.7/8.7 543750 @
1.46328 21330 50426 x 10!
2/1  0/0 0/0 2.6/8.7 2/1 0/0 0/0 2.6/8.7 14633 x 1014
2.95642 80233 14304 x 10!
2/2  0/0 0/0 2.6/2.6 2/1 0/0 0/0 2.6/8.7 5 9564 x 1014
2.08767 36111 11111 x 10!
2/2 1/0 0/0 2.6/2.6 212 1/0 0/0 2.6/2.6 50877 x 1018
5.48437 50000 00000 x 1072
2/2 11 -1/0 2.6/2.6 212 11 -1/0 26/2.6 5484 x 1022
-1.82643 75834 06783 x 1072
4/3 32 32 32117 4/3 32 211 1.7/07 182643 75824 422 x 10-2b

4.50007 13886 75689 x 102

10/10  9/9 9/9 1.5/1.22 10/10 9/9 9/9  0.5/0.65 450007 13886 7520 x 10-2b

a Reference [60]; ® Reference [61].
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Table 2. Comparative values of two-center Coulomb integrals over STOs in line-up coordinate systems.

ny/n, L/, my/my,  g/eq Ny /Ny IL/l, mg/my  &/& R Numerical results
6.24916 67058 30088 14983 45518 38351 29937 x 10
11 0/0 0/0 0.99/0.99 17 0/0 0/0 1.01/1.01 0.01  6.24916 67058 30088 14983 45518 38351 29936 x 102

6.24916 67058 30088 14983 46 x 10 P

1.82289 25537 50662 68097 06249 99472 18106
1/1 0/0 0/0 5.2/5.2 212 0/0 0/0 4.1/4.1 0.2 1.82289 25537 50662 68097 06249 99472 18105 #
1.82289 2554 ¢

-2.03568 85382 24252 94658 39569 97218 82383 x 10!
1/2 0/1 0/1 5.2/4.0 212 1/0 -1/0 3.1/4.1 0.2  -2.03568 85382 24252 94658 39569 97218 82382 x 1012
-2.03568 8538 x 10°1¢

3.45983 64791 66103 67505 07075 35552 00665 x 10
2/2 0/0 0/0 0.8/0.9 212 0/0 0/0 1.1/1.2 0.2 3.45983 64791 66103 67505 07075 3555 x 10! ¢
3.45983 64791 66104x 10 P

3.24756 44802 54982 28658 37023 34107 50971 x 10
2/2 11 0/0 0.8/0.9 212 0/0 0/0 1.1/1.2 2.0 3.24756 44802 54982 28658 37023 34 x 10 ¢
3.24756 44802 54982 3 x 101 ©

-1.20705 70535 94375 77816 23149 97854 51448 x 1018

1/10 0/2 0/0 5.2/0.2 5/7 1/0 0/0 0.6/0.5 2.5 -1.20705 7054 x 1018 ©

1. 36325 84822 52802 36788 07621 24881 76923 x 108

2/4 1/3 0-2 3102 42 2/0 200 0541 25 [ aeosde e Toee

-7. 36773 13766 53888 45151 51235 09992 20224 x 10
4/2 31 0/0 5.2/4.0 4/4 2/3 212 0.5/3.0 25  -7.36773 13766 53888 45151 51235 09992 20224 x 10 2
-7.36773 1377 x 10° ¢

4.88358 08140 37952 76018 31732 66635 47903 x 10
5/3 0/2 0/0 1.0/3.0 4/4 2/1 1/1 2.0/4.0 8.0 4.88358 08140 37952 76018 3173 x 105 ¢
4.88358 0814 x 10°° ¢

-2.25291 88936 55436 05537 04573 40032 86720 x 10+
10/10 2/2 0/0 0.2/0.2 5/7 1/0 0/0 0.6/0.5 8.5  -2.25291 88936 55436 05537 04573 x 10 ¢
-2.25291 8896 x 10 ©

1.32578 24709 36295 45612 88059 75651 53923 x 1010
4/1 3/0 0/0 0.8/0.9 31 2/0 0/0 1.1/1.2 100 1.32578 24709 36295 45612 88059 75651 53922 x 1010 @
1.32578 24709 36295 46 x 1020 P

5.58454 19476 26061 00861 36798 18078 45075 x 10
25/3 0/0 0/0 1.2/1.2 212 0/0 0/0 1.0/1.0 0.22 5 58454 19476 260 X 10° |

a Reference [49]; ® Reference [21]; ¢ Reference [25]; ¢ Reference [44]; ¢ Reference [62]; f Reference [13].



4. Conclusion and Comment

For evaluating two-electron one- and two-center Coulomb integrals over real STOs
analytical formulas have been obtained using Fourier transform method. First, in case
R=0, the atomic Coulomb integrals have been derived easily in terms of binomial
coefficients as given by Equations (15) and (18). In the calculation of two-center
molecular Coulomb integrals, we have used some Taylor expansions given by the group
of Steinborn in reference [33] to simplify the denominator of the integral structures
encountered. The resulting integrals have been expressed in terms of irregular solid
spherical harmonics and modified Bessel functions of second kind as given by Equations
(23) and (24). Eventually two-center molecular Coulomb integrals have been expressed
as finite linear combinations of Gegenbauer coefficients, Gaunt coefficients, irregular
solid harmonics and real STOs using the series expansion of modified Bessel functions
of second kind.

It has been seen that the program written in the present study gives rise to a highly
accurate computation of one- and two-center molecular Coulomb integrals over real
STOs. The comparative results given in tables have shown an exact match with the
benchmark values of the literature for one- and two-center Coulomb integrals.
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