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Abstract 

Predicting lung adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) risk status is a crucial step in 
precision oncology. In current clinical practice, clinicians, and patients are informed about the patient's risk group only 
with cancer staging. Although several machine learning approaches for stratifying LUAD and LUSC patients were described,  
the integrated machine learning model of clinical and genetic data of the two lung cancer types is not studied. In our work, 
we used a prognostic prediction model based on clinical and somatically altered gene features from 1026 patients to assess 
the relevance of features on risk classification. By integrating these two aspects, we achieved the highest accuracy; 93% for 
LUAD and 89% for LUSC, respectively. Our second finding is KEAP1 and CSMD3 are prognostic genes for LUAD and LUSC 
respectively and the site of resection is significantly associated with the risk stratification. We validated the risk 
stratification impact of CSMD3 on an independent RNAseq dataset from NCBI GEO (GSE81089) and finally integrated our 
model into a user-friendly mobile application. Using this machine learning model and mobile application, clinicians and 
patients can assess the survival risk of their patients using each patient’s own clinical and molecular feature set. 
Keywords: Machine learning, lung adenocarcinoma, lung squamous cell carcinoma, prognosis prediction model, the cancer 
genome atlas, multi-omics, data integration, electronic health records 

MAKİNE ÖĞRENİMİ YOLUYLA AKCİĞER KANSERİ HASTALARININ RİSK 
SINIFLANDIRMASINI ÖNGÖRMEK İÇİN KLİNİK VE GENOMİK ÖZELLİKLERİ 

BÜTÜNLEŞTİREN KİŞİSELLEŞTİRİLMİŞ ONKOLOJİ MOBİL UYGULAMASI  

Özet 

Akciğer adenokarsinomu (LUAD) ve Akciğer Skuamöz Hücreli Karsinom (LUSC) hastalarının sağkalım riskini tahmin 
etmek, hassas onkolojide çok önemli bir adımdır. Mevcut klinik uygulamada klinisyenler ve hastalar hastanın risk grubu 
hakkında sadece kanser evrelemesi ile bilgilendirilmektedir. LUAD ve LUSC hastalarını sınıflandırmak için çeşitli makine 
öğrenimi yaklaşımları tanımlanmış olmasına rağmen, iki akciğer kanseri türünün klinik ve genetik verilerinin entegre eden 
bir makine öğrenimi modeli çalışılmamıştır. Çalışmamızda, özniteliklerin risk sınıflandırmasıyla ilişkisini değerlendirmek 
için 1026 hastadan alınan klinik ve somatik olarak değiştirilmiş gen özniteliklerine dayanan bir prognostik tahmin modeli 
kullandık. Bu iki yönü entegre ederek en yüksek doğruluğu elde ettik; LUAD için sırasıyla %93 ve LUSC için %89. İkinci 
bulgumuz KEAP1 ve CSMD3'ün sırasıyla LUAD ve LUSC için prognostik genler olması ve rezeksiyon bölgesinin sağkalım risk 
sınıflandırması ile önemli ölçüde ilişkili olmasıdır. Bulunan prognostik genlerden CSMD3'ün NCBI GEO'dan (GSE81089) 
bağımsız bir RNAseq veri kümesi üzerindeki risk sınıflandırma etkisini doğruladık ve son olarak modelimizi kullanıcı dostu 
bir mobil uygulamaya entegre ettik. Bu makine öğrenimi modelini ve mobil uygulamayı kullanarak klinisyenler ve hastalar, 
her hastanın kendi klinik ve moleküler özellik setini kullanarak hastalarının hayatta kalma riskini değerlendirebilir. 
Anahtar Kelimeler: Makine öğrenimi, akciğer adenokarsinomu, akciğer skuamöz hücreli karsinomu, prognoz tahmin 
modeli, kanser genom atlası, çoklu omikler, veri entegrasyonu, elektronik sağlık kayıtları 
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1.  Introduction 

Lung cancer is the most common type of cancer and the 
leading cause of death worldwide. The World Health 
Organization (WHO) reported that lung cancer is the 
second most frequently diagnosed cancer type, 
constituting 11.4% of all cancers, and the leading cause 
of cancer-related deaths (18%) in 2020 [1]. In the United 
States, the 5-year survival rate of patients diagnosed with 
lung cancer is only 14%. Although this survival rate 
increased over the last two decades  significant 
improvements appear unlikely in the near future [2].   

Small cell lung cancer (SCLC) and non-small cell lung 
cancer (NSCLC) are the two main types of lung cancer. 
Lung Adenocarcinoma (LUAD) and Lung Squamous Cell 
Carcinoma (LUSC) are two of the three subtypes of 
NSCLC that affect 85% of patients. Patient risk group-
based treatment can be administered based on the 
course of the cancer if the genetic and clinic profile of the 
patients can be obtained at an earlier stage. 

The emergence and effectiveness of machine learning 
(ML) techniques to process massive volumes of data are 
revolutionizing bioinformatics and conventional 
approaches to genetic diagnostics. There has been a 
significant rise in the amount of cancer studies utilizing 
ML and molecular data in recent years producing 
outcomes that are comparable to those of traditional 
techniques for searching of potential genetic biomarkers. 
Due to its success in classification and prediction in 
supporting clinicians, ML offers efficient solutions to 
decision-making processes and the rising cost of health 
care while also improving patient-clinician 
communication [3,4]. 

Among the recent studies in ML based lung cancer 
prediction, several of them used Computed Tomography 
(CT) based features [5] whereas other techniques are 
more specific, and used genomic or phenotypic feature 
sets for building classification models [6]. Jones et al. 
developed a prediction model that combines genetic and 
clinical factors to predict cancer recurrence to compare 
the likelihood of recurrence in patients with traditional 
TNM-based disease prediction models and those with 
completely resected stages I to III LUAD [7]. More 
recently, Yang et al. used genomic information, clinical 
status and demographics and how they influence the 
prediction of recurrence and survival for both early stage 
LUAD and LUSC by comparing the accuracy of three ML 
algorithms: decision tree methods, neural networks and 
support vector machines [8]. 

In this study, for the first time to our knowledge, we 
experiment incorporating both electronic health record 
and mutation data features of  The Cancer Genome Atlas 
(TCGA) [9]  lung adenocarcinoma (LUAD) and squamous 
cell carcinoma (LUSC) patients. For this purpose, we 
extracted the clinical and genes with somatically altered 
mutations as training features from 1026 patients to 
construct a prognostic prediction model for their impact 
on risk classification and validated our prediction in an 
independent dataset from NCBI GEO. 

2.  Materials and Methods 

2.1. Data Collection 

The genetic data and the corresponding electronic health 
record (EHR) information of LUAD(522 patients) and 
LUSC (504 patients) [Table 4] are downloaded via 
TCGABiolinks R package. High or low survival risk of each 
patient and the top 10 somatically mutated genes and 
their mutation counts of each of the LUAD and LUSC 
patients are obtained from our previous publication [10]. 
To validate the importance of the features found by our 
ML model, we download the median fragments per 
kilobase of exon per million fragments mapped (FPKM) 
values and clinical features of an independent  Gene 
Expression Omnibus (GEO) dataset  
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE81089 with 52 LUSC samples by Djureinovic et al 
[11].     

2.2. Preprocessing 

The imbalanced and complicated nature of clinical 
records due to missing values, among other data quality 
limitations, is a common problem. Most biomedical data 
is not smooth, requiring a number of preprocessing 
strategies to remove noise and recover valuable 
biomedical data. For this purpose, clinical features with 
less than 80% clinical data content are eliminated from 
the training and test datasets. Uninformative columns 
such as submitter id, diagnosis id, exposure id, 
demographic id, treatment id, and BCR patient barcode 
are excluded. Redundant columns such as year of birth, 
disease state, updated datetime, and tissue or organ of 
origin columns are also eliminated. Data is partitioned 
into training (80%) and testing (20%) datasets using the 
sci-kit-learn's model_selection package and all 
subsequent exploratory data analysis and model training 
is performed only on the training portion of the dataset. 

2.3.  Missing Value Imputation 

The most common two strategies to cope with the 
missing value problem are dropping the null values and 
filling out the missing values with the mean of the 
feature. Although the effectiveness of these approaches is 
questionable, we experimented with filling out the 
missing values in train and test data with the mean of the 
training data. 

a) Days to death can be longer than days since the last 
follow-up, and unfortunately days to death for patients 
who are still alive are not available. As a result, we try 
three distinct approaches to dealing with the problem: 
deleting the days_to_last_follow_up, assigning 0 for all 
alive patients in days_to_death, and deleting the patients 
when a dead patient’s  days_to_death value is 0. As a 
result of this experiment, there is a 0.63 correlation 
between risk and the vital status with no link between 
them. 

b) We experiment with the assumption that patients will 
live until 90 years old and fill the NaN values for alive 
patients. As a result of this experiment, there is a 0.83 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81089
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81089
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correlation between vital state and risk, but no link 
between risk and vital status. 

c) We transferred the alive patient information into the 
days_to_death column and dropped the 
days_to_last_follow_up column. As we can see, we could 
not find any correlation for days to death neither 
between vital status nor risk of the patient. 

After computing the correlation coefficients of the 
features for these three strategies (Figure 1), alive 
patients’ days_to_death values are filled with the 
days_to_last_follow_up feature. 

2.4. Numeric Columns Imputation 

The missing values in the columns (age_at_diagnosis, 
days_to_birth, years_smoked, cigarettes_per_day) of both 
LUAD and LUSC training and test datasets are filled with 
the mean values of the training data using the 
SimpleImputer library in scikit-learn.  The ratio of 
missing values in the years_smoked feature is 62.83% in 
LUAD and 55.55% in LUSC therefore they are removed. 
For LUAD, cigarettes per day column contains data for 
61% of the patients therefore we could only include this 
feature for LUSC (86%).  

2.5.  Categorical Columns Imputation 

The fundamental issue with categorical features is that 
many ML algorithms cannot operate directly on label 
data. The majority of ML methods require all input and 
output variables to be numeric. Therefore, we used the 
scikit-learn library's LabelEncoder to convert each 
unique value into an integer value to encode our 
categorical data into numerical data. The integer 
representation is then encoded using OneHotEncoding. 
For each unique integer value, the integer encoded 
variable is removed and a new binary variable is added.  

2.6.  Balancing the Imbalanced Classes 

For the LUAD and LUSC datasets, the number of patients 
surviving more than 5 years is approximately 9 times 
smaller than the opposite. Oversampling and 
undersampling lead to similar performances provided 
that the sampling is correctly implemented on the 
training and testing folds separately [6]. For some of the 
earlier TCGA studies, SMOTE was applied to the TCGA 
training set [6,12]. Therefore, we over-sampled both the 
training and testing patient set via Synthetic Minority 
Oversampling Technique (SMOTE). The class 
distributions before and after applying the SMOTE 
algorithm are presented in Figure 2.  

2.7.  Creation of the Machine Learning Models 

After over-sampling, five different classification 
algorithms (Logistic Regression, Random Forest 
Classifier, Naive Bayes, SVC, and K-Neighbors Classifier) 
are implemented. The receiver operating characteristics 
(ROC) curves are plotted and Area Under The Curve 
(AUC) values are obtained to assess the performance of 
the learning algorithms (Figure 3, 4). In order to support 
the AUC [13,14] metrics, the F1-score, precision, and 
recall are calculated and shown in Table 1 and Table 2. 

 

 

 
Figure 1. Correlation coefficients of three strategies for 
assigning missing values of days_to_death column (A) 

filling with zero (B) filling with days_until_90s (C)filling 
with days_to_last_follow_up. 

 
Figure 2. The Synthetic Minority Oversampling 

Technique (SMOTE) was used to address the class 
imbalance issue in the training and testing data sets 

separately. (A,B) LUAD data before and after 
oversampling, (C,D) LUSC data before and after 

oversampling. 
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Figure 3. Receiver operating characteristics (ROC) 

curves are plotted and Area Under The Curve (AUC) 
values are obtained to evaluate the performance of five 

different algorithms for LUAD data set (A) Random 
Forest, (B) Support Vector Machine (SVC), (C) Gaussian 
Naive Bayes (GaussianNB), (D) Logistic Regression, (E) 

K-Neighbors Classifier (KNN). 

 
Figure 4. Receiver operating characteristics (ROC) 

curves are plotted and Area Under The Curve (AUC) 
values are obtained to evaluate the performance of five 

different algorithms for LUSC data set (A) Random 
Forest, (B) Support Vector Machine (SVC), (C) Gaussian 

Naive Bayes (GaussianNB), (D) Logistic Regression, (E) 
K-Neighbors Classifier (KNN). 

Table 1. Comparison of the Precision, Recall, F1-score of 
5 algorithms for LUAD. 

Model Name Precision Recall F1-
Score 

Accuracy 

Logistic 
Regression 

0.90 0.89 0.89 0.89 

Random 
Forest 

0.82 0.81 0.81 0.81 

Naive Bayes 0.72 0.65 0.62 0.71 

SVC 0.53 0.52 0.45 0.53 

KNN 0.62 0.62 0.62 0.62 

Table 2. Comparison of the Precision, Recall, F1-score 

of 5 algorithms for LUSC. 

Model Name Precision Recall 
F1-

Score 
Accuracy 

Logistic 
Regression 

0.75 0.74 0.73 0.74 

Random 
Forest 

0.71 0.69 0.68 0.68 

Naive Bayes 0.70 0.62 0.58 0.71 

SVC 0.56 0.53 0.48 0.56 

KNN 0.53 0.53 0.52 0.53 

2.8. Hyperparameter Tuning 

Among the five different classification algorithms, the top 
two best scoring algorithms are found as Random Forest 
and Logistic Regression, thus hyperparameter tuning is 
applied to Random Forest and Logistic Regression based 
models. For hyperparameter tuning of these two 
algorithms, we implemented a 5-fold cross-validation 
where we first split the training set into 5 folds and then 
applied random oversampling on 4 folds which are used 
for training the classification model and then 
documented the model performance metrics on the 
remaining 1-fold using the GridSearchCV in scikit-learn. 

3.  Results and Discussion 

All tumor stages are cconsolidated into four main tumor 
stages. During the course of the TCGA project, 188 
patients died in LUAD and 220 patients died in LUSC. 
Table 4 summarizes the overall statistics of the LUAD and 
LUSC clinical features.  

To identify the optimum parameters for the models, we 
employed GridSearchCV(scoring=’f1’, cv=5) in scikit-
learn to Random Forest and Logistic Regression as it is 
the preferred method for adjusting hyperparameters 
[15] (Table 3). 
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Table 3. Comparison of performance metrics for Random Forest and Logistic Regression with and without 
hyperparameter tuning.

 

Table 4. Clinical properties of the LUAD and LUSC patients. 

 

Table 5. Accuracies of each fold for LUSC for 5-fold cross-validation. 

Model Name and Parameters Metrics Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 mean std 

LogisticRegression( 

C= 109.85411419875572, 
penalty='l1', solver='liblinear') 

F1-Score 0.90 0.85 0.80 0.83 0.81 0.84 0.040 

Precision 0.91 0.86 0.84 0.86 0.81 0.86 0.038 

Recall 0.90 0.85 0.81 0.83 0.81 0.84 0.039 

Accuracy 0.90 0.85 0.81 0.83 0.81 0.84 0.039 

AUC 0.93 0.89 0.86 0.88 0.87 0.89 0.025 

RandomForestClassifier( 

max_depth= 8, 
max_features='auto', 
min_samples_leaf=3, 
n_estimators=200) 

F1-Score 0.78 0.83 0.82 0.69 0.62 0.75 0.090 

Precision 0.79 0.84 0.83 0.71 0.67 0.77 0.074 

Recall 0.78 0.83 0.82 0.70 0.64 0.75 0.083 

Accuracy 0.78 0.83 0.82 0.70 0.64 0.75 0.083 

AUC 0.79 0.92 0.92 0.76 0.72 0.82 0.092 

 

 

 

Model Name Data GridSearchCV Precision Recall F1-Score Accuracy 

Logistic Regression LUAD No/Yes 0.92/0.94 0.92/0.93 0.92/0.93 %91.7/%93.1 

Random Forest LUAD No/Yes 0.88/0.90 0.88/0.90 0.87/0.90 %87.9/%89.7 

Logistic Regression LUSC No/Yes 0.77/0.82 0.74/0.78 0.74/0.77 %74.3/%77.5 

Random Forest LUSC No/Yes 0.72/0.77 0.68/0.71 0.66/0.69 %66.6/%70.5 

LUAD Patient Property Name Number LUSC Patient Property Name Number 

Age at diagnosis (median; range) 67 (33-
89) 

Age at diagnosis (median; range) 68 (39-
90) 

Gender  Gender  

Female 280 Female 131 

Male 242 Male 373 
Smoking Associated Features Smoking Associated Features 

Number of cigarettes per day (mean; 
range) 

2 (0-9) Number of cigarettes per day (mean; 
range) 

3 (0-13) 

Number of years smoked (mean; range) 32 (2-64) Number of years smoked (mean; range) 40 (8-63) 

Tumor Stage  Tumor Stage  

I 279  I 245 

II 124 II 163 
III 85 III 85 
IV 26 IV 7 
NA 8 NA 4 

Vital Status  Vital Status  

Alive 334 Alive 284 
Dead 188 Dead 220 
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3.1. K-Fold Cross-Validation 

We next apply 5-fold cross-validation with Logistic 
Regression and Random Forest models with 
hyperparameters to avoid bias [16,17]. Random Forest 
and Logistic Regression models’ results for each five-
folds are documented in Table 5 and Table 6. 

3.2. Random Forest Feature Importance 

The feature selection techniques select a subset of the 
most relevant features according to the target feature. 
The main goal of choosing the most relevant features is 
running the algorithms more efficiently to overcome 
space and time complexity problems. Irrelevant input 
features can mislead the ML algorithms resulting in 
worse performance. In this work, we compared the 
feature importances on two alternative sets of features; 
1) Full set of clinical features and 2) Clinical features with 
top 10 somatically mutated driver genes. Importance 
ranking of the features are provided by the fitted 
attribute feature_importances_of the scikit-learn Python 
ML library. The feature importances are computed as the 
mean and standard deviation of accumulation of the 
impurity decrease within each tree (Figure 5A, 5B). We 
also plotted the top 9 most correlated features to 
days_to_death (Figure 6A, 6B). 

3.3. Somatically Mutated Genes 

In this experiment, we investigated which somatically 
mutated genes effect the survival by feature engineering. 
We added the mutation counts of the top ten most 
commonly mutated somatic driver genes along with 
clinical features to create the training model. For this 
purpose, we selected the top 10 most highly mutated 
somatic driver genes for LUAD, and LUSC identified in 
our previous publication [10] using SominaClust [18]. 
The top ten most somatically mutated driver genes for 
LUAD patients are CDH10, COL11A1, CSMD3, HMCN1, 
KEAP1, KRAS, LRP1B, SPTA1, TP53, and USH2A. 
Although KEAP1, TP53, USH2A, and CSMD3 popped up in 
the most important top 10 feature list, adding the genes 
had no discernible effect on the LUAD Logistic 
Regression and Random Forest models' accuracy (Figure 
7A, Figure 8A). The performance of each fold of 5-fold 
cross-validation is presented in Table 7. 

Moreover, KEAP1 mutation has higher feature 
importance followed by TP53, USH2A, CSMD3, LRP1B, 
SPTA1, CDH10, HMCN1, KRAS and COL11A1. Mutated 
genes have higher importance than many clinical 
features. To examine how much a patient's clinical 
variants and somatic mutation profile affect a patient's 
survival risk, we set up separate machine learning 
models that incorporate these two types of features 
separately and together. Evaluating the accuracy of these 
machine learning models using combinations of clinical 
and mutation features, we showed that clinical variables 
are more effective in predicting patient survival than 
mutation data. Site of resection, morphology, primary 
diagnosis, smoking amount have importance along with 
the gene mutations. 

 

Figure 5. Importance ranks of LUAD (A) and LUSC (B) 
clinical features only 

 

 
Figure 6. Top 9 most correlated LUAD (A) and LUSC (B) 

clinical features to days_to_death 
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Incorporating gene mutation features did not change the 
performance for LUAD model yet we included it in the 
final LUAD model integrated into the mobile application. 
For example, loss of function mutations in KEAP1 gene, 
promote KRAS-driven lung tumorigenesis [19] that may 
be reason of correlation of KEAP1 with risk of patients, 
therefore KEAP1 and KRAS can be used along with 
clinical variables. 

Unlike LUAD, addition of the top 10 most highly mutated 
somatic driver genes to the feature set vastly improved 
the classification model of LUSC patients (Table 8). Top 
10 somatically mutated genes of LUSC patients reported 
in our previous publication are CDKN2A, CSMD3, FAT1, 
KEAP1, KMT2C, KMT2D, NF1 NFE2L2, PIK3CA, TP53 
[10].  

Integrating the given ten genes improved the accuracy of 
the learning model most for the Logistic Regression and 
Random Forest in LUSC (Figure 7B, Figure 8B). Among 
these 10 genes, CSMD3 is known as one of the most 
frequently mutated genes in lung cancer and a potential 
tumor-suppressor [20]. Following CSMD3, smoking 
related features ranked the highest importance. This 
finding is also in agreement with LUSC pathogenesis. 
Unlike LUAD, LUSC pathogenesis is strongly associated 
with airway lesions that arise with smoking and is mostly 
located in the central parts of the lung [21]. Following 
smoking, age, tumor stage and TP53, KEAP1, NFE2L2, 
KMT2D, KMT2C, FAT1, CDKN2A, NF1 and PIK3CA gene 
mutations appeared in top feature list of LUSC. 

3.4. Kaplan Meier Analysis 

As we want to validate our finding that CSMD3 can be a 
prognostic biomarker gene for LUSC, we perform a 
Kaplan-Meier survival analysis on an independent 
dataset of GSE81089. FPKM values and the electronic 
health records of 52 LUSC patients by Djureinovic et al. 
[11] are downloaded from GEO web site. After sorting the 
patients by their FPKM values, we compared the survival 
of the patients with FPKM values above third quartile 
(high) against the patients with FPKM values in the first 
quartile (low). These 26 LUSC samples are labeled as low 

and high expression groups. The prognostic value of 
genes for OS are performed with the hazard ratios (HR) 
and Log-Rank p-values. Our analysis results indicated 
that the patients with low expression of CSMD3 had 
significantly better prognosis (p=0.037) (Figure 9).  

Lastly, best performing ML model has been integrated to 
a user-friendly mobile interface (Figure 10) enabling 
both clinicians and lung cancer patients to assess the 
patients’ risk stratification.  

4.  Conclusion 

Main goal of our study was to investigate the effect of 
clinical features and the biomarker genes most helpful 
the in prediction of survival stratification of LUAD and 
LUSC patients. For this purpose, we implement several 
ML studies investigating the vast clinical feature set and 
top 10 most somatically mutated gene set of TCGA lung 
adenocarcinoma and lung squamous carcinoma patients 
and rank the features contributing to the risk 
stratification. An important finding of our study is that, in 
general, clinical features have more survival predictive 
power than somatic mutations, therefore, we 
recommend gene mutations and clinical features to be 
evaluated together by the clinicians for predicting risk of 
survival. 

New genes such as KEAP1 for LUAD, CSMD3 for LUSC and 
new clinical features such as site of resection are 
discovered as potential features to be added to clinical 
decision process. We predict that LUSC patients with low 
CSMD3 mutation rates have a favorable prognosis in the 
TCGA dataset using our proposed ML method integrating 
clinical and mutation factors. Analyzing an independent 
dataset from NCBI GEO, we confirmed that low 
expression level of CSMD3 for LUSC patients is an 
indication of a significantly favorable survival. 

Future work of research involves integrating more 
cancers into our mobile interface and deploying our 
mobile application to public dissemination for both IOS 
and Android platforms.

Table 6. Accuracies of each fold for LUAD for 5-fold cross- validation.

Model Name and Parameters Metrics Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 mean std 

LogisticRegression( 

C=16.768329368110066, 
penalty='l2', solver='newton-cg') 

F1-Score 0.91 0.93 0.89 0.91 0.88 0.904 0.017 

Precision 0.91 0.94 0.90 0.91 0.90 0.912 0.014 

Recall 0.91 0.94 0.89 0.91 0.89 0.908 0.018 

Accuracy 0.91 0.93 0.89 0.91 0.89 0.906 0.015 

AUC 0.95 0.95 0.94 0.95 0.89 0.936 0.023 

RandomForestClassifier( 

max_depth=8, max_features='log2', 
min_samples_leaf=3, 
n_estimators=50) 

F1-Score 0.86 0.86 0.87 0.87 0.73 0.838 0.054 

Precision 0.86 0.88 0.88 0.88 0.79 0.858 0.035 

Recall 0.86 0.86 0.87 0.87 0.74 0.84 0.050 

Accuracy 0.86 0.86 0.87 0.87 0.74 0.84 0.050 

AUC 0.94 0.91 0.95 0.91 0.82 0.906 0.046 
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Table 7. Accuracies of each fold for LUAD model with clinical features and top 10 somatically mutated genes for 5-fold 
cross-validation 

Table 8. Accuracies of each fold for LUSC model with clinical features and top 10 somatically mutated genes for 5-fold 
cross-validation 

 

 

 

Model 
Name 

Metrics 
Feature 

Type 
Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 mean std 

Logistic 
Regression 

F1-Score 
Clinical/
Mutation 

0.91/0.89 0.93/0.90 0.89/0.90 0.91/0.88 0.88/0.89 0.90/0.89 0.017/0.009 

Precision 
Clinical/
Mutation 

0.91/0.90 0.94/0.91 0.90/0.90 0.91/0.88 0.90/0.89 0.91/0.90 0.014/0.011 

Recall 
Clinical/
Mutation 

0.91/0.89 0.94/0.90 0.89/0.90 0.91/0.88 0.89/0.89 0.91/0.89 0.018/0.009 

Accuracy 
Clinical/
Mutation 

0.91/0.89 0.93/0.90 0.89/0.90 0.91/0.88 0.89/0.89 0.90/0.89 0.015/0.009 

AUC 
Clinical/
Mutation 

0.95/0.91 0.95/0.98 0.94/0.93 0.95/0.92 0.89/0.95 0.93/0.94 0.023/0.028 

Random 
Forest 

F1-Score 
Clinical/
Mutation 

0.86/0.81 0.86/0.90 0.87/0.77 0.87/0.80 0.73/0.81 0.84/0.82 0.054/0.052 

Precision 
Clinical/
Mutation 

0.86/0.85 0.88/0.91 0.88/0.85 0.88/0.82 0.79/0.87 0.86/0.86 0.035/0.031 

Recall 
Clinical/
Mutation 

0.86/0.82 0.86/0.90 0.87/0.78 0.87/0.79 0.74/0.81 0.84/0.82 0.050/0.049 

Accuracy 
Clinical/
Mutation 

0.86/0.81 0.86/0.91 0.87/0.78 0.87/0.79 0.74/0.81 0.84/0.82 0.050/0.049 

AUC 
Clinical/
Mutation 

0.94/0.93 0.91/0.96 0.95/0.88 0.91/0.89 0.82/0.92 0.90/0.92 0.046/0.031 

Model 
Name  

Metrics 
Feature 

Type 
Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 mean std 

Logistic 
Regression 

F1-Score 
Clinical/
Mutation 

0.90/0.89 0.85/0.80 0.80/0.87 0.83/0.82 0.81/0.85 0.84/0.85 0.040/0.036 

Precision 
Clinical/
Mutation 

0.91/0.90 0.86/0.82 0.84/0.90 0.86/0.83 0.81/0.86 0.86/0.87 0.038/0.037 

Recall 
Clinical/
Mutation 

0.90/0.89 0.85/0.80 0.81/0.87 0.83/0.82 0.81/0.85 0.84/0.84 0.039/0.036 

Accuracy 
Clinical/
Mutation 

0.90/0.89 0.85/0.80 0.81/0.87 0.83/0.83 0.81/0.85 0.84/0.85 0.039/0.034 

AUC 
Clinical/
Mutation 

0.93/0.93 0.89/0.88 0.86/0.93 0.88/0.90 0.87/0.91 0.89/0.91 0.025/0.021 

Random 
Forest 

F1-Score 
Clinical/
Mutation 

0.78/0.85 0.83/0.75 0.82/0.76 0.69/0.81 0.62/0.73 0.75/0.78 0.090/0.048 

Precision 
Clinical/
Mutation 

0.79/0.87 0.84/0.81 0.83/0.80 0.71/0.82 0.67/0.78 0.77/0.82 0.074/0.032 

Recall 
Clinical/
Mutation 

0.78/0.85 0.83/0.76 0.82/0.77 0.70/0.81 0.64/0.74 0.75/0.79 0.083/0.044 

Accuracy 
Clinical/
Mutation 

0.78/0.85 0.83/0.76 0.82/0.77 0.70/0.81 0.64/0.74 0.75/0.79 0.083/0.044 

AUC 
Clinical/
Mutation 

0.79/0.91 0.92/0.86 0.92/0.82 0.76/0.88 0.72/0.84 0.82/0.86 0.092/0.037 
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Figure 7. Importance ranks of LUAD (A) and LUSC (B) top 10 somatically mutated genes and clinical features. 

 
Figure 8. Top 9 most correlated LUAD (A) and LUSC (B) clinical features and top10. 

 
Figure 10. Mobile application user interfaces. 
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Figure 9. Survival plot of the low and high risk LUSC 

patients (P=0.037). 
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