
Uludağ University Journal of The Faculty of Engineering , Vol. 21, No. 2, 2016 RESEARCH

DOI: 10.17482/uumfd.273970

269

DETECTION OF P53 CONSENSUS SEQUENCE: A NOVEL

STRING MATCHING WITH CLASSES ALGORITHM

Gıyasettin ÖZCAN *

Received: 05.04.2016; revised:14.09.2016; accepted:04.11.2016

Abstract: We present a novel fast string matching technique for special DNA pattern forms and compare

performance of recent CPU architectures on the matching problem. In particular, we consider consensus

P53 DNA-binding consensus sequence, which has an important contribution for cancer treatment. Based

on biological findings, consensus P53 pattern may emerge in various sequence forms and its length is not

deterministic. Therefore, classic string matching algorithms are not able to solve the problem. For

efficient solution, we consider bitwise string matching algorithms with classes and present a novel search

technique which is based on 64-bit packed variables. In order to prevent obstacles based on variable

length of the pattern, we search right and left side indexes of P53 and reduce search space. For

experimental analysis, we make use of mus musculus DNA sequences with approximately 2.3 billion

nucleotides. We compare algorithm performance on three processors with distinct CPU architecture. Test

results show that our search technique introduces at least 20% efficiency during P53 pattern search in

each architecture platform. Due to its structure, the algorithm also introduces an efficient solution to

similar string matching with class problems.

Keywords: Computer Engineering, Computational Biology, Text Processing, Consensus Sequences,

Bitwise Matching, Hardware Counters

P53 Konsensüs Sekansının Yakalanması: Sınıf Özellikli Yeni Bir Sekans Eşleştirme Algoritması

Öz: Bu çalışmada özel DNA örüntüleri için yeni ve hızlı bir sekans eşleştirme tekniği sunulmakta ve

yakın geçmişte üretilen CPU mimarileri üzerinde deneysel karşılaş tırmalar yapılmaktadır. Bu çalışmada,

bilhassa kanser tedavisinde, önemli bir yere sahip olan P53 DNA-bağlayan konsensüs sekansı göz önüne

alınmıştır. Biyolojik kazanımlara göre P53 örüntüsü farklı sekans formlarında karşımıza çıkabilmekte ve

sekans uzunluğu değişebilmektedir. Bu nedenle P53 sekansının klasik sekans eşleştirme algoritmaları ile

çözümü mümkün olamamaktadır. Bu çalışmada verimli çözüm yöntemi sunmak amacıyla, sınıf özellikli

bit-tabanlı sekans eşleştirme algoritması göz önüne alınmıştır. Hedef doğrultusunda, 64-bit paketlenmiş

değişken kullanarak yeni bir arama ve eşleştirme algoritması önerilmiştir. Örüntü sekansının değişken

uzunluk gösterebilmesi nedeniyle karşılaşılması muhtemel engelleri aşmak için ise veri tabanında P53

sekansının özel kısımlarına dair aramalar yapılmıştır. Deneysel analiz için yaklaşık 2.3 milyar

nükleotidden oluşan mus musculus DNA sekansı seçilmiştir. Karşılaştırılan algoritmalar üç farklı

bilgisayar mimarisinde test edilmiştir. Deneysel sonuçlar, geliştirdiğimiz algoritmanın P53 sekans arama

konusunda tüm mimari platformlarında en iyi verimliliği sağladığını göstermektedir. Yapısı gereği bu

algoritma, benzer sekans eşleştirme problemlerinin çözümünde de verimli olanaklar sunmaktadır.

Anahtar Kelimeler: Bilgisayar Mühendisliği, Hesaplamalı Biyoloji, Metin İşleme, Konsensüs Dizileri,

Bitsel Eşleme, Donanım Sayaçları.

* Faculty of Engineering, Computer Engineering Department, Uludag University, 16059, Bursa, Turkey

Corresponding Author: Gıyasettin Özcan (gozcan@uludag.edu.tr)

Ozcan G.: Detection of P53 Consensus Sequence: A Novel String Matching with Classes Algorithm

270

1. INTRODUCTION

Computational biology is an interdisciplinary research field, which provides

comprehensive genome analysis techniques. The field is attractive since recent biological assays
have generated vast amount of DNA sequences. In order to extract significant information from
large-size biological sequences, it is necessary to develop efficient computational analysis
techniques and compatible hardware resources.

In the field of biology, finding similar patterns inside sequence databases is highly
important since biologists need to understand the correlation between DNA sequences and
protein function. The string matching studies present efficient similarity search techniques to
extract such correlation. Concretely, string matching algorithms search query patterns inside
large string databases and output the occurrence indexes.

In terms of cancer research, P53 is a critical protein pattern for multi cellular organisms
which regulates cell cycle (Kern and others, 1992), (El-Deiry, 1998). Concretely, it is a tumor
suppressor and a vital protein to prevent cancer disease. On the other hand, DNA structure of
P53 is complex and computational advancements may help understanding its functions.

DNA-binding consensus sequence of P53 is explained in El-Deiry (1998) and summarized
in Table 1. In the table, the consensus sequence is divided into three segments, where first and
third segments of P53 have the same sequence characteristics and are composed of 10-length
nucleotides. On the other hand, length of second segment is not constant and it may contain
minimum 0 and maximum 13 nucleotides. There is no constraint about nucleotide selection in
the second segment.

The P53 sequence starts with 5’ symbol, which imply that the regulator sequence is
starting. First three nucleotides of P53 is a member of Purine, Pu, group where both adenine, A,
and guanine, G, are accepted as match. Fourth index must be cytosine, C. Fifth and sixth
indices can be either A or thymine, T. While seventh index must be G, next three indices must
be a member of pyrimidine group, Py, where both C and T are accepted as match. At last, the 3’

symbol denotes the end of regulator sequence.

Table 1. Three Segments of Consensus P53 DNA Sequences

Segment Sequence

1 5'-PuPuPuC(A/T)(A/T)GPyPyPy

2 N(0-13)

3 PuPuPuC(A/T)(A/T)GPyPyPy-3'

Since some of the indexes may accept more than one letters, the P53 consensus sequence

may occur in various combinations. In this study, we define P53 or other patterns with the same
characteristics as flexible patterns. Due to its importance, novel string search on flexible
patterns including P53 pattern, could contribute to the literature.

2. DEFINITONS AND LITERATURE

String matching algorithms may aim to search two types of patterns during search. These

are conventional patterns and flexible patterns. In this section we explain both of them.

Uludağ University Journal of The Faculty of Engineering , Vol. 21, No. 2, 2016

271

2.1. Conventional Exact String Matching

Exact string matching algorithms are used when speed and memory efficiency are
important. A survey on exact string matching can be found in (Faro and Lecroq, 2010). During
conventional exact string matching, a pattern, P, is searched inside text, T. Formally, let text is
defined as

0 1 1, ,..., nT t t t 

(1)

and pattern is represented as:

0 1 1, ,..., mP p p p  (2)

An exact match occurs if sequence alignment of text fragment and pattern is completely

same. Formally,

0 1 1 1 1, ,...,j j m j mp t p t p t      (3)

In terms of exact match, a pattern index accepts one alphabet letter. Formally

1ip  (4)

During exact string matching, algorithms present efficient skip mechanisms that predict

mis-match cases before actual comparison. Consequently, they try to minimize overall sequence
comparisons, CPU and memory usage. Some of the well-known algorithms that presented the
fundamental string matching techniques are (Knuth and others, 1977), (Boyer and Moore,
1977), (Horspool, 1980), (Sunday, 1990). These algorithms presented base characteristics of
efficient skipping during search. On the other hand, Karp and Rabin (1987), Kim (1999), Fuyao
and Qingwei (2009) introduced hash based solutions to the problem.

Recent exact matching algorithms inherit the advancements of early techniques and
establish further improvements. For instance, Durian and others (2009) make use of q-grams.
On the other hand, automata based algorithms denotes a different aspect of exact matching and
present a automata based solution that utilizes directed acyclic word graph (Fan and others,
2009).

Bitwise string matching is another form of exact matching, where pattern and texts are
represented in bits. In this form, string matching problem can be executed by utilizing intrinsic
parallelism of bitwise operators. In addition, low level operations speeds up the string matching
execution time. In terms of bitwise match, (Baeza-Yates and Gonnet, 1992), (Navarro and
Raffinot, 2000), (Kulekci, 2008), (Kulekci, 2012) introduced novel algorithms.

A general survey paper, written by Faro and Lecroq (2010) denotes that performance of the
algorithms depend on the dataset. On the other hand bitwise algorithms are convenient during
DNA based string matching, since alphabet of DNA consist of only four letters (Ozcan and
Unsal, 2015).

Exact string matching algorithms have common pitfall during P53 consensus sequence
search on sequence databases. In fact P 53 sequence can be observed in various forms as shown
in Table 1. For instance first index of pattern is Pu, which implies that first index can be either A
or G. Such pattern contradicts with equation 4, which expects single pattern letter at each index.

Ozcan G.: Detection of P53 Consensus Sequence: A Novel String Matching with Classes Algorithm

272

2.2. Flexible Patterns and String Matching with Classes Problem

In contrast to conventional patterns, we define a flexible pattern in the following formal

form,

01 p   (5)

Equation 5 is more convenient to P 53 pattern. As an example, first index of P53 accepts

both A and G letters and |p1|=2. It can be easily seen from the Equation 5 that flexible patterns
are super set of conventional patterns.

In order to present solutions to string matching with class problem, conventional exact
string matching need to handle extra conditions. As an example, if the alphabet size is small, it
can be modified for flexible patterns by bitwise representation, where occurrence of each
alphabet letter can be represented with a single bit.

In literature, some of the bitwise string matching algorithms are adapted for flexible
patterns as bitwise string matching with classes problems (Baeza-Yates and Gonnet, 1992),
(Navarro and Rafinot, 2000), (Kulekci, 2008). These bitwise algorithms are based on bit masks
and require simple modification to handle string matching with classes.

There exist further advancement possibilities for bitwise string matching since power of
bitwise string matching is based on computer architecture and hardware systems are still
improving.

Recent advancements on computer architectures introduced new hardware and software
techniques. For instance, parallel architectures reduce the workload of single CPU. On the other
hand, novel branch predictors estimate future instruction streams of CPU correctly and
introduce more efficient pipelining architectures (Vintan, 1999). Furthermore, novel memory
management mechanisms try to keep frequently used variables inside CPU registers (Appel and
George, 2000) in a process called register promotion.

New architectures also enable access to CPU hardware counters. As a result algorithms can
be analyzed more comprehensively. For instance users can access total CPU cycles during
execution of a program. In addition total branch executions/mis-predictions can be counted.
Similarly, we can obtain counter information from memory structures such as caches. Recently,
software such as PAPI enable convenient access to CPU counter information.

To the best of our knowledge, bitwise string matching studies do not have comprehensive
CPU counter analysis. Henceforth, detailed architectural analyses during program executions
has not been conducted before.

 In fact, such CPU counter experimentations may help hardware architects. For instance,
the analysis introduce the cost of CPU cycles, cache misses during string matching. As a result
of the analysis, computer architects can consider the contribution of hardware costs of string
matching problems and optimize for string matching problem.

3. METHOD

Recall that first and third segments of P53 are completely same and their length is 10,

whereas length of second segment can be at most 13. The new algorithm searches the index
positions of first segment inside text. If the distance between consecutively founded indexes is
less than 23, we assume complete P53 pattern has been found.

The new algorithm aims at DNA sequences, where alphabet has four letters. We represent
each pattern index with four bits, where each bit implies the existence/non-existence of a
letter/nucleotide in pattern. For instance, we represent C,G,T,A as 8,4,2,1 respectively and
denote in Table II in bitwise form.

Uludağ University Journal of The Faculty of Engineering , Vol. 21, No. 2, 2016

273

Table 2. Bit Transformations of DNA Letters

DNA

letter

Bitwise

representation

C 1000

G 0100

T 0010

A 0001

As a consequence of the bit representation in Table II, Pu becomes 0101 since A and G are

accepted members of Pu. On the other hand, Py subsumes C,T and it is represented by 1010.
Finally, (A/T) is denoted as 0011. Depending on these rules, bitwise representation of P53
pattern segment 1 and segment 3 can be denoted as:

0101 0101 0101 1000 0011 0011 0100 1010 1010 1010.

3.1. Bit Structure of the Algorithm

Structure of our algorithm is based on 64-bit words and denoted in Figure 1. We define 64-
bit word as W and segment into three parts. We define rightmost 4-bits as unbroken match
counter bits, UBMC, where the bits keep unbroken match counter. In the middle, 59 bits are
used for comparison of pattern and text. Finally, leftmost bit is not used since it is the signature
bit.

The UBMC keeps cumulative matches between pattern and candidate text fragment. During
comparison of an index, if pattern and text match at that index, the counter is incremented by
one. When the value of UBMC becomes m, algorithm understands that consecutive m
comparison pattern indexes have matched. In contrast, if a pattern and text mismatches at an

index, value of UBMC will be reset to 0. Hence we trace the mismatch inside bit word.

U 59 comparison bits 5 Unbroken Match
Counter(UBMC) bits

0 0 0 ……. 0 0 0 0 0 0 0

Figure 1:
Bit structure of 64-bit word, W

The comparison bits are used to compare pattern and candidate text frame, F. There are 59-
bits reserved for comparison. Since each DNA letter representation requires four bits, we can
represent 14-letter patterns inside a 64-bit word.

At first sight 14-bit pattern can be seen too short. However, 14-bit words reduce search
space decently. In terms of DNA, 14-letter pattern reduces the search space by 4

14
 times, which

efficiently satisfy gigabyte-size sequences.
During search technique we assume P and F are bit words in the W format. In order to

explain our algorithm, we define caseWord. During the comparison of pattern and text letter,
trace of the match/mismatch is projected to caseWord. Its default value is equal to P and its
UBMC bits are initially 0. After each letter match between P and F, value of caseWord is
incremented by one. When a letter mismatches, caseWord returns to its default value.

Ozcan G.: Detection of P53 Consensus Sequence: A Novel String Matching with Classes Algorithm

274

3.2. Illustrative Example

In Figure 2, we consider comparison of Fm-5, and Pm-5. The situation implies that rightmost
four letters of the F must have already matched and caseWord keeps necessary information
about the condition. Recall that P53 segment demands either A or T letters at the corresponding
index whose bitwise equivalent is 0011.

In order to show a mismatch, let assume that letter from text frame is G, and its bitwise
equivalent is 0100. The mismatch can be detected by bitwise OR operation between caseWord
and Fm-5 since new value of caseWord after bitwise OR becomes larger than P. The accrual is
large enough to detect a mismatch and is denoted in the equation.

3.3. String Matching Cases of Algorithm

During string matching, mathematical difference between caseWord and P determines all

cases of the algorithm. Three cases of the results and corresponding decisions are as follows:

 
 

 

1 :

 2 :

3: ,

Case If caseWord P m Signal mismatch

Case If caseWord P m Signal pattern match

Case If caseWord P m Tested letters matched continue to compare text frame

  

  

  

If Case 1 or Case 2 occurs, string matching procedure should re-start from a new text
frame. Consequently, value of the caseWord must be defaulted to P and its UBMC bits become
0, which denote characters matched for the new frame yet.

As Figure 2 denotes, caseWord variable is used for both comparison and counting.
Concretely, the variable is not only called during comparison of text letter, but also used to track
overall matched indexes of candidate text frame. Because of this fact, we name caseWord
variable as a packed variable, which keeps multiple information and handles every step of the
algorithm. We expect that caseWord variable called very frequently; so that it will usually get
promoted to a CPU register and thus speeds up the search time.

3.4. Skip Mechanism

When a mismatch occurs, the search should be started from an untried text frame.

However, it is possible to predict that some respective indices that will eventually mismatch.
Hence computation should rather skip such indexes. Here we implemented a special skip
technique that is convenient for P53 segment.

For efficiency, skip mechanism must compensate at least the overhead of skip distance
computation. The average skip distance depends on the possible subsequence combinations. For
instance, DNA alphabet has four elements and yield 4s combinations with s-length
subsequence.

For conventional patterns, Ozcan and Unsal (2015) fetch two text letters successively from
memory and decide a skip distance when a mismatch occurs. However reading only two le tters
for p53 does not ensure enough skip. Such decrement is the result of accepting class of
characters for an index. However, it is possible to determine skip larger distances by
considering three letters at first step.

We can enable larger skip distance by considering four or more letters at first step.
However, such action may cause unnecessary memory reads, cause register spills and cache
misses.

Uludağ University Journal of The Faculty of Engineering , Vol. 21, No. 2, 2016

275

U CaseWord UBMC

 0 0 1 1 0 1 0 0

OR

U Fm-5 UBMC

 0 1 0 0 0 0 0 0

=

U UBMC

 0 1 1 1 0 1 0 0

Figure 2:
A mismatch example with OR operation

4. RESULTS

We compare the performance of our algorithm, BAP4Bit, against BNDM-Class (Navarro

and Raffinot, 2000), ShiftOR-Class (Baeza-Yates and Gonnet, 1992), Hash-Class and BLIM-
Class (Kulekci, 2008) algorithms.

In order to evaluate algorithm performance, complete mus musculus DNA sequences are
collected from Pubmed database. The mus musculus is known as house mouse or laboratory
mouse. Complete DNA sequence of mus musculus is approximately 2.3 GB in size and stored
in 23 fasta format files (http://www.ncbi.nlm.nih.gov/pubmedhealth, 2011).

The experiments are performed in three different platforms that are denoted in Table 2. In
the table, M1 is a desktop workstation, while M2 and M3 are laptop computers. Each platform
have multiple CPU cores (http://www.intel.com/, 2011).

In order to minimize jitter in the results, each experiment at each platform is repeated ten
times. While outliers are discarded, average of the remaining eight results is reported as final
experimental output.

All codebase is written in C++ and compiled with GCC (GNU C Compiler). We wrote the
code with an Object Oriented Programming approach to have same environments with different
algorithms. We effectively used Boost Libraries (http://www.boost.org, 2013) to handle external
functions.

In terms of evaluation, fundamental performance criterion is the total CPU cycles. Best
algorithm is the one which ensures minimum number of CPU cycles during execution.
Consequently that algorithm can yield fastest computation time and introduce best energy
efficiency.

Various hardware based factors affect the CPU cycle performance. We test the following
hardware counters that affect total CPU cycles: Instructions per clock, Level 1 cache access,
Conditional branch instructions, and finally, Conditional branch instructions mis-predicted.

Ozcan G.: Detection of P53 Consensus Sequence: A Novel String Matching with Classes Algorithm

276

While the evaluation of branch counters denotes whether the control flow in the instruction
pipeline is efficient, the cache counters collect overall cache misses inside multiple levels of
fast on-chip cache memory.

Table 3. Hardware and Software Profiles of the Test Platforms

Platform M1 M2 M3

CPU

2 X Intel Xenon E5 -2640

@2.5 GHZ

16 Cores

Intel i7 820Q @1.73

GHZ 4 Cores

Intel i5 2410M @2.30

2 Cores

Cache 15MB 8MB 3MB

RAM 64MB 8MB 4GB

KERNEL 3.2.0-59-generic 3.10.25-Gentoo 3.5.0-52-generic

GCC 4.6.3 4.7.3 4.6.3

The hardware counters are collected from version 5.3.0 of PAPI (Browne and others,

2000). To collect the hardware counters we used low level interface of PAPI which ensure
more reliable results. We used low level interface events to calculate cache accesses, cache
reads, cache misses and branch instructions.

4.1. Execution of the Algorithms

During evaluation, we report total CPU cycles to present objective execution time of the
exact match. In contrast, we do not present elapsed time in order to factor out the different clock
frequencies. Recall that, elapsed time can be computed using Total CPU cycles and CPU clock
speed of each platform.

4.2. Total Cycles

Experimental results in Figure 3 denote that BAP4bit algorithm outperforms in each

platform since BAP4bit requires minimum number of CPU cycles. In other words, it presents
the fastest algorithmic option during string matching and may optimize energy efficiency. The
results imply that BAP4bit can be used for DNA search on large databases efficiently. We
believe better results are caused by two factors: First, it introduces large skip distance when a
mismatch occurs. Second, the algorithm is more compact, and comprises simple loops and few
variables.

Another interesting result of Figure 3 is based on the performance comparison of the three
architecture platforms. Recall that M1 has more cache and memory capacities than others.
Hence, it is expected that M1 outperforms other platforms. On the other hand, advantage of M2
is the linux distribution that enable more flexibility. M2 runs on a Gentoo linux distribution,
which is compiled from source code. Hence, Gentoo can offer dramatically flexible
customization opportunities and booting this fully optimized operating system with a
customized kernel may reduce CPU instruction requirement. Because of customization
oppotunities, hardware resources can be reserved to string matching programs.

Uludağ University Journal of The Faculty of Engineering , Vol. 21, No. 2, 2016

277

While CPU cycles can be an objective verification, it is necessary to analyze the factors
that increase/decrease CPU cycles. Due algorithmic and architectural structures, each algorithm
requires various amounts of branch instruction executions, branch mis-predictions and cache
misses. Such hardware counters determine the overall CPU cycles of a process. In the next
section we analyze the most effective hardware counters.

Figure 3:

Cycle cost of the algorithms

4.3. Level 1 Data Cache Access and Register Spills

Register spills are one of the fundamental factors that can increase CPU cycle requirement.

In computer architecture, CPU is the fastest component of the computation and its memory is
the register. In the best case, information take place inside registers and CPU proceeds without
stalls. On the other hand, if the information does not exist inside CPU registers, it should be
fetched from the peripheral devices such as cache or RAM. During the fetch, CPU have wait
idle and cause CPU stalls. In literature, such event is defined as register spilling and is a
important research field. A detailed analysis on register spilling and its effect can be found on
(Appel, 2000).

In order to predict overall register spills, we wanted to analyze L1 data cache accesses
(Browne and others, 2000). Due to CPU counter access limitations on platforms, we had chance
to analyze only M2 platform for this experiment. In Figure 4, results denote BAP4bit algorithm
present at least 50% improvement over L1 data cache access during execution and minimize
register spills inside CPU hardware. Results denote that minimized L1 data cache accesses can
reduce total CPU cycles during execution. As a consequence, computation can be finished by
using less number of CPU cycles. We predict that fundamental advantage of our algorithm is
caused by L1 data cache accesses. While M1 and M3 does not permit analysis of L1 data cache
access, results of M2 presents valuable hints about L1 data cache accesses.

212
245

301 301

381

177

271 282 281

525

226
275

324
364

445

BAP4Bit BNDM-Class SHIFTOR-Class HASH-Class BLIM-Class

0

100

200

300

400

500

600

TOTAL CYCLES

M1

M2

M3

Ozcan G.: Detection of P53 Consensus Sequence: A Novel String Matching with Classes Algorithm

278

Figure 4:

L1 cache accesses during executions

4.4. Instructions Per Clock

One of the factors of Total Cycles experiment is based on Instruction per Cycle, IPC. The

IPC counter denotes whether an algorithm leverages instruction level parallelism well or not. In
Table 4, we present the ILP performance of the algorithms. Results denote that BLIM-class
algorithm presents the best ILP performance, whereas BNDM-class denotes the worst. This
result is very interesting and gives hint about the instruction level parallelism behaviors of
CPU’s. Concretely, there should be a correlation between ILP and simple algorithms. Hence,
trade-off between “being simple” and “estimation of long skip distance” should be determined
carefully.

4.5. Total Instruction Executions and Branch Mis -predictions

Two other performance evaluation techniques are branch instructions and branch mis-
predictions. For efficiency, current CPU architectures are based on pipelining where next
instructions are predicted and loaded into pipeline before actual use. In this way, architectures
aim to reduce memory latency. However, if the next instruction is mis-predicted, the CPU
pipeline will be flushed and CPU stalls until correct instructions are loaded into pipeline.
Consequently, branch mis-predictions slow down the execution speed.

Table 4. Instruction Level Parallelism Tests (Instructions Per Clock)

Algorithm M1 M2 M3

BAP4Bit 1,33 1,42 1,25

BNDM-Class 1,07 0,88 0,96

SHIFTOR-Class 1,88 1,85 1,75

HASH-Class 2,41 2,26 1,99

BLIM-Class 2,63 1,81 2,25

Uludağ University Journal of The Faculty of Engineering , Vol. 21, No. 2, 2016

279

During algorithm design, we should consider estimation behaviors of branch predictors and
present efficient solutions that minimize branch mis-predictions. (Patterson and others, 2007)
denotes that branch predictors are impotent to nested conditions and loops. Here, our packed
variable try to keep multiple information inside bitwords to reduce nested loops and conditions.
We present branch executions test in Table 5. Results imply BAP4bit algorithm presents the
minimum number of branch instruction executions in all 3 platforms. Therefore such result
minimizes the CPU cycle requirement of BAP4bit algorithm.

Table 5. Conditional Branch Instructions

Algorithm M1 M2 M3

BAP4Bit 227 230 227

BNDM-Class 374 418 374

SHIFTOR-Class 680 680 680

HASH-Class 680 680 680

BLIM-Class 859 859 859

Note : Values x 10
7

Another interesting observation implies that M1 is much more efficient platform than

others. During execution of each string processing algorithm, M1 required minimum number of
branch instruction executions. These results denote that M1 has more powerful pipelining
design than other platforms. Since M1 is a desktop workstation, results imply that workstations
are efficient especially during conditional instruction executions since they have powerful
pipelining capacity.

The performance of M2 and M3 depends on the algorithm. For instance M3 and its two
CPU’s show poor performance during execution of Shift OR and BLIM style algorithms where
source of algorithm include less conditions. In contrast, source of BNDM-Class handles
complex conditions. In such algorithm M3 beats M2 which has 4 CPU’s. The result is
interesting since parallelism does not guarantee better performance, especially during the
execution of complex conditions of a program.

We also consider branch mis-prediction rates of the algorithms in Figure 8. Results show
that M2 present poor performance on this test. We need to mention that M2 is first generation of
i7, whereas M1 and M3 are at least second generation. Result denote CPU enhancements about
Conditional Branch mis-prediction rates.

In terms of CPU counters perpective, Table 6 presents that algorithms without skip
mechanism outperforms on this category. In fact, without skip mechanism, string processing
could be very plain and recovered from branch mis-predictions. On the other hand, BAP4bit
outperforms BNDM-Class strongly. While BAP4bit has a skip mechanism, it tries to minimize
conditional procedure. In Table 6, results show that ShiftOR-Class minimize the branch mis-
predictions. On the other hand BNDM algorithms include complex conditions and nested loop.
Consequently, it is mortal to branch mis-predictions.

In summary, results denote that BAP4bit is an efficient algorithm for bitwise string
matching with classes problem. The algorithm minimizes L1 data cache accesses and branch
instructions. Consequently it presents minimum number of CPU cycles during pattern search.

Ozcan G.: Detection of P53 Consensus Sequence: A Novel String Matching with Classes Algorithm

280

Table 6. Conditional Branch Instructions Mispredicted

Algorithm M1 M2 M3

BAP4Bit 1180 1303 1182

BNDM-Class 3971 5063 3981

SHIFTOR-Class 54 56 55

HASH-Class 55 54 54

BLIM-Class 69 100 70

Note : Values x 10
7

5. CONCLUSIONS

This study considered string matching with classes problem where each pattern index may

accept multiple alphabet letters. During analysis, we aimed at P53 DNA-binding consensus
sequence, which is a vital tumor suppressor.

Due to large size of the sequence databases, search speed of the algorithms is important.
Moreover, biological sequences can be observed in variable forms. Therefore, new biological
search techniques are widely accepted as worthy.

Bitwise algorithms present fast string search due to intrinsic parallelism of bitwise
operators. We present a novel bitwise algorithm which minimizes search time for special pattern
types such as P53. The algorithm is based on packed variables which enhances modern
hardware efficiency. It aims to simplify conditional statements inside code and register spills.
Therefore, text search will not be decelerated by the peripheral devices of CPU.

Recently, CPU hardware technology presented new cache, branch prediction, and prefetch
techniques. Such improvements could revise the performance outputs of the string matching
algorithms. For better performance, algorithm designers must understand the prediction
mechanisms of the new hardware components.

During hardware counter experiments, we compared results of three different platforms. In
other words, we had chance to compare three different architectures for the same problem.
Results denote that more CPU and parallelism may yield drawbacks during execution of codes
that contain nested loops and conditions.

Computational analysis of biological data is in the early stages yet. Still, further
enhancements are expected at least in the next decades. The hardware and software level
advancements are strongly important to understand biological processes and health of human
nature and biological processes.

6. ACKNOWLEDGMENT

This work is supported by the Dumlupinar University under Grant Number: BAP-2012-34.

The authors are grateful to Professor Azmi YERLIKAYA for suggesting the mus musculus
DNA sequence, P53 gene, and for the fruitful discussions.

Uludağ University Journal of The Faculty of Engineering , Vol. 21, No. 2, 2016

281

REFERENCES

1. Appel, W. and George, L. (2000) Optimal spilling for CISC machines with few registers,
ACM SIGPLAN Notices, Vol 36 No 5, 243-253, doi: 10.1145/378795.378854

2. Baeza-Yates, R. and Gonnet, G. H., (1992) A new approach to text searching,
Communications of the ACM, 35(10) , 74–82, doi: 10.1145/135239.135243

3. Boyer, R.S. and Moore, J.S. (1977) A Fast String Searching Algorithm, Communications of
the ACM, 20, 10, 762-772, doi: 10.1145/359842.359859

4. Browne, S., Dongarra, J., Garner, N., Ho, G. and Mucci, P. (2000) A Portable Programming
Interface for Performance Evaluation on Modern Processors, The International Journal of
High Performance Computing Applications, 14:3, 189-204,
doi:10.1177/109434200001400303

5. Durian, B., Holub, J., Peltola, H., and Tarhio, J. (2009) Tuning BNDM with q-grams,
Proceedings of the Workshop on Algorithm Engineering and Experiments ALENEX. 29–37,
doi: 10.1137/1.9781611972894.3

6. El-Deiry W. (1998) Regulation of p53 downstream genes, Semin Cancer Biololgy, 8 :345-
357.

7. Fan, H., Yao, N., and Ma, H. (2009) Fast variants of the backward-oracle-marching
algorithm, Proceedings of the Fourth International Conference on Internet Computing for
Science and Engineering, IEEE Computer Society, 56–59

8. Faro, S. and Lecroq, T. (2010) The Exact String Matching Problem: A Comprehensive
Experimental Evaluation, doi: 10.1145/2431211.2431212

9. Fuyao, Z. and Qingwei, L. (2009) A string matching algorithm based on efficient hash
function, Information Engineering and Computer Science – ICIECS, doi:
10.1109/ICIECS.2009.5363191

10. Horspool, R. N. (1980) Practical fast searching in strings, Software – Practice &
Experience, New Jersey, Volume 10 Number 6.

11. http://www.boost.org, Erişim Tarihi: 01.01.2013, Konu:C++ Boost Libraries :

12. http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html. Erişim Tarihi: 1.1.2011, Konu: Intel Manual

13. http://www.ncbi.nlm.nih.gov/pubmedhealth/. Erişim Tatihi: 1.1.2014, Konu: PubMed
Health Bethesda (MD): National Library of Medicine, mus musculus DNA sekansları

14. Karp, R. M. and Rabin, M. O. (1987) Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, New Jersey Volume 31 Issue 2, doi:
10.1147/rd.312.0249

15. Kern, S. E., Kinzler, K. W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C., and Vogelstein
B. (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science.
252(5013):1708–11, doi: 10.1126/science.2047879

16. Kim, S. (1999) A new string-pattern matching algorithm using partitioning and hashing
efficiently, Journal of Experimental Algorithmics (JEA), JEA Homepage archive Volume 4,
Article No. 2, doi: 10.1145/347792.347803

17. Külekci, O. (2012) On enumeration of DNA sequences, Proceedings of ACM Conference
on Bioinformatics, Computational Biology, and Biomedicine , Orlando, doi:
10.1145/2382936.2382993

Ozcan G.: Detection of P53 Consensus Sequence: A Novel String Matching with Classes Algorithm

282

18. Külekci, O. (2008) A method to overcome computer word size limitation in bit-parallel
pattern matching, S.-H. Hong, H. Nagamochi, and T. Fukunaga, editors, Proceedings of the
19th International Symposium on Algorithms and Computation, ISAAC , Lecture Notes in
Computer Science, Springer-Verlag, Berlin volume 5369, 496–506, doi: 10.1007/978-3-
540-92182-0_45

19. Knuth, D., Morris, J. H. and Pratt, V. (1977) Fast pattern matching in strings, SIAM Journal
on Computing, 6 (2), 323–350, 10.1137/0206024

20. Navarro, G., and Raffinot, M. (2000) Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM Journal of Experimental Algorithmics, Volume 5,
New York, doi: 10.1145/351827.384246

21. Özcan, G., and Ünsal, O. S. (2015) Fast bitwise pattern matching algorithm for DNA
sequences on modern hardware, Turk J Elec Eng & Comp Sci, Vol 23 (2015), pp.1405-1417
doi: 10.3906/elk-1304-165

22. Patterson, D., Hennessy, J., Arpaci-Dusseau, A. (2007). Computer architecture: a
quantitative approach. Morgan Kaufmann,

23. Vintan, L. N. "Towards a High Performance Neural Branch Predictor (1999) Proceedings of
the Int'l J. Conf. on Neural Networks, doi: 10.1109/IJCNN.1999.831066

24. Sunday, D. M. (1990) A Very Fast Substring Search Algorithm. Communications of the
ACM, New York. , 33, 8, 132-142, doi: 10.1145/79173.79184

