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Abstract: We present a novel fast string matching technique for special DNA pattern forms and compare 

performance of recent CPU architectures on the matching problem. In particular, we consider consensus 

P53 DNA-binding consensus sequence, which has an important contribution for cancer treatment. Based 

on biological findings, consensus P53 pattern may emerge in various sequence  forms and its length is not 

deterministic. Therefore, classic string matching algorithms are not able to solve the problem. For 

efficient solution, we consider bitwise string matching algorithms with classes and present a novel search 

technique which is based on 64-bit packed variables. In order to prevent obstacles based on variable 

length of the pattern, we search right and left side indexes of P53 and reduce search space. For 

experimental analysis, we make use of mus musculus DNA sequences with approximately 2.3 billion 

nucleotides. We compare algorithm performance on three processors with distinct CPU architecture. Test 

results show that our search technique introduces at least 20% efficiency during P53 pattern search in 

each architecture platform. Due to its structure, the algorithm also introduces an efficient solution to 

similar string matching with class problems. 

 

Keywords: Computer Engineering, Computational Biology, Text Processing, Consensus Sequences, 
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P53 Konsensüs  Sekansının Yakalanması: Sınıf Özellikli Yeni Bir Sekans Eşleştirme Algoritması  

 

Öz: Bu çalışmada özel DNA örüntüleri için yeni ve hızlı bir sekans eşleştirme tekniği sunulmakta ve 

yakın geçmişte üretilen CPU mimarileri üzerinde deneysel karşılaş tırmalar yapılmaktadır. Bu çalışmada, 

bilhassa kanser tedavisinde, önemli bir yere sahip olan P53 DNA-bağlayan konsensüs sekansı göz önüne 

alınmıştır. Biyolojik kazanımlara göre P53 örüntüsü farklı sekans formlarında karşımıza çıkabilmekte ve 

sekans uzunluğu değişebilmektedir. Bu nedenle P53 sekansının klasik sekans eşleştirme algoritmaları ile 

çözümü mümkün olamamaktadır. Bu çalışmada verimli çözüm yöntemi sunmak amacıyla, sınıf özellikli 

bit-tabanlı sekans eşleştirme algoritması göz önüne alınmıştır. Hedef doğrultusunda, 64-bit paketlenmiş 

değişken kullanarak yeni bir arama ve eşleştirme algoritması önerilmiştir. Örüntü sekansının değişken 

uzunluk gösterebilmesi nedeniyle karşılaşılması muhtemel engelleri aşmak için ise veri tabanında P53 

sekansının özel kısımlarına dair aramalar yapılmıştır. Deneysel analiz için yaklaşık 2.3 milyar 

nükleotidden oluşan mus musculus DNA sekansı seçilmiştir. Karşılaştırılan algoritmalar üç farklı 

bilgisayar mimarisinde test edilmiştir. Deneysel sonuçlar, geliştirdiğimiz algoritmanın P53 sekans arama 

konusunda tüm mimari platformlarında en iyi verimliliği sağladığını göstermektedir.  Yapısı gereği bu 

algoritma, benzer sekans eşleştirme problemlerinin çözümünde de verimli olanaklar sunmaktadır.  
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1. INTRODUCTION 

 
Computational biology is an interdisciplinary research field, which provides 

comprehensive genome analysis techniques. The field is attractive since recent biological assays 
have generated vast amount of DNA sequences. In order to extract significant information from 
large-size biological sequences, it is necessary to develop efficient computational analysis 
techniques and compatible hardware resources. 

In the field of biology, finding similar patterns inside sequence databases is highly 
important since biologists need to understand the correlation between DNA sequences and 
protein function. The string matching studies present efficient similarity search techniques to 
extract such correlation. Concretely, string matching algorithms search query patterns inside 
large string databases and output the occurrence indexes. 

In terms of cancer research, P53 is a critical protein pattern for multi cellular organisms 
which regulates cell cycle (Kern and others, 1992), (El-Deiry, 1998). Concretely, it is a tumor 
suppressor and a vital protein to prevent cancer disease. On the other hand, DNA structure of 
P53 is complex and computational advancements may help understanding its functions. 

DNA-binding consensus sequence of P53 is explained in El-Deiry (1998) and summarized 
in Table 1. In the table, the consensus sequence is divided into three segments, where first and 
third segments of P53 have the same sequence characteristics and are composed of 10-length 
nucleotides. On the other hand, length of second segment is not constant and it may contain 
minimum 0 and maximum 13 nucleotides. There is no constraint about nucleotide selection in 
the second segment. 

The P53 sequence starts with 5’ symbol, which imply that the regulator sequence is 
starting. First three nucleotides of P53 is a member of Purine, Pu, group where both adenine, A, 
and guanine, G, are accepted as match. Fourth index must be cytosine, C.  Fifth and sixth 
indices can be either A or thymine, T. While seventh index must be G, next three indices must 
be a member of pyrimidine group, Py, where both C and T are accepted as match. At last, the 3’ 

symbol denotes the end of regulator sequence. 

Table 1. Three Segments of Consensus P53 DNA Sequences  

Segment Sequence 

1 5'-PuPuPuC(A/T)(A/T)GPyPyPy 

2 N(0-13) 

3 PuPuPuC(A/T)(A/T)GPyPyPy-3' 

 
Since some of the indexes may accept more than one letters, the P53 consensus sequence 

may occur in various combinations.  In this study, we define P53 or other patterns with the same 
characteristics as flexible patterns. Due to its importance, novel string search on flexible 
patterns including P53 pattern, could contribute to the literature. 

 

2. DEFINITONS AND LITERATURE 

 
String matching algorithms may aim to search two types of patterns during search. These 

are conventional patterns and flexible patterns. In this section we explain both of them. 
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2.1. Conventional Exact String Matching 
 

Exact string matching algorithms are used when speed and memory efficiency are 
important. A survey on exact string matching can be found in (Faro and Lecroq, 2010). During 
conventional exact string matching, a pattern, P, is searched inside text, T. Formally, let text is 
defined as 

 

0 1 1, ,..., nT t t t   

 
(1) 

and pattern is represented as: 
 

0 1 1, ,..., mP p p p   (2) 

 
An exact match occurs if sequence alignment of text fragment and pattern is completely 

same. Formally, 
 

0 1 1 1 1, ,...,j j m j mp t p t p t       (3) 

 
In terms of exact match, a pattern index accepts one alphabet letter. Formally 
 

1ip   (4) 

 
During exact string matching, algorithms present efficient skip mechanisms that predict 

mis-match cases before actual comparison. Consequently, they try to minimize overall sequence 
comparisons, CPU and memory usage. Some of the well-known algorithms that presented the 
fundamental string matching techniques are (Knuth and others, 1977), (Boyer and Moore, 
1977), (Horspool, 1980), (Sunday, 1990). These algorithms presented base characteristics of 
efficient skipping during search. On the other hand, Karp and Rabin (1987), Kim (1999), Fuyao 
and Qingwei (2009) introduced hash based solutions to the problem. 

Recent exact matching algorithms inherit the advancements of early techniques and 
establish further improvements. For instance, Durian and others (2009) make use of  q-grams. 
On the other hand, automata based algorithms denotes a different aspect of exact matching  and 
present a automata based solution that utilizes directed acyclic word graph (Fan and others, 
2009). 

Bitwise string matching is another form of exact matching, where pattern and texts are 
represented in bits. In this form, string matching problem can be executed by utilizing intrinsic 
parallelism of bitwise operators. In addition, low level operations speeds up the string matching 
execution time. In terms of bitwise match, (Baeza-Yates and Gonnet, 1992), (Navarro and 
Raffinot, 2000), (Kulekci, 2008), (Kulekci, 2012) introduced novel algorithms. 

A general survey paper, written by Faro and Lecroq (2010) denotes that performance of the 
algorithms depend on the dataset. On the other hand bitwise algorithms are convenient during 
DNA based string matching, since alphabet of DNA consist of only four letters (Ozcan and 
Unsal, 2015). 

Exact string matching algorithms have common pitfall during P53 consensus sequence 
search on sequence databases. In fact P 53 sequence can be observed in various forms as shown 
in Table 1. For instance first index of pattern is Pu, which implies that first index can be either A 
or G. Such pattern contradicts with equation 4, which expects single pattern letter at each index. 
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2.2. Flexible Patterns and String Matching with Classes Problem 
 
In contrast to conventional patterns, we define a flexible pattern in the following formal 

form, 
 

01 p    (5) 

 
Equation 5 is more convenient to P 53 pattern. As an example, first index of P53 accepts 

both A and G letters and |p1|=2.  It can be easily seen from the Equation 5 that flexible patterns 
are super set of conventional patterns. 

In order to present solutions to string matching with class problem, conventional exact 
string matching need to handle extra conditions. As an example, if the alphabet size is small, it 
can be modified for flexible patterns by bitwise representation, where occurrence of each 
alphabet letter can be represented with a single bit. 

In literature, some of the bitwise string matching algorithms are adapted for flexible 
patterns as bitwise string matching with classes problems (Baeza-Yates and Gonnet, 1992), 
(Navarro and Rafinot, 2000), (Kulekci, 2008). These bitwise algorithms are based on bit masks 
and require simple modification to handle string matching with classes. 

There exist further advancement possibilities for bitwise string matching since power of 
bitwise string matching is based on computer architecture and hardware systems are still 
improving. 

Recent advancements on computer architectures introduced new hardware and software 
techniques. For instance, parallel architectures reduce the workload of single CPU. On the other 
hand, novel branch predictors estimate future instruction streams of CPU correctly and 
introduce more efficient pipelining architectures (Vintan, 1999). Furthermore, novel memory 
management mechanisms try to keep frequently used variables inside CPU registers (Appel and 
George, 2000) in a process called register promotion. 

New architectures also enable access to CPU hardware counters. As a result algorithms can 
be analyzed more comprehensively. For instance users can access total CPU cycles during 
execution of a program. In addition total branch executions/mis-predictions can be counted. 
Similarly, we can obtain counter information from memory structures such as caches. Recently, 
software such as PAPI enable convenient access to CPU counter information. 

To the best of our knowledge, bitwise string matching studies do not have comprehensive 
CPU counter analysis. Henceforth, detailed architectural  analyses during program executions 
has not been conducted before. 

 In fact, such CPU counter experimentations may help hardware architects. For instance, 
the analysis introduce the cost of CPU cycles, cache misses during string matching. As a result 
of the analysis, computer architects can consider the contribution of hardware costs of  string 
matching  problems and optimize for string matching problem. 

 

3. METHOD 

 
Recall that first and third segments of P53 are completely same and their length is 10, 

whereas length of second segment can be at most 13. The new algorithm searches the index 
positions of first segment inside text. If the distance between consecutively founded indexes is 
less than 23, we assume complete P53 pattern has been found. 

The new algorithm aims at DNA sequences, where alphabet has four letters. We represent 
each pattern index with four bits, where each bit implies the existence/non-existence of a 
letter/nucleotide in pattern. For instance, we represent C,G,T,A  as 8,4,2,1 respectively and 
denote in Table II in bitwise form. 
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Table 2. Bit Transformations of DNA Letters  

DNA 

letter 

Bitwise 

representation 

C 1000 

G 0100 

T 0010 

A 0001 

 
As a consequence of the bit representation in Table II,  Pu becomes 0101 since A and G are 

accepted members of Pu. On the other hand, Py subsumes C,T and it is represented by 1010. 
Finally, (A/T) is denoted as 0011. Depending on these rules, bitwise representation of P53 
pattern segment 1 and segment 3 can be denoted as: 

0101 0101 0101 1000 0011 0011 0100 1010 1010 1010. 

3.1. Bit Structure of the Algorithm 
 

Structure of our algorithm is based on 64-bit words and denoted in Figure 1. We define 64-
bit word as W and segment into three parts. We define rightmost 4-bits as unbroken match 
counter bits, UBMC, where the bits keep unbroken match counter. In the middle, 59 bits are 
used for comparison of pattern and text.  Finally, leftmost bit is not used since it is the signature 
bit. 

The UBMC keeps cumulative matches between pattern and candidate text fragment. During 
comparison of an index, if pattern and text match at that index, the counter is incremented by 
one. When the value of UBMC becomes m, algorithm understands that consecutive m 
comparison pattern indexes have matched. In contrast, if a pattern and text mismatches at an 

index, value of UBMC will be reset to 0. Hence we trace the mismatch inside bit word. 

U 59 comparison bits 5 Unbroken Match 
Counter(UBMC) bits 

0 0 0 ……. 0 0 0 0 0 0 0 

Figure 1: 
Bit structure of 64-bit word, W 

The comparison bits are used to compare pattern and candidate text frame, F. There are 59-
bits  reserved for comparison. Since each DNA letter representation requires four bits,  we can 
represent 14-letter patterns inside a 64-bit word. 

At first sight 14-bit pattern can be seen too short. However, 14-bit words reduce search 
space decently. In terms of DNA, 14-letter pattern reduces the search space by 4

14
 times, which 

efficiently satisfy gigabyte-size sequences. 
During search technique we assume P and F are bit words in the W format. In order to 

explain our algorithm, we define caseWord. During the comparison of pattern and text letter, 
trace of the match/mismatch is projected to caseWord. Its default value is equal to P and its 
UBMC bits are initially 0. After each letter match between P and F, value of caseWord is 
incremented by one. When a letter mismatches, caseWord returns to its default value. 
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3.2. Illustrative Example 

In Figure 2, we consider comparison of Fm-5, and Pm-5. The situation implies that rightmost 
four letters of the F must have already matched and caseWord keeps necessary information 
about the condition.  Recall that P53 segment demands either A or T letters at the corresponding 
index whose bitwise equivalent is 0011. 

In order to show a mismatch, let assume that letter from text frame is G, and its bitwise 
equivalent is 0100. The mismatch can be detected by bitwise OR operation between caseWord 
and Fm-5 since new value of caseWord after bitwise OR becomes larger than P. The accrual is 
large enough to detect a mismatch and is denoted in the equation. 

3.3. String Matching Cases of Algorithm 
 
During string matching, mathematical difference between caseWord and P determines all 

cases of the algorithm. Three cases of the results and corresponding decisions are as follows: 

 
 

 

1  :          

 2 :       

3:       ,      

Case If caseWord P m Signal mismatch

Case If caseWord P m Signal pattern match

Case If caseWord P m Tested letters matched continue to compare text frame

  

  

  

 

If Case 1 or Case 2 occurs, string matching procedure should re-start from a new text 
frame. Consequently, value of the caseWord must be defaulted to P and its UBMC bits become 
0, which denote characters matched for the new frame yet. 

As Figure 2 denotes, caseWord variable is used for both comparison and counting. 
Concretely, the variable is not only called during comparison of text letter, but also used to track 
overall matched indexes of candidate text frame. Because of this fact, we name caseWord 
variable as a packed variable, which keeps multiple information and handles every step of the 
algorithm. We expect that caseWord variable called very frequently; so that it will usually get 
promoted to a CPU register and thus speeds up the search time. 

3.4. Skip Mechanism 
 
When a mismatch occurs, the search should be started from an untried text frame. 

However, it is possible to predict that some respective indices that will eventually mismatch. 
Hence computation should rather skip such indexes. Here we implemented a special skip 
technique that is convenient for P53 segment. 

For efficiency, skip mechanism must compensate at least the overhead of skip distance 
computation. The average skip distance depends on the possible subsequence combinations. For 
instance, DNA alphabet has four elements and yield 4s combinations with s-length 
subsequence. 

For conventional patterns, Ozcan and Unsal (2015) fetch two text letters successively from 
memory and decide a skip distance when a mismatch occurs. However reading only two le tters 
for p53 does not ensure enough skip. Such decrement is the result of accepting class of 
characters for an index. However, it is possible to determine skip larger distances by 
considering three letters at first step. 

We can enable larger skip distance by considering four or more letters at first step. 
However, such action may cause unnecessary memory reads, cause register spills and cache 
misses. 
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U CaseWord UBMC 

 . . . . . . . 0 0 1 1 . . . . 0 1 0 0 

 
OR 

 

U Fm-5 UBMC 

 . . . . . . . 0 1 0 0 . . . . 0 0 0 0 

 
= 
 

U  UBMC 

 . . . . . . . 0 1 1 1 . . . . 0 1 0 0 

Figure 2: 
A mismatch example with OR operation 

 

4. RESULTS 
 
We compare the performance of our algorithm, BAP4Bit, against BNDM-Class (Navarro 

and Raffinot, 2000), ShiftOR-Class (Baeza-Yates and Gonnet, 1992), Hash-Class and BLIM-
Class (Kulekci, 2008) algorithms. 

In order to evaluate algorithm performance, complete  mus musculus DNA sequences are 
collected from Pubmed database.  The  mus musculus is known as house mouse or laboratory 
mouse. Complete DNA sequence of mus musculus is approximately 2.3 GB in size and stored 
in 23 fasta format files (http://www.ncbi.nlm.nih.gov/pubmedhealth, 2011). 

The experiments are performed in three different platforms that are denoted in Table 2. In 
the table, M1 is a desktop workstation, while M2 and M3 are laptop computers.  Each platform 
have multiple CPU cores (http://www.intel.com/, 2011). 

In order to minimize jitter in the results, each experiment at each platform is repeated ten 
times. While outliers are discarded, average of the remaining eight results is reported as final 
experimental output. 

All codebase is written in C++ and compiled with GCC (GNU C Compiler). We wrote the 
code with an Object Oriented Programming approach to have same environments with different 
algorithms. We effectively used Boost Libraries (http://www.boost.org, 2013) to handle external 
functions. 

In terms of evaluation, fundamental performance criterion is the total CPU cycles.  Best 
algorithm is the one which ensures minimum number of CPU cycles during execution. 
Consequently that algorithm can yield fastest computation time and introduce best energy 
efficiency. 

Various hardware based factors affect the CPU cycle performance.  We test the following 
hardware counters that affect total CPU cycles: Instructions per clock, Level 1 cache access, 
Conditional branch instructions, and finally, Conditional branch instructions mis-predicted. 
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While the evaluation of branch counters denotes whether the control flow in the instruction 
pipeline is efficient,  the cache counters collect overall cache misses inside multiple levels of 
fast on-chip cache memory. 

Table 3. Hardware and Software Profiles of the Test Platforms  

Platform M1 M2 M3 

CPU 

2 X Intel Xenon E5 -2640 

@2.5 GHZ 

16 Cores 

Intel i7 820Q @1.73 

GHZ 4 Cores 

Intel i5 2410M @2.30 

2 Cores 

Cache 15MB 8MB 3MB 

RAM 64MB 8MB 4GB 

KERNEL 3.2.0-59-generic 3.10.25-Gentoo 3.5.0-52-generic 

GCC 4.6.3 4.7.3 4.6.3 

 
The hardware counters are collected from version 5.3.0 of PAPI (Browne and others, 

2000). To collect the hardware counters we used  low level interface of PAPI which ensure 
more reliable results. We used low level interface events to calculate cache accesses, cache 
reads, cache misses and branch instructions. 

4.1. Execution of the Algorithms 

During evaluation, we report total CPU cycles to present objective execution time of the 
exact match. In contrast, we do not present elapsed time in order to factor out the different clock 
frequencies. Recall that, elapsed time can be computed using Total CPU cycles and CPU clock 
speed of each platform.  

4.2. Total Cycles 
 
Experimental results in Figure 3 denote that BAP4bit algorithm outperforms in each 

platform since BAP4bit requires minimum number of CPU cycles. In other words, it presents 
the fastest algorithmic option during string matching and may optimize energy efficiency. The 
results imply that BAP4bit can be used for DNA search on large databases efficiently. We 
believe better results are caused by two factors:  First, it introduces large skip distance when a 
mismatch occurs. Second, the algorithm is more compact, and comprises simple loops and few 
variables. 

Another interesting result of Figure 3 is based on the performance comparison of the three 
architecture platforms.   Recall that M1 has more cache and memory capacities than others. 
Hence, it is expected that M1 outperforms other platforms. On the other hand, advantage of M2 
is the linux distribution that enable more flexibility. M2 runs on a Gentoo linux distribution, 
which is compiled from source code. Hence, Gentoo can offer dramatically flexible 
customization opportunities and booting this fully optimized operating system with a 
customized kernel may reduce CPU instruction requirement.  Because of customization 
oppotunities, hardware resources can be reserved to string matching programs.   
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While CPU cycles can be an objective verification, it is necessary to analyze the factors 
that increase/decrease CPU cycles. Due algorithmic and architectural structures, each algorithm 
requires various amounts of branch instruction executions, branch mis-predictions and cache 
misses. Such hardware counters determine the overall CPU cycles of a process. In the next 
section we analyze the most effective hardware counters. 

 
Figure 3: 

Cycle cost of the algorithms 

4.3. Level 1 Data Cache Access and Register Spills  
 
Register spills are one of the fundamental factors that can increase CPU cycle requirement. 

In computer architecture, CPU is the fastest component of the computation and its memory is 
the register. In the best case, information take place inside registers and CPU proceeds without 
stalls. On the other hand, if the information does not exist inside CPU registers, it should be 
fetched from the peripheral devices such as cache or RAM. During the fetch, CPU have wait 
idle and cause CPU stalls. In literature, such event is defined as register spilling and is a 
important research field. A detailed analysis on register spilling and its effect can be found on 
(Appel, 2000). 

In order to predict overall register spills, we wanted to analyze L1 data cache accesses 
(Browne and others, 2000). Due to CPU counter access limitations on platforms, we had chance 
to analyze only M2 platform for this experiment. In Figure 4, results denote BAP4bit algorithm 
present at least 50% improvement over L1 data cache access during execution and minimize 
register spills inside CPU hardware. Results denote that minimized L1 data cache accesses can 
reduce total CPU cycles during execution. As a consequence, computation can be finished by 
using less number of CPU cycles. We predict that fundamental advantage of our algorithm is 
caused by L1 data cache accesses. While M1 and M3 does not permit analysis of L1 data cache 
access, results of M2 presents valuable hints about L1 data cache accesses.   
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Figure 4: 

L1 cache accesses during executions 
 

4.4. Instructions Per Clock 
 
One of the factors of Total Cycles experiment is based on  Instruction per Cycle, IPC. The 

IPC counter denotes whether an algorithm leverages instruction level parallelism well or not. In 
Table 4, we present the ILP performance of the algorithms. Results denote that BLIM-class 
algorithm presents the best ILP performance, whereas BNDM-class denotes the worst. This 
result is very interesting and gives hint about the instruction level parallelism behaviors of 
CPU’s. Concretely, there should be a correlation between ILP and simple algorithms. Hence, 
trade-off between “being simple” and “estimation of long skip distance” should be determined 
carefully. 

4.5. Total Instruction Executions and Branch Mis -predictions 

Two other performance evaluation techniques are branch instructions and branch mis-
predictions. For efficiency, current CPU architectures are based on pipelining where next 
instructions are predicted and loaded into pipeline before actual use. In this way, architectures 
aim to reduce memory latency. However, if the next instruction is mis-predicted, the CPU 
pipeline will be flushed and CPU stalls until correct instructions are loaded into pipeline. 
Consequently, branch mis-predictions slow down the execution speed. 

 
Table 4. Instruction Level Parallelism Tests  (Instructions Per Clock) 

Algorithm M1 M2 M3 

BAP4Bit 1,33 1,42 1,25 

BNDM-Class 1,07 0,88 0,96 

SHIFTOR-Class 1,88 1,85 1,75 

HASH-Class 2,41 2,26 1,99 

BLIM-Class 2,63 1,81 2,25 
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During algorithm design, we should consider estimation behaviors of branch predictors and 
present efficient solutions that minimize branch mis-predictions. (Patterson and others, 2007) 
denotes that branch predictors are impotent to nested conditions and loops. Here, our packed 
variable try to keep multiple information inside bitwords to reduce nested loops and conditions. 
We present branch executions test in Table 5. Results imply BAP4bit algorithm presents the 
minimum number of branch instruction executions in all 3 platforms. Therefore such result 
minimizes the CPU cycle requirement of BAP4bit algorithm. 

 

Table 5. Conditional Branch Instructions  

Algorithm M1 M2 M3 

BAP4Bit 227 230 227 

BNDM-Class 374 418 374 

SHIFTOR-Class 680 680 680 

HASH-Class 680 680 680 

BLIM-Class 859 859 859 

Note : Values x 10
7 

 
Another  interesting observation implies that M1 is much more efficient platform than 

others. During execution of each string processing algorithm, M1 required minimum number of 
branch instruction executions. These results denote that M1 has more powerful pipelining 
design than other platforms.  Since M1 is a desktop workstation, results imply that workstations 
are efficient especially during conditional instruction executions since they have powerful 
pipelining capacity. 

The performance of M2 and M3 depends on the algorithm. For instance M3 and its two 
CPU’s show poor performance during execution of Shift OR and BLIM style algorithms where 
source of algorithm include less conditions. In contrast, source of BNDM-Class handles 
complex conditions. In such algorithm M3 beats M2 which has 4 CPU’s. The result is 
interesting since parallelism does not guarantee better performance, especially during the 
execution of complex conditions of a program. 

We also consider branch mis-prediction rates of the algorithms in Figure 8. Results show 
that M2 present poor performance on this test. We need to mention that M2 is first generation of 
i7, whereas M1 and M3 are at least second generation. Result denote CPU enhancements about 
Conditional Branch mis-prediction rates. 

In terms of CPU counters perpective, Table 6 presents that algorithms without skip 
mechanism outperforms on this category. In fact, without skip mechanism, string processing 
could be very plain and recovered from branch mis-predictions. On the other hand, BAP4bit 
outperforms BNDM-Class strongly. While BAP4bit has a skip mechanism, it tries to minimize 
conditional procedure. In Table 6, results show that ShiftOR-Class minimize the branch mis-
predictions. On the other hand BNDM algorithms include complex conditions and nested loop. 
Consequently, it is mortal to branch mis-predictions. 

In summary, results denote that BAP4bit is an efficient algorithm for bitwise string 
matching with classes problem. The algorithm minimizes L1 data cache accesses and branch 
instructions. Consequently it presents minimum number of CPU cycles during pattern search. 
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Table 6. Conditional Branch Instructions Mispredicted 
 

Algorithm M1 M2 M3 

BAP4Bit 1180 1303 1182 

BNDM-Class 3971 5063 3981 

SHIFTOR-Class 54 56 55 

HASH-Class 55 54 54 

BLIM-Class 69 100 70 

Note : Values x 10
7 

 

5. CONCLUSIONS 

 
This study considered string matching with classes problem where each pattern index may 

accept multiple alphabet letters. During analysis, we aimed at P53 DNA-binding consensus 
sequence, which is a vital tumor suppressor. 

Due to large size of the sequence databases, search speed of the algorithms is important. 
Moreover, biological sequences can be observed in variable forms. Therefore, new biological 
search techniques are widely accepted as worthy. 

Bitwise algorithms present fast string search due to intrinsic parallelism of bitwise 
operators. We present a novel bitwise algorithm which minimizes search time for special pattern 
types such as P53. The algorithm is based on packed variables which enhances modern 
hardware efficiency. It aims to simplify conditional statements inside code and register spills. 
Therefore, text search will not be decelerated by the peripheral devices of CPU. 

Recently, CPU hardware technology presented new cache, branch prediction, and prefetch 
techniques. Such improvements could revise the performance outputs of the string matching 
algorithms. For better performance, algorithm designers must understand the prediction 
mechanisms of the new hardware components. 

During hardware counter experiments, we compared results of three different platforms. In 
other words, we had chance to compare three different architectures for the same problem. 
Results denote that more CPU and parallelism may yield drawbacks during execution of codes 
that contain nested loops and conditions. 

Computational analysis of biological data is in the early stages yet. Still, further 
enhancements are expected at least in the next decades. The hardware and software level 
advancements are strongly important to understand biological processes and health of human 
nature and biological processes. 
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