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Abstract: The aim of this paper is to calibrate a data-driven model to simulate Moselle River flows and 

compare the performance with three different hydrologic models  from a previous study. For consistency a 

similar set up and error metric are used to evaluate the model results . Precipitation, potential 

evapotranspiration and streamflow from previous day have been used as input s. Based on the calibration and 

validation results , the proposed multigene genetic programming model is the best performing model among 

four models. The timing and the magnitude of extreme low flow events  could be captured even when we use 

root mean squared error as the objective function for model calibration. Although the model is developed and 

calibrated for Moselle River flows, the multigene genetic algorithm offers a great opportunity for hydrologic 

prediction and forecast problems in the river basins with scarce data issues. 
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Moselle Nehri’ndeki Düşük Debilerin Benzetimi için Çoklu Genetik Programlama Modelinin Kalibre 

Edilmesi 

Öz: Bu çalışmanın amacı Moselle nehrinin düşük debilerini çoklu genetik programlama modeli ile benzetmek 

ve ayarı yapılan modelin performansini daha önceki modellerle kiyaslamaktir. Tutarlılık için aynı performans 

kriterleri ve model girdi çıktı düzenekleri kullanılmıştır. Tek değişen, model yapısıdır. Yağiş , buharlaşma ve 

nehir debisi için dünkü değerler kullanilarak bugünku nehir debisi benzetilmeye çalışılmıştır. Sonuçlar 

önerilen genetik programlama modelinin dört model aras ında en iyi sonuçlar verdiğini göstermektedir. Az 

görülen düşük akımların zamanlama ve seviyesi amaç fonksiyonu etkin değerler seçildiğinde dahi başariyla 

benzetilebilmektedir. Bu geliştirilen ve önerilen model yapısı her ne kadar Moselle nehri için olsa da çoklu 

genetik programlama algoritmasi genel olarak tüm nehir tahmin modelleri icin bir alternatif sunmaktadır. 
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1. INTRODUCTION 

 
High and low flows are two important phases of streamflow. Since high flows, e.g. floods are 

direct threat to human life, the topic has been extensively studied (Vormoor et al., 2015; Zhang et 
al., 2015). Low flows and droughts are also important in water management especially after 
obviously intensified climate change impacts in different part of the world (Demirel et al., 2013a; 
Griffin and Anchukaitis, 2014; Hesami et al., 2016; Pal et al., 2015). Different definitions of low 
flows exist based on the occurrence period such as winter low flows and summer low flows 
(Smakhtin, 2001). To anticipate these events, first, the basin behavior has to be reasonably modelled 
using hydrologic or data-driven models. Then, forecasted precipitation (P), potential 
evapotranspiration (PET) as well as other inputs can be provided to the calibrated model for issuing 
streamflow forecasts. Similarly for assessing climate change impacts on streamflow, a calibrated 
model is necessary to execute long-term simulations. In this study, we are interested in calibrating a 
data-driven low flow model based on multigene genetic programming and comparing its 
performance with existing three models in Demirel et al. (Demirel et al., 2015). 

Hydrologic models are usually classified into three categories: physically distributed 
conceptual and data-driven models. Distributed models are complex models with numerous 
parameters and physically based formulations of hydrologic process valid for every grid cell or 
hydrological unit in a river basin. They are often used for soil and vegetation parameterization, and 
assessing land use and land cover change on river flows (Livneh et al., 2015; Samaniego et al., 
2010). Conceptual models are lumped hydrologic models assuming model parameters and inputs 
are uniformly distributed over the basin. This includes precipitation and potential evapotranspiration 
which are the only inputs required for the water balance of a basin. They are the most commonly 
used hydrologic models as they are computationally efficient for different assessments e.g. Monte 
Carlo simulations and climate change impacts (Demirel et al., 2013b; Tian et al., 2014). Data-driven 
and statistical methods such as artificial neural network (ANN), autoregressive moving average 
models (ARMA), fuzzy logic, and genetic programing (GP) have been extensively used as 
alternative to physical and conceptual hydrologic models (Demirel et al., 2015, 2009; Nourani et al., 
2009).  

All of these models are calibrated with different local and global methods. A well-known 
example for local methods is Gauss–Marquardt–Levenberg gradient search method (Arsenault et 
al., 2014; Madsen, 2000), whereas there are different global search methods like Shuffle Complex 
Evolution Algorithm (Duan et al., 1993), Covariance Matrix Adaptation Evolution Strategy 
(Hansen and Ostermeier, 2001) and Ant algorithm (Madadgar and Afshar, 2009). Both local and 
global methods require objective functions that are selected based on the modeler’s objective and 
target problem. For example bias, correlation coefficient (R

2
), Nash-Sutcliffe Efficiency (NSE, 

Nash and Sutcliffe (1970)) and Kling-Gupta Efficiency (KGE, Gupta et al., (2009)) all focus on 
water balance and prone to the peak flows. Logarithmic transform, inverse values of the streamflow 
observations can be used to reduce the effect of peak flows on the model performance and highlight 
the model performance on low and mean flows. Pushpalatha et al (2012) reported suitable objective 
functions and performance metrics to evaluate low flows. Recently, a neural network model and 
two well-known conceptual models (GR4J and HBV) are used to simulate low flows in the Moselle 
River (Demirel et al., 2015). GR4J model has been used in other low flow studies too (Nicolle et al., 
2014; Pushpalatha et al., 2011). However, to our knowledge, the new data-driven method, i.e. 
multigene genetic programming, has not been calibrated and used for low flows.  

In this study, the main objective is to benchmark the performance of multigene genetic 
programming with three existing models (ANN, GR4J and HBV) for low flows in the Moselle 
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River. We use a hybrid metric comprised of mean absolute error calculated based on low flows and 
inverse values of hydrograph for the calibration period (Demirel et al., 2015).  

The outline of the paper is as follows. The Moselle River basin and model input data are 
presented in Section 2. Section 3 describes methods used in this study. The results are presented and 

discussed in Section 4 and the conclusions are drawn in Section 0. 

2. STUDY AREA AND DATA 

2.1 Study Area 

The models are tested in the Moselle River basin which has an area of 27262 km
2 

and river 
length of 545 km (Figure 1). This basin is the largest part of the River Rhine basin with varying 
landforms from 59 to 1326 m (Demirel et al., 2015). The minimum streamflow observed in the 
basin outlet (Cochem) is 14 m

3
/s in dry summers and maximum streamflow is ~4000 m

3
/s in winter 

period. The river flow is regulated by different dams and weirs to allow river navigation along the 
year.  

 
Figure 1: 

The River Rhine and Moselle River basin. 

2.2 Model Input 

Daily streamflow (Q) data observed at Cochem Station from 1951 to 2006 are provided by the 
Global Runoff Data Centre (GRDC), Koblenz. The daily observed P and PET, available for the 
same period, are provided by the German Federal Institute of Hydrology (BfG) in Koblenz, 
Germany. The statistical parameters of observational Q, P, and PET time series for the period 1951-
2006 used in this study is presented in Table 1. 
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Table 1. Descriptive statistics of the modelling variables  

Parameters 
P  
(mm) 

PET  
(mm) 

Discharge  
(m

3
/s) 

Number 20454 20454 20454 

Maximum 39.6 5.41 4020 

Minimum 0 0.14 10 

Average 2.45 1.57 323.29 

Standard Deviation  3.91 1.18 354.17 

Skewness 2.75 0.89 3.11 

3. METHODS 

In this study four hydrologic models are compared based on their performance during 
calibration and evaluation periods. Demirel et al. (2015) presented a case study adapting model 
parameters and all required calibration runs by the three models namely ANN, HBV and GR4J for 
the same study area (Table 2). Here, we present only the additional model i.e. multigene genetic 
programming. For calibration and validation of this model, we use the same periods (i.e., 1971-
2001 for calibration and 1951-1970 for validation) as three previous models to fairly compare four 
models. It must be noted that the entire data are normalized by the well-known Min-Max method 
before using them as modelling variables. Low flows occur mostly after a long dry period. If the dry 

period is in summer then it is called summer low flows and if low flow occurs because precipitation 

forms snow then it is called winter low flows (Smakhtin, 2001). Demirel et al. (2015) selected 

exceedance probability of 75% (Q75) as a threshold for the low flows. In a similar way, if exceedance 

probability of daily flow at Moselle River is more than 75%, it is considered as low flow in this study.  

 

Table 2. Model details from Demirel et al. (2015) 

Model Number of buckets Number of parameters Inputs 

GR4J 2 4 P and PET 

HBV 3 8 P and PET 

ANN 1 6 P, PET and Q(t-1) 

3.1 Multigene Genetic Programming 

The state of the art Genetic Programming (Koza, 1992) is another data-driven method that evolves 
computer programs to automatically solve problems using Darwinian natural selection. In 
hydrological applications, it is commonly used to infer the underlying structure of either natural 
(Danandeh Mehr et al., 2013; Ghorbani et al., 2010; Guven, 2009; Sattar and Gharabaghi, 2015) for 
experimental processes (Khan et al., 2012; Roushangar et al., 2014; Uyumaz et al., 2014). In such 
applications, GP generates some possible solutions to identify the process numerically. Multigene 
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genetic programming (Searson, 2009) is one of the most recent advancement of GP that linearly 
combines low depth GP trees in order to improve fitness of traditional GP approach. Owing to the 
using of smaller trees, the multigene genetic programming (MGGP) is expected to provide simpler 
models than those of traditional monolithic GP. In MGGP, predictand variables are computed by 
the weighted output of each gene (i.e. trees) in the multigene program plus a bias term. The MGGP 
employed in this study is based on evolving low-depth-low-number GP trees (i.e., Max tree depth= 
4 and Max genes=4) without any implicit or explicit reference to any of the other genes in the same 
chromosome. The standard GP sub-tree crossover, direct reproduction and mutation transformation 
(Poli, R., Langdon, W.B., McPhee, 2008) as well as common mathematical functions (i.e., addition, 
subtraction, multiplication, square, sin, cos, and exp) are used to create the best model. In addition 
to the standard GP crossover operator, we also used a tree crossover operator called ―two point 
high-level crossovers‖ to exchange of genes between chromosomes. The bias and weights (i.e. 
regression coefficients) are determined by a least squares procedure for each multigene 
chromosome. More details on the MGGP can be obtained from Searson et al. (2010) and Gandomi 
and Alavi (2012).  

3.2 Performance evaluation criteria 

In this study we used the hybrid metric comprised of mean absolute error calculated based on 
low flows and inverse values of hydrograph for the calibration and validation periods, shown at Eq. 
(1), as the results should be comparable to Demirel et al. (Demirel et al., 2015). In addition root 
mean squared error (RMSE) is used as the objective function to calibrate the model.  
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Where Qobs and Qsim are the observed and simulated streamflows for the i
th 

observed low flow 
days (i.e. Qobs<Q75) and m is the number of low flow days in total. In the second part of the equation 

j
 
is the day index; n is the total number of days and   is the 1% of the mean observed streamflow to 

avoid infinity during zero values. 
 

4. RESULTS AND DISCUSSION 

In order to develop a MGGP-based model for low flow prediction in the Moselle River, an 
open-source software platform for symbolic data mining in MATLAB

®
, namely GPTIPS 2 

(Searson, 2015) is used in this study. Figure 2 shows the summary of runs configured to minimize 
the error metric (RMSE) over the calibration data. The upper part of the figure shows the log10 
value of the best RMSE achieved in the population over the generations of a run and the lower part 
depicts the mean RMSE achieved in the population. 
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Figure 2: 

The best and mean RMSE achieved in each generation. 

Figure 2 illustrates low quality of population at the beginning. Good quality results begin to 
dominate in the population quickly, along with the increasing number of generations. The method 
converges to the good quality of results very fast. Only seven generations are enough to obtain good 
mean RMSE. Further generation improves the result very slight, but the best RMSE occurs after 
110 generation.  

The multigene expression of the best MGGP model developed for one-day in advance discharge 

prediction in Moselle River is shown in Figure 3. The parameters   ,   , and    given in the 
terminal nodes of the genes represent the P and PET at time t as well as Q at time t-1, respectively. 
The simplified mathematical expression of the model for normalized values of data including its 
constituent bias and the genes weights is also presented in Eq. (2).  
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Figure 3: 

Multigene expression of the best MGGP model developed for one-day lead time discharge 
prediction in Moslle River 

Figure 4 shows the Q-Q plots for different periods. While the MGGP models captures low 
flows and high flows well, some of the mean flows (between 1500 and 2500 cms) are 
underestimated. The picture is slightly improved for validation for flows below 1000 cms. 
However, the model usually overestimates the very high flows. We evaluated the model also for a 
test period between 2002 and 2006. The performance of the model outside calibration and 
validation period is promising. For a forecast model, this can be the perfect forecast using 
observations. In addition, European Centre for Medium-Range Weather Forecasts (ECMWF) such 
as P and PET can be included to assess the forecast performance of the model. However this is 
beyond the scope of this current study. 
 

 
 

Figure 4: 
Scatter plot of simulated and observed streamflow using the MGGP model. 
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Figure 5 shows only the low flow hydrographs for the selected years in both calibration and 
validation periods. The MGGP model can simulate extreme low flows and miss very few events 
(empty blue circles) close to mean values showing the skill of model for predicting extreme events.  
 

 
 

Figure 5: 
Hydrograph of simulated and observed low flows using the MGGP model.  

 
Efficiency values of the best evolved MGGP model are summarized in Table 3 and compared 

with those of ANN, HBV and GR4J models. Based on the results, it is obvious that MGGP model 
performs better than all three models previously used to simulate low flows in the Moselle River 
basin. The significant difference between MGGP and ANN models can be explained by the number 
of hidden neurons in ANN as both models incorporate the streamflow values from previous day to 
mimic storages/states and memory in the typical conceptual models e.g. GR4J and HBV. When the 
streamflow from previous day is excluded from the inputs, the model performance is significantly 
hampered.  

Table 3. MAEhybrid results for calibration and validation periods  

 

Model 
Calibration 

Period 
(mm) 

Validation 
Period 
(mm) 

MGGP 0.049 0.045 

GR4J 0.550 0.720 

HBV 0.550 0.580 

ANN 0.850 0.980 

 
The performance of the model would obviously be better when low flow oriented objective 

function (Eq. (1)) is used. However, such function may lead the MGGP to over-train for low flow 
prediction so that the best solution would not be applicable for entire time series. In addition, our 
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study showed that the MGGP model could perform better than other three models even it considers 
the performance over the entire hydrograph. Also the number of peaks and high flows apparently 
didn’t dominate the RMSE performance.  

5. CONCLUSIONS 

The performance of a new generation data-driven model on simulating low flows is compared 
with three different hydrologic models. Similar set up for all models are used to do a fair 
comparison. Precipitation, potential evapotranspiration and streamflow from previous day have 
been used as input to both data-driven models i.e. ANN and MGGP, whereas only basin averaged 
precipitation and potential evapotranspiration are required for GR4J and HBV models. Based on the 
calibration and validation results significant improvement in low flow simulation performance is 
achieved using the MGGP. Obviously this model is the best performing model from the four 
models. The timing and the magnitude of most of the low flow events could be predicted. The 
proposed model is successful especially for the extreme low flow events. Although the model is 
developed and calibrated for Moselle River flows, the multigene genetic algorithm offers a great 
opportunity for hydrologic prediction and forecast problems in the river basins with scarce data 

issues.  
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