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Abstract

In this paper, we study the form of the solution of the following systems of difference
equations of order two

wn+1 =
wnsn−1

wn + sn−1
, sn+1 =

snwn−1

±sn±wn−1
,

with nonzero real numbers initial conditions.

1. Introduction

Difference equations naturally occur as discrete analogs and numerical solutions to differential and delay differential equations
that have applications in biology, ecology, economy, physics, and other fields. Thus, there has recently been an increase in
interest in the study of qualitative analysis of systems of difference equations and rational difference equations. Although the
form of difference equations is quite straightforward, it is extremely challenging to fully comprehend the behaviors of their
solutions, see [1]-[7].

The periodicity of the solutions of the system of difference equations

wn+1 =
m
sn
, sn+1 =

psn

wn−1sn−1
,

was studied by Cinar in [8].
El-Dessoky and Elsayed [9] have analyzed the form of the solutions and the periodicity character of the following systems :

wn+1 =
wnsn−1

sn−1± sn
, sn+1 =

snwn−1

wn−1±wn
.

Kurbanli et al. [10] discussed the periodicity of solutions of the system of difference equations

wn+1 =
wn−1 + sn

wn−1sn−1
, sn+1 =

sn−1 +wn

sn−1wn−1
.
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El-Dessoky [11] investigated the form of the solutions and the periodicity character of the following systems :

wn+1 =
sn−1sn−2

wn(±1± sn−1sn−2)
, sn+1 =

wn−1wn−2

sn(±1±wn−1wn−2)
.

Touafek and Elsayed [12] have investigated the periodicity and determined the shape of the solutions of the systems of
difference equations of order two:

wn+1 =
snwn−1

±wn−1± sn
, sn+1 =

wnsn−1

±wn±wn−1
.

Yalcınkaya [13] has found the sufficient conditions for the global asymptotic stability of the system of difference equations

wn+1 =
wn + sn−1

wnsn−1−1
, sn+1 =

sn +wn−1

snwn−1−1
.

Elsayed et al. [14] foud the form of the solutions of the systems of difference equations

wn+1 =
sn(wn−3 + sn−4)

sn−4 +wn−3− sn
, sn+1 =

wn−2(wn−2 + sn−3)

2wn−2 + sn−3
.

wn+1 =
(sn−4−wn−3)sn

sn−4−wn−3 + sn
, sn+1 =

(sn−3−wn−2)wn−2

sn−3
.

Yang et al. [15] has studied the behavior of the solutions of the systems

wn =
a

sn−p
, sn =

bsn−p

wn−qsn−q
.

Touafek et al. [16] examined periodicity and provided the form of the solutions of the systems of nonlinear difference
equations

wn+1 =
wn−3

±1±wn−3sn−1
, sn+1 =

sn−3

±1± sn−3wn−1
.

Turki et al. [17] studied the dynamics of the twelfth-order difference equations

wn+1 = awn−5−
bwn−5

cwn−5−dwn−11
.

Similarly, difference equations and nonlinear systems of the rational difference equations were investigated see [18]-[25].
This paper’s main goal is to consider the systems of difference equations below

wn+1 =
wnsn−1

wn + sn−1
, sn+1 =

snwn−1

±sn±wn−1
,

where the initial conditions are w0, w−1, s0 and s−1 arbitrary positive real numbers.

2. The system wn+1 =
wnsn−1

wn+sn−1
, sn+1 =

snwn−1
sn+wn−1

In this section, we examine the solutions of the system of the difference equations in the form :

wn+1 =
wnsn−1

wn + sn−1
, sn+1 =

snwn−1

sn +wn−1
. (2.1)

Theorem 2.1. Assume that {wn,sn} is a solution of system (2.1). Then for n = 1,2, ..., we have

w2n =
abcd

cd((ξn−ηn−1)a+ηnb)+ab((ηn−ξn−1)c+ξn)d)
,

w2n+1 =
abcd

cd(ξna+(ηn+1−ξn)b)+ab(ηnc+(ξn+1−ηn)d)
,
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s2n =
abcd

cd((ηn−ξn−1)a+ξnb)+ab((ξn−ηn−1)c+ηnd)
,

s2n+1 =
abcd

cd(ηna+(ξn+1−ηn)b)+ab(ξnc+(ηn+1−ξn)d)
,

where {ηn}∞
n=1 = {1,2,7,17,44, ...}, η0 = 1, η−1 = 0,η−2 = −1, {ξn}∞

n=1 = {1,3,6,17, ...}, ξ0 = 0, ξn = ηn+1−ηn−
ηn−1−ηn−2−ηn−3, w0 = a, w−1 = b, s0 = c and s−1 = d.

Proof. For n=0, the result holds. Now, suppose that n > 0 and that our assumption holds for n−1. That is

w2n−2 =
abcd

cd((ξn−1−ηn−2)a+ηn−1b)+ab((ηn−1−ξn−2)c+ξn−1)d)
,

w2n−1 =
abcd

cd(ξn−1a+(ηn−ξn−1)b)+ab(ηn−1c+(ξn−ηn−1)d)
,

s2n−2 =
abcd

cd((ηn−1−ξn−2)a+ξn−1b)+ab((ξn−1−ηn−2)c+ηn−1d)
,

s2n−1 =
abcd

cd(ηn−1a+(ξn−ηn−1)b)+ab(ξn−1c+(ηn−ξn−1)d)
.

Now, it follows from Eq.(2.1) that

w2n =
w2n−1s2n−2

w2n−1 + s2n−2

=
( abcd

cd(ξn−1a+(ηn−ξn−1)b)+ab(ηn−1c+(ξn−ηn−1)d)
)( abcd

cd((ηn−1−ξn−2)a+ξn−1b)+ab((ξn−1−ηn−2)c+ηn−1d) )

abcd
cd(ξn−1a+(ηn−ξn−1)b)+ab(ηn−1c+(ξn−ηn−1)d)

+ abcd
cd((ηn−1−ξn−2)a+ξn−1b)+ab((ξn−1−ηn−2)c+ηn−1d)

=
abcd

cd((ξn−1 +ηn−1−ξn−2)a+(ηn−ξn−1 +ξn−1)b)+ab((ηn−1 +ξn−1−ηn−2)c+(ξn−ηn−1 +ηn−1)d)

=
abcd

cd((ξn−ηn−1)a+ηnb)+ab((ηn−ξn−1)c+ξnd)
.

And

s2n =
s2n−1w2n−2

s2n−1 +w2n−2

=
( abcd

cd(ηn−1a+(ξn−ηn−1)b)+ab(ξn−1c+(ηn−ξn−1)d)
)( abcd

cd((ξn−1−ηn−2)a+ηn−1b)+ab((ηn−1−ξn−2)c+ξn−1d) )

abcd
cd(ηn−1a+(ξn−ηn−1)b)+ab(ξn−1c+(ηn−ξn−1)d)

+ abcd
cd((ξn−1−ηn−2)a+ηn−1b)+ab((ηn−1−ξn−2)c+ξn−1d)

=
abcd

cd((ηn−1 +ξn−1−ηn−2)a+(ξn−ηn−1 +ηn−1)b)+ab((ξn−1 +ηn−1−ξn−2)c+(ηn−ξn−1 +ξn−1)d)

=
abcd

cd((ηn−ξn−1)a+ξnb)+ab((ξn−ηn−1)c+ηnd)
.
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Also,

w2n+1 =
w2ns2n−1

w2n + s2n−1

=
( abcd

cd((ξn−ηn−1)a+ηnb)+ab((ηn−ξn−1)c+ξn)d)
)( abcd

cd(ηn−1a+(ξn−ηn−1)b)+ab(ξn−1c+(ηn−ξn−1)d)
)

abcd
cd((ξn−ηn−1)a+ηnb)+ab((ηn−ξn−1)c+ξnd) +

abcd
cd(ηn−1a+(ξn−ηn−1)b)+ab(ξn−1c+(ηn−ξn−1)d)

=
abcd

cd((ξn−ηn−1 +ηn−1)a+(ηn +ξn−ηn−1)b+ab((ηn−ξn−1 +ξn−1)c+(ξn +ηn−ξn−1)d)

=
abcd

cd(ξna+(ηn+1−ξn)b)+ab(ηnc+(ξn+1−ηn)d)
.

And

s2n+1 =
s2nw2n−1

s2n +w2n−1

=
( abcd

cd((ηn−ξn−1)a+ξnb)+ab((ξn−ηn−1)c+ηnd) )(
abcd

cd(ξn−1a+(ηn−ξn−1)b)+ab(ηn−1c+(ξn−ηn−1)d)
)

abcd
cd((ηn−ξn−1)a+ξnb)+ab((ξn−ηn−1)c+ηnd) +

abcd
cd(ξn−1a+(ηn−ξn−1)b)+ab(ηn−1c+(ξn−ηn−1)d)

=
abcd

cd((ηn−ξn−1 +ξn−1)a+(ξn +ηn−ξn−1)b+ab((ξn−ηn−1 +ηn−1)c+(ηn +ξn−ηn−1)d)

=
abcd

cd(ηna+(ξn+1−ηn)b)+ab(ξnc+(ηn+1−ξn)d)
.

Example 2.2. Figure 2.1 demonstrates the behavior of the solutions of the system of difference equations (2.1) with w−1 =
4, w0 = 1, s−1 =−2 and s0 = 2.

Figure 2.1
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3. The system wn+1 =
wnsn−1

wn+sn−1
, sn+1 =

snwn−1
sn−wn−1

In this section, we investigate the solutions of the following system of the difference equations :

wn+1 =
wnsn−1

wn + sn−1
, sn+1 =

snwn−1

sn−wn−1
. (3.1)

Theorem 3.1. Assume that {wn,sn} is a solution of system (3.1). Then for n = 1,2, ..., we have

w2n−1 =
abd

a( fn+2b+ fn+1d)+ fn+2bd
, w2n =

acd
a( fn+2d + fn+2c)+ fn+3cd

,

s2n−1 =
bcd

c( fn+2d + fn+1b)− fn+2bd
, s2n =

abc
a( fn+3b− fn+2c)+ fn+2bc

,

where { fm}∞
m=0 = {0,1,0,1,1,2,3, ...}.

Proof. For n=0, the result holds. Now, suppose that n > 0 and that our assumption holds for n−1 and n−2. That is

w2n−3 =
abd

a( fn+1b+ fnd)+ fn+1bd
, w2n−2 =

acd
a( fn+1d + fn+1c)+ fn+2cd

,

w2n−5 =
abd

a( fnb+ fn−1d)+ fnbd
, w2n−4 =

acd
a( fnd + fnc)+ fn+1cd

,

s2n−3 =
bcd

c( fn+1d + fnb)− fn+1bd
, s2n−2 =

abc
a( fn+2b− fn+1c)+ fn+1bc

,

s2n−5 =
bcd

c( fnd + fn−1b)− fnbd
, s2n−4 =

abc
a( fn+1b− fnc)+ fnbc

.

Now, from Eq.(3.1) we get :

w2n =
w2n−1s2n−2

w2n−1 + s2n−2

=
( abd

a( fn+2b+ fn+1d)+ fn+2bd )(
abc

a( fn+2b− fn+1c)+ fn+1bc )

abd
a( fn+2b+ fn+1d)+ fn+2bd +

abc
a( fn+2b− fn+1c)+ fn+1bc

=
a2b2cd

ab(( fn+2b− fn+1c)ad + fn+1bcd +( fn+2b+ fn+1d)ac+ fn+2bcd)

=
abcd

fn+2bad− fn+1cad + fn+1bcd + fn+2bac+ fn+1dac+ fn+2bcd

=
abcd

b( fn+2ad +( fn+1 + fn+2)cd + fn+2ac)

=
acd

( fn+2d + fn+2c)a+ fn+3cd
.

And

s2n =
s2n−1w2n−2

s2n−1−w2n−2
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=
( bcd

c( fn+2d+ fn+1b)− fn+2bd )(
acd

a( fn+1d+ fn+1c)+ fn+2cd )

bcd
c( fn+2d+ fn+1b)− fn+2bd −

acd
a( fn+1d+ fn+1c)+ fn+2cd )

=
abc2d2

cd(( fn+1d + fn+1c)ad + fn+2bcd− ( fn+2d + fn+1b)ac+ fn+2abd)

=
abcd

fn+1bad + fn+1cab+ fn+2bcd− fn+2dac− fn+1bac+ fn+2abd

=
abcd

d( fn+2cb+( fn+1 + fn+2)ba− fn+2ac)

=
acb

( fn+3b− fn+2c)a+ fn+2cb
.

Also,

w2n−1 =
w2n−2s2n−3

w2n−2 + s2n−3

=
( acd

a( fn+1d+ fn+1c)+ fn+2cd )(
bcd

c( fn+1d+ fnb)− fn+1bd )

acd
a( fn+1d+ fn+1c)+ fn+2cd +

bcd
c( fn+1d+ fnb)− fn+1bd

=
abc2d2

cd(( fn+1d + fnb)ac− fn+1bad +( fn+1d + fn+1c)ab+ fn+2bcd)

=
abcd

fn+1adc+ fncab− fn+1bad + fn+1bad + fn+1bac+ fn+2bcd

=
abcd

c( fn+1ad +( fn + fn+1)ba+ fn+2bd)

=
abd

( fn+2b+ fn+1d)a+ fn+2bd
.

And

s2n−1 =
s2n−2w2n−3

s2n−2−w2n−3

=
( abc

a( fn+2b− fn+1c)+ fn+1bc )(
abd

a( fn+1b+ fnd)+ fn+1bd )

abc
a( fn+2b− fn+1c)+ fn+1bc −

abd
a( fn+1b+ fnd)+ fn+1bd

=
a2b2cd

ab(( fn+1b+ fnd)ac+ fn+1bcd− ( fn+2b− fn+1c)ad− fn+1cbd)

=
abcd

fn+1bac+ fncad + fn+1bcd− fn+2dab+ fn+1dac− fn+1cbd

=
abcd

a( fn+1cb+( fn + fn+1)dc− fn+2bd)

=
bcb

( fn+2d + fn+1b)c− fn+2bd
.

Example 3.2. We assume a numerical example for Eq.(3.1) where w−1 = 3, w0 = 0.5, s−1 =−4 and s0 = 1. See Fig. 3.1.
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Figure 3.1

4. The system wn+1 =
wnsn−1

wn+sn−1
, sn+1 =

snwn−1
−sn+wn−1

In this section, we give a specific form the solutions of the system of the difference equation in the form:

wn+1 =
wnsn−1

wn + sn−1
, sn+1 =

snwn−1

−sn +wn−1
. (4.1)

Theorem 4.1. Assume that {wn,sn} is a solution of system (4.1). Then for n = 1,2, ..., we have

w2n =
abcd

cd((ηn+1−ξn)a+ξnb)+ab(ηnc+(ηn+1−ξn+1)d)
,

w2n+1 =
abcd

cd((ξn+1−ηn+1)a+ηn+1b)+ab(ξnc+(ξn+1−ηn+2)d)
,

s2n =
abcd

cd(−ηna+(ξn+1−ηn+1)b)+ab((ηn+1−ξn)c+ξnd)
,

s2n+1 =
abcd

cd(−ξna+(ηn+2−ξn+1)b)+ab((ξn+1−ηn+1)c+ηn+1d)
,

where {ξn}∞
n=1 = {1,0,−5,−13,−12, ...}, ξ0 = 1, ξ−1 = 0, ηn = ((ξn−2 +ξn−1 +ξn)÷2) and

{ηn}∞
n=1 = {1,1,−2,−9,−15, ...}.

Proof. For n=0, the result holds. Now, suppose that n > 0 and that our assumption holds for n−1. That is

w2n−2 =
abcd

cd((ηn−ξn−1)a+ξn−1b)+ab(ηn−1c+(ηn−ξn)d)
,

w2n−1 =
abcd

cd((ξn−ηn)a+ηnb)+ab(ξn−1c+(ξn−ηn+1)d)
,

s2n−2 =
abcd

cd(−ηn−1a+(ξn−ηn)b)+ab((ηn−ξn−1)c+ξn−1d)
,

s2n−1 =
abcd

cd(−ξn−1a+(ηn+1−ξn)b)+ab((ξn−ηn)c+ηnd)
.
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Now, it follows from Eq.(4.1) that

w2n =
w2n−1s2n−2

w2n−1 + s2n−2

=
( abcd

cd((ξn−ηn)a+ηnb)+ab(ξn−1c+(ξn−ηn+1)d)
)( abcd

cd(−ηn−1a+(ξn−ηn)b)+ab((ηn−ξn−1)c+ξn−1d) )

abcd
cd((ξn−ηn)a+ηnb)+ab(ξn−1c+(ξn−ηn+1)d)

+ abcd
cd(−ηn−1a+(ξn−ηn)b)+ab((ηn−ξn−1)c+ξn−1d)

=
abcd

cd((ξn−ηn−ηn−1)a+(ηn +ξn−ηn)b)+ab((ξn−1 +ηn−ξn−1)c+(ξn−ηn+1 +ξn−1)d)

=
abcd

cd((ηn+1−ξn)a+ξnb)+ab(ηnc+(ηn+1−ξn+1)d)
.

And

s2n =
s2n−1w2n−2

−s2n−1 +w2n−2

=
( abcd

cd(−ξn−1a+(ηn+1−ξn)b)+ab((ξn−ηn)c+ηnd) )(
abcd

cd((ηn−ξn−1)a+ξn−1b)+ab(ηn−1c+(ηn−ξn)d)
)

−abcd
cd(−ξn−1a+(ηn+1−ξn)b)+ab((ξn−ηn)c+ηnd) +

abcd
cd((ηn−ξn−1)a+ξn−1b)+ab(ηn−1c+(ηn−ξn)d)

=
abcd

cd((−ξn−1−ηn +ξn−1)a+(ηn+1−ξn−ξn−1)b)+ab((ξn−ηn−ηn−1)c+(ηn−ηn +ξn)d

=
abcd

cd(−ηna+(ξn+1−ηn+1)b)+ab((ηn+1−ξn)c+ξnd)
.

Also,

w2n+1 =
w2ns2n−1

w2n + s2n−1

=
( abcd

cd((ηn+1−ξn)a+ξnb)+ab(ηnc+(ηn+1−ξn+1)d)
)( abcd

cd(−ξn−1a+(ηn+1−ξn)b)+ab((ξn−ηn)c+ηnd) )

abcd
cd((ηn+1−ξn)a+ξnb)+ab(ηnc+(ηn+1−ξn+1)d)

+ abcd
cd(−ξn−1a+(ηn+1−ξn)b)+ab((ξn−ηn)c+ηnd)

=
abcd

cd((ηn+1−ξn−ξn−1)a+(ξn +ηn+1−ξn)b+ab((ηn +ξn−ηn)c+(ηn+1−ξn+1 +ηn)d)

=
abcd

cd((ξn+1−ηn+1)a+ηn+1b)+ab(ξnc+(ξn+1−ηn+2)d)
.

And

s2n+1 =
s2nw2n−1

−s2n +w2n−1

=
( abcd

cd(−ηna+(ξn+1−ηn+1)b)+ab((ηn+1−ξn)c+ξnd) )(
abcd

cd((ξn−ηn)a+ηnb)+ab(ξn−1c+(ξn−ηn+1)d)
)

−abcd
cd(−ηna+(ξn+1−ηn+1)b)+ab((ηn+1−ξn)c+ξnd) +

abcd
cd((ξn−ηn)a+ηnb)+ab(ξn−1c+(ξn−ηn+1)d)

=
abcd

cd((−ηn−ξn +ηn)a+(ξn+1−ηn+1−ηn)b)+ab((ηn+1−ξn−ξn−1)c+(ξn−ξn +ηn+1)d

=
abcd

cd(−ξna+(ηn+2−ξn+1)b)+ab((ξn+1−ηn+1)c+ηn+1d)
.

Example 4.2. Consider the solutions of Eq.(4.1) when w−1 = 3, w0 =−1, s−1 = 4 and s0 =−1. See Fig. 4.1.
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Figure 4.1

5. The system wn+1 =
wnsn−1

wn+sn−1
, sn+1 =

snwn−1
−sn−wn−1

In this section, we obtain the solutions form for the system of two difference equations :

wn+1 =
wnsn−1

wn + sn−1
, sn+1 =

snwn−1

−sn−wn−1
. (5.1)

Theorem 5.1. Suppose that {wn,sn} are solutions of system (5.1). Then every solutions of system (5.1) are periodic with
period twelve and given by the following formulas for n=0,1,2,... ,

w12n−1 = b, w12n = a,

w12n+1 =
ad

a+d
, w12n+2 =

adc
(a+d)c+ad

,

w12n+3 =
adb

(a+d)b−ad
, w12n+4 =

dc
d + c

,

w12n+5 =−b, w12n+6 =−a,

w12n+7 =
−ad
a+d

, w12n+8 =
−adc

(a+d)c+ad
,

w12n+9 =
−adb

(a+d)b−ad
, w12n+10 =

−dc
d + c

,

s12n−1 = d, s12n = c,

s12n+1 =
−cb
c+b

, s12n+2 =
−abc

cb− (c+b)a
,

s12n+3 =
−cdb

(b+d)c+bd
, s12n+4 =

−ba
b−a

,

s12n+5 =−d, s12n+6 =−c,
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s12n+7 =
cb

c+b
, s12n+8 =

abc
cb− (c+b)a

,

s12n+9 =
cdb

(b+d)c+bd
, s12n+10 =

ba
b−a

.

Proof. For n=0, the result holds. Now, suppose that n > 0 and that our assumption holds for n−1.
That is

w12n−13 = b, w12n−12 = a,

w12n−11 =
ad

a+d
, w12n−10 =

adc
(a+d)c+ad

,

w12n−9 =
adb

(a+d)b−ad
, w12n−8 =

dc
d + c

,

w12n−7 =−b, w12n−6 =−a,

w12n−5 =
−ad
a+d

, w12n−4 =
−adc

(a+d)c+ad
,

w12n−3 =
−adb

(a+d)b−ad
, w12n−2 =

−dc
d + c

,

s12n−13 = d, s12n−12 = c,

s12n−11 =
−cb
c+b

, s12n−10 =
−abc

cb− (c+b)a
,

s12n−9 =
−cdb

(b+d)c+bd
, s12n−8 =

−ba
b−a

,

s12n−7 =−d, s12n−6 =−c,

s12n−5 =
cb

c+b
, s12n−4 =

abc
cb− (c+b)a

,

s12n−3 =
cdb

(b+d)c+bd
, s12n−2 =

ba
b−a

.

Now, from Eq.(5.1) that

w12n =
w12n−1s12n−2

w12n−1 + s12n−2
=

b2a
b−a

b+ ba
b−a

=
b2a

b2−ab+ab
= a.

s12n =
s12n−1w12n−2

−s12n−1−w12n−2
=

−d2c
c+d

−d + cd
c+d

=
−d2c

−d2− cd + cd
= c.

Also,

w12n+5 =
w12n+4s12n+3

w12n+4 + s12n+3
=

( dc
d+c )(

−cbd
(b+d)c+bd )

dc
d+c −

cbd
(b+d)c+bd

=
−c2bd2

cd(bc+dc+bd−bd− cb)
=−b.

s12n+5 =
s12n+4w12n+3

−s12n+4−w12n+3
=

(−ba
b−a )(

abd
(a+d)b−ad )

−−bd
b−a −

abd
(a+d)b−ad

=
−a2b2d

ba(ab+db−ad−bd +ad)
=−d.

Similarly, obtaining the other relations is very simple. Thus, the proof is completed.
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Figure 5.1

Example 5.2. Figure 5.1 considers the solution of Eq.(5.1) with w−1 = 4, w0 =−1, s−1 = 3 and s0 = 1.
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