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Exponential approximation in variable exponent Lebesgue
spaces on the real line

RAMAZAN AKGÜN*

ABSTRACT. Present work contains a method to obtain Jackson and Stechkin type inequalities of approximation
by integral functions of finite degree (IFFD) in some variable exponent Lebesgue space of real functions defined on
R := (−∞,+∞). To do this, we employ a transference theorem which produce norm inequalities starting from
norm inequalities in C(R), the class of bounded uniformly continuous functions defined on R. Let B ⊆ R be a
measurable set, p (x) : B → [1,∞) be a measurable function. For the class of functions f belonging to variable
exponent Lebesgue spaces Lp(x) (B), we consider difference operator (I − Tδ)r f (·) under the condition that p(x)

satisfies the log-Hölder continuity condition and 1 ≤ ess infx∈B p(x), ess supx∈B p(x) < ∞, where I is the identity
operator, r ∈ N := {1, 2, 3, · · · }, δ ≥ 0 and

(∗) Tδf (x) =
1

δ

∫ δ

0
f (x+ t) dt, x ∈ R, T0 ≡ I,

is the forward Steklov operator. It is proved that

(∗∗) ‖(I − Tδ)r f‖p(·)
is a suitable measure of smoothness for functions in Lp(x) (B), where ‖·‖p(·) is Luxemburg norm in Lp(x) (B) . We
obtain main properties of difference operator ‖(I − Tδ)r f‖p(·) in Lp(x) (B) . We give proof of direct and inverse
theorems of approximation by IFFD in Lp(x) (R) .

Keywords: Variable exponent Lebesgue space, one sided Steklov operator, integral functions of finite degree, best
approximation, direct theorem, inverse theorem, modulus of smoothness, Marchaud inequality, K-functional.
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1. INTRODUCTION

Some inequalities of Approximation Theory in a Homogenous Banach Spaces (HBS) can
be obtained their uniform-norm counterparts. This information is known for a long time,
(see e.g., [20] for definition of HBS). This elegant method was generalized to some variable
exponent Lebesgue spaces functions defined on R (see Theorem 1 of [9]). Generally, these
scale of function classes are non-translation invariant with respect to the ordinary translation
x → f (x+ a). Here, we give several uniform-norm inequalities on C(R) and apply them
to obtain several inequalities of approximation by IFFD in some variable exponent Lebesgue
spaces Lp(x)(R). Under some condition on p(x) of Lp(x)(R), we obtain main inequalities of
exponential approximation by IFFD such as Jackson-Stechkin-Timan type estimates and equiv-
alence of K-functional with suitable modulus of smoothness (∗∗) given in abstract for functions
of Lp(x)(R). Note that many results of approximation by IFFD can be obtained easily their
uniform-norm counterparts in C(R).
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Approximation by entire IFFD on the real line 215

Consider an entire function f(z) and put M(r) = max|z|=r |f(z)| for z = x+ iy. We say that
an entire function f is of exponential type σ if lim supr→∞ r−1 lnM(r) ≤ σ, σ <∞.

The approximation by entire function of finite degree in the real line was originated in the
beginning of twentieth century by Serge Bernstein [15] and became a separate branch of analy-
sis due to the efforts of many mathematicians such as N. Wiener and R. Paley [45], N.I. Achiezer
[4], S.M. Nikolskii [42], I.I. Ibragimov [29], A.F. Timan [52], M.F. Timan [53], R. Taberski [54, 55],
F.G. Nasibov [41], V. Yu. Popov [46], A.A. Ligun [43], and others.

Studying function spaces with variable exponent is now an extensively developed field af-
ter their applications in elasticity theory [58], fluid mechanics [47, 48], differential operators
[19, 48], nonlinear Dirichlet boundary value problems [40], nonstandard growth [58], and vari-
ational calculus. See the books [16, 18, 51] for more references. Nowadays, many mathemati-
cian solved many problems for the approximation of function in these type spaces defined on
[0, 2π] ⊂ R (see e.g., [7, 8, 26, 30, 31, 34], [1, 2, 3, 11, 12], [5, 6, 9, 13, 14],[22, 24, 25, 28, 32, 33,
36],[37, 38, 44, 49, 50, 56]). In this paper, we propose generalized our last results in [10] which
we obtained a direct and inverse theorems for approximation by entire functions of finite de-
gree in variable exponent Lebesgue spaces on the whole real axis R with

(1.1) sup
0<h≤δ

‖(I − Th)f‖p(·)

as modulus of continuity Ω1(f, δ)p(·). Instead of (1.1), here we will use

(1.2) ‖(I − Tδ)rf‖p(·)
as modulus smoothness Ωr(f, δ)p(·) and we obtain stronger Jackson inequality than obtained
in [10].

Let B ⊆ R be a measurable set and p(x) : B → [1,∞) be a measurable function. We define
P̃ (B) as the class of measurable functions p(x) satisfying the conditions

(1.3) 1 ≤ p−B := ess infx∈B p(x), p+
B := ess supx∈B p(x) <∞.

We also set p− := p−R and p+ := p+
R. We define the Lp(·)(B) as the set of all functions f : B → R

such that

(1.4) Ip(·),B

(
f

λ

)
:=

∫
B

∣∣∣∣f(y)

λ

∣∣∣∣p(y)

dy <∞

for some λ > 0. We set Ip(·) (f) := Ip(·),R (f). The set of functions Lp(·)(B), with norm

‖f‖p(·),B := inf

{
η > 0 : Ip(·),B

(
f

η

)
< 1

}
is Banach space. We set Lp(·) := Lp(·)(R).

For i ∈ N, all constants ci (x, y, · · · ) will be some positive number such that they depend on
the parameters x, y, · · · given in the brackets. Also, constants ci (x, y, · · · ) can be change only
when the parameters x, y, · · · change. Absolute constants c1, c2, . . . will not change in each
occurrence.

Definition 1.1. For a measurable set B ⊆ R, a measurable function p(·) : B → R is said to locally
log-Hölder continuous on B if there is a positive constant c1 (p) such that

(1.5) |p(x)− p(y)| log (e+ 1/|x− y|) ≤ c1 (p) <∞
for any x, y ∈ B. We say that p satisfies log-Hölder decay condition if there is a constant c2 (p) > 0 and
p∞ > 1 such that

(1.6) |p(x)− p∞| log (e+ |x|) ≤ c2 (p) <∞
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for any x ∈ B.
Define the class PLog (B) :=

{
p ∈ P̃ (B) : 1

p is satisfy (1.5)-(1.6)
}

. We set c3 (p) :=

max {c1 (p) , c2 (p)} .

Definition 1.2. ([27, p.96]) Let N := {1, 2, 3, · · · } be natural numbers and N0 := N ∪ {0}.
(a) A family Q of measurable sets E ⊂ R is called locally N -finite (N ∈ N) if∑

E∈Q
χE (x) ≤ N

almost everywhere in R, where χU is the characteristic function of the set U .
(b) A family Q of open bounded sets U ⊂ R is locally 1-finite if and only if the sets U ∈ Q are

pairwise disjoint.
(c) Let U ⊂ R be a measurable set and

AUf :=
1

|U |

∫
U

|f (t)| dt.

(d) For a family Q of open sets U ⊂ R, we define averaging operator by

TQ : L1
loc → L0,

TQf (x) :=
∑
U∈Q

χU (x)AUf =
∑
U∈Q

χU (x)

|U |

∫
U

|f (y)| dy, x ∈ R,

where L0 is the set of measurable functions on R.

For a measurable set A ⊂ R, symbol |A|will represent the Lebesgue measure of A.
We consider Transference result.

Definition 1.3. For 0 < δ <∞, τ ∈ R, we define family of Steklov operators

(1.7) Sδf(x) :=
1

δ

∫ x+δ/2

x−δ/2
f (t) dt =

1

δ

∫ δ/2

−δ/2
f (x+ t) dt, x ∈ R,

where f is a locally integrable function defined on R.

The following result was obtained by Drihem for every cubes or balls in Rd. We write below
its restricted version with constants. The proof of this is the same with Theorem 2 of [23].

Proposition 1.1. ([23]) Suppose that p ∈ PLog (R) and Q is a bounded interval of R having Lebesgue
measure ≥ 1. For every m > 0, there is c4 (m, c3 (p)) := exp (−4mc3 (p)) ∈ (0, 1) such thatc4 (m, c3 (p))

|Q|

∫
Q

|f (y + τ)| dy

p(x)

≤ 3p
+

|Q|

∫
Q

|f (y + τ)|p(y+τ)
dy +

3p
+−1

(e+ |x|)m

+ 3p
+−1

∫
Q

dy

(e+ |y + τ |)m

holds for all x ∈ Q, τ ∈ R and all f ∈ Lp(·) + L∞ (R) with ‖f‖p(·) + ‖f‖∞ ≤ 1.

Theorem 1.1. Suppose that p ∈ PLog (R). Then, the family of operators {Uτf}τ∈R defined by

Uτf(x) := S1f (x+ τ) =

∫ +1/2

−1/2

f (x+ τ + t) dt, x ∈ R, τ ∈ R
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is uniformly bounded (in τ ) in Lp(·), namely,

‖Uτf‖p(·) ≤ c5
(
p+, c3 (p)

)
‖f‖p(·)

holds with c5 (p+, c3 (p)) := 2p
++13p

+
(

1 + 2 · 3p+
[∑∞

k=2 2−k + 2
])

exp (8c3 (p)).

Proof of Theorem 1.1. Let us consider f ∈ Lp(·) with ‖f‖p(·) ≤ 1/2. Suppose that

Q := {U ⊂ R : U open interval and |U | = 1}

be a locally 1-finite family of partition of R. Choosem = 2 > 1 (constant c6 (p+) below becomes
a finite number)

c6
(
p+
)

= 2p
+

3p
+
(

1 + 2 · 3p
+
[∑∞

k=2
2−k + 2

])
<∞.

We can select c4 (2, c3 (p)) = exp (−8c3 (p)) ∈ (0, 1) as in Proposition 1.1. Then, using Corollary
2.2.2 of [27, p.20] we obtain

ρp(·)

(
c4 (2, c3 (p))

c6 (p+)
Uτf

)
=

1

c6 (p+)

∫
R

∣∣∣∣∣c4 (2, c3 (p))

∫ +1/2

−1/2

f (x+ τ + t) dt

∣∣∣∣∣
p(x)

dx

≤ 1

c6 (p+)

∑
U∈Q

∫
U

∣∣∣∣∣c4 (2, c3 (p))

∫ +1/2

−1/2

f (x+ τ + t) dt

∣∣∣∣∣
p(x)

dx

≤ 2p
+

c6 (p+)

∑
U∈Q

∫
U

∣∣∣∣∣∣c4 (2, c3 (p))

|2U |

∫
2U

χ2U (y) f (y + τ) dy

∣∣∣∣∣∣
p(x)

dx

≤ 2p
+

c6 (p+)

∑
U∈Q

∫
U

3p
+

χ2U (y)

|2U |

∫
2U

|f (y + τ)|p(y+τ)
dy+

+
3p

+−1

(e+ |x|)2 +
χ2U (y)

|2U |

∫
2U

3p
+−1dy

(e+ |y + τ |)2

 dx
≤ 2p

+−13p
+

c6 (p+)

∑
U∈Q

∫
U

χ2U (y)

∫
2U+τ

|f (s)|p(s) ds

+
3p

+−12

(e+ |x|)2 +

∫
2U+τ

3p
+−1ds

(e+ |s|)2

 dx
≤ 2p

+−13p
+

c6 (p+)

∑
U∈Q

χ2U

1 + 3p
+

∫
R

ds

(e+ |s|)2


=

2p
+

3p
+

c6 (p+)

1 + 3p
+

∫
R

ds

(e+ |s|)2


≤ 2p

+

3p
+

c6 (p+)

(
1 + 2 · 3p

+

[∑∞

k=2

1

2k
+ 2

])
= 1
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and hence
‖Uτf‖p(·) ≤ 2−1c5

(
p+, c3 (p)

)
.

General case f ∈ Lp(·) can be obtained easily by re-scaling:

‖Uτf‖p(·) ≤ c5
(
p+, c3 (p)

)
‖f‖p(·) .

�

Theorem 1.2. ([18, Theorem 4.4.8]) Suppose that p ∈ PLog (R) and f ∈ Lp(·). If Q is locally 1-finite
family of open bounded subintervals of R having Lebesgue measure 1, then the averaging operator TQ
is uniformly bounded in Lp(·), namely,

‖TQf‖p(·) ≤ c7 (c3 (p)) ‖f‖p(·)
holds with c7 (c3 (p)) := 2 exp (8c3 (p)) .

Let C(R) be the class of continuous functions defined on R. For r ∈ N, we define Cr

consisting of every member f ∈ C(R) such that the derivative f (k) exists and is continuous on
R for k = 1, ..., r. We set C∞ := {f ∈ Cr for any r ∈ N}. We denote by Cc (R), the collection
of real valued continuous functions on R and support of f is compact set in R. We define
Crc := Cr ∩ Cc (R) for r ∈ N and C∞c := C∞ ∩ Cc (R). Let Lp (R), 1 ≤ p ≤ ∞ be the classical
Lebesgue space of functions on R.

Theorem 1.3. [18, Corollary 4.6.6] Let p ∈ PLog (R) and f ∈ Lp(·). Then

(1.8)
‖f‖p(·)

12c7 (c3 (p))
≤ sup
g∈Lp′(·)∩C∞c :‖g‖p′(·)≤1

∫
R

|f (x) g (x)| dx ≤ 2 ‖f‖p(·) .

Definition 1.4. Let p ∈ PLog (R). For an f ∈ Lp(·), we define

(1.9) Ff (u) :=

∫
R

(S1f) (x+ u) |G (x)| dx, u ∈ R,

where G ∈ Lp′(·) ∩ C∞c and ‖G‖p′(·) ≤ 1.

Let W r
p(·), r ∈ N, be the class of functions f ∈ Lp(·) such that derivatives f (k) exist for

k = 1, ..., r − 1, f (r−1) absolutely continuous and f (r) ∈ Lp(·).
Some properties of the function Ff (·) is given in the following theorem.

Theorem 1.4. Let p ∈ PLog (R), 0 < δ <∞, and f ∈ Lp(·). Then,
(a) the function Ff (·) defined in (1.9) is a bounded, uniformly continuous on R,
(b) (Sδf)

′
= Sδ (f ′) on R for f ∈W 1

p(·).

Main theorem of this section is as follows.

Theorem 1.5. Let p ∈ PLog (R). If f, g ∈ Lp(·) and

‖Ff‖C(R) ≤ c1 ‖Fg‖C(R)

holds with an absolute constant c1 > 0, then norm inequality

(1.10) ‖f‖p(·) ≤ c8
(
c1, p

+, c3 (p)
)
‖g‖p(·)

also holds with c8 (c1, p
+, c3 (p)) := 48c7 (c3 (p)) c1c5 (p+, c3 (p)).

Remark 1.1. Theorem 1.5 is a powerful tool to obtain norm inequalities in Lp(·) (and other non-
translation invariant Banach spaces of functions) for p ∈ PLog (R). In this work, we will use it
frequently. See for example the following result.
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As a corollaries of Theorem 1.5, we get the following two results:

Theorem 1.6. Suppose that p ∈ PLog (R), 0 < δ < ∞ and τ ∈ R. Then, the family of operators
{Sδ,τf} defined by

Sδ,τf(x) := Sδf (·+ τ) =
1

δ

∫ x+τ+δ/2

x+τ−δ/2
f (s) ds, x ∈ R

is uniformly bounded (in δ and τ ) in Lp(·), namely,

‖Sδ,τf‖p(·) ≤ 48c7 (c3 (p)) c5
(
p+, c3 (p)

)
‖f‖p(·)

holds.

Corollary 1.1. Let p ∈ PLog (R), 0 < δ <∞, and f ∈ Lp(·). If τ = δ/2, then

Sδ,δ/2f (x) =
1

δ

∫ δ

0

f (x+ t) dt = Tδf (x) ,

‖Tδf‖p(·) ≤ 48c7 (c3 (p)) c5
(
p+, c3 (p)

)
‖f‖p(·) ,(1.11)

‖(I − Tδ)rf‖p(·) ≤
(
1 + 48c7 (c3 (p)) c5

(
p+, c3 (p)

))r ‖f‖p(·) .
For the proof of these results, we will need the following Propositions.

Proposition 1.2. (a) Cc (R) and C∞c are dense subsets of Lp (R), 1 ≤ p < ∞ (Theorems 17.10 and
23.59 of [57, p. 415 and p. 575]).

(b) Cc (R) contained L∞ (R), but not dense (Remark 17.11 of [57, p.416]) in L∞ (R) .
(c) If r ∈ N and f ∈ Crc , then Sδ (f) ∈ Crc .

Proof of Proposition 1.2. (a) and (b) are known. (c) is follows from definitions. �

Proposition 1.3. ([18, Theorem 2.26]) Let B ⊆ R be a measurable set. If 1 ≤ p(x) < p+
B < ∞,

p′(x) = p(x)/(p(x)− 1), f ∈ Lp(·)(B), and g ∈ Lp′(·)(B), then Hölder’s inequality

(1.12)
∫
B

f(x)g(x)dx ≤ 2 ‖f‖p(·),B ‖g‖p′(·),B

holds.

Proof of Theorem 1.4. (a) Since Cc (R) is a dense subset ([39, Theorem 4.1 (I)]) of Lp(·), we con-
sider functionsH ∈ Cc (R) and prove that FH (·) =

∫
R

(S1H) (x+ u1) |G (x)| dx is bounded and
uniformly continuous on R, where G ∈ Lp′(·) ∩C∞c and ‖G‖p′(·) ≤ 1. Boundedness of FH (·) is
easy consequence of the Hölder’s inequality (1.12) and Theorem 1.1. On the other hand, note
that H is uniformly continuous on R, see e.g. Lemma 23.42 of [57, pp.557-558]. Take ε > 0 and
u1, u2, x ∈ R. Then, there exists a δ := δ (ε) > 0 such that

|H (x+ u1)−H (x+ u2)| ≤ ε

2 (1 + |supp (G)|)
for |u1 − u2| < δ. Then, for |u1 − u2| < δ, u1, u2 ∈ R we have

|FH (u1)− FH (u2)| =
∣∣∣∣∫

R

S1 (H (x+ u1)−H (x+ u2)) |G (x)| dx
∣∣∣∣

≤ 1

2 (1 + |supp (G)|)

∫
R

|S1 (ε)| |G (x)| dx =
ε

2 (1 + |supp (G)|)

∫
R

|G (x)| dx

≤ ε

(1 + |supp (G)|)
(1 + |supp (G)|) ‖G‖p′(·) ≤ ε.
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Now, the conclusion of Theorem 1.4 follows for the class Cc (R). For the general case f ∈ Lp(·),
there exists an H ∈ Cc (R) so that

‖f −H‖p(·) < ξ/(8c5
(
p+, c3 (p)

)
)

for any ξ > 0. Then, for this ξ,

|Ff (u1)− Ff (u2)| ≤
∣∣∣∣∫

R

S1(f −H) (x+ u1) |G (x)| dx
∣∣∣∣

+

∣∣∣∣∫
R

S1 (H (x+ u1)−H (x+ u2)) |G (x)| dx
∣∣∣∣

+

∣∣∣∣∫
R

S1(H − f) (x+ u2) |G (x)| dx
∣∣∣∣

≤ 2 ‖S1 (f −H) (·+ u1)‖p(·) +

∣∣∣∣∫
R

S1 (H (x+ u1)−H (x+ u2)) |G (x)| dx
∣∣∣∣

+ 2 ‖S1 (f −H) (·+ u2)‖p(·)
≤ 4c5

(
p+, c3 (p)

)
‖f −H‖p(·) + ξ/2 ≤ ξ/2 + ξ/2 = ξ.

As a result Ff is bounded, uniformly continuous function defined on R.
(b) can be obtained easily from definition. �

Proof of Theorem 1.5. Let f ∈ Lp(·) be non-negative. If ‖f‖p(·) = 0, then the result (1.10) is
obvious. So we assume that∞ > ‖f‖p(·) > 0. In this case

‖Ff‖C(R) ≤ c1 ‖Fg‖C(R) = c1

∥∥∥∥∫
R

S1 (g) (u+ x) |G (x)| dx
∥∥∥∥
C(R)

= c1 max
u∈R

∣∣∣∣∫
R

S1 (g) (u+ x) |G (x)| dx
∣∣∣∣

≤ 2c1 max
u∈R
‖S1 (g) (u+ ·)‖p(·) ≤ 2c5

(
p+, c3 (p)

)
c1 ‖g‖p(·) ,

where we used hypothesis, Hölder’s inequality and Theorem 1.1, respectively. On the other

hand, for any ε ∈
(

0,
‖f‖p(·)

12c7(c3(p))

)
and appropriately chosen G̃ε ∈ Lp′(·) with

∥∥∥G̃ε∥∥∥
X′
≤ 1 (see

e.g. Theorem 1.3) ∫
R

|g (x)|
∣∣∣G̃ε (x)

∣∣∣ dx ≥ 1

12c7 (c3 (p))
‖g‖p(·) − ε,

one can find

‖Ff‖C(R) ≥ |Ff (0)| ≥
∫
R

S1 (f) (x) |G (x)| dx

= S1

(∫
R

f (x) |G (x)| dx
)
≥ S1

(
1

12c7 (c3 (p))
‖f‖p(·) − ε

)
=

1

12c7 (c3 (p))
‖f‖p(·) − ε.

In the last inequality, we take as ε→ 0+ and obtain

‖Ff‖C(R) ≥
1

12c7 (c3 (p))
‖f‖p(·) .



Approximation by entire IFFD on the real line 221

Then for f ∈ Lp(·), we get

‖f‖p(·) ≤ 24c7 (c3 (p)) ‖Ff‖C(R) ≤ 24c7 (c3 (p)) c1 ‖Fg‖C(R)

≤ 48c7 (c3 (p)) c1c5
(
p+, c3 (p)

)
‖g‖p(·) .

�

Definition 1.5. For p ∈ PLog (R) , f ∈ Lp(·), 0 < δ < ∞, r ∈ N0, we can define modulus of
smoothness as

Ωr(f, δ)p(·) =‖(I − Tδ)rf‖p(·),
Ω0(f, δ)p(·) :=‖f‖p(·) =: Ωr(f, 0)p(·).

2. UNIFORM NORM ESTIMATES

In this section, let Ω ⊆ R be a measurable set and C (Ω) be the collection of functions con-
tinuous on Ω. If Ω 6= R and f ∈ C (Ω), we will extend f to whole R by “f (s) ≡ 0 whenever
s /∈ Ω.” when necessary. For f ∈ C (Ω) and δ ≥ 0, we define the modulus of smoothness as

Ωr(f, δ)C(Ω) :=‖(I − Tδ)rf‖C(Ω), r ∈ N,(2.13)

Ω0(f, ·)C(Ω) :=‖f‖C(Ω)

with Tδf of (∗).

Lemma 2.1. Let 0 ≤ δ <∞, r ∈ N and f ∈ Cr (Ω). Then

(2.14)
dr

dxr
Tδf (x) = Tδ

dr

dxr
f (x) on Ω.

The following theorem states the main properties of (2.13).

Theorem 2.7. For f ∈ C (Ω), 0 ≤ δ <∞, and r ∈ N, the following properties hold.
(1) Ωr (f, δ)C(Ω) is non-negative, non-decreasing function of δ,
(2) Ωr (f, δ)C(Ω) is sub-additive with respect to f ,
(3) ‖Tδf‖C(Ω) ≤ ‖f‖C(Ω) ,

(4) Ωr (f, δ)C(Ω) ≤ 2Ωr−1 (f, δ)C(Ω) ≤ · · · ≤ 2r−1Ω1 (f, δ)C(Ω) ≤ 2r ‖f‖C(Ω) , (***)
(5) Ωr (f, δ)C(Ω) ≤ 2−1δΩr−1 (f ′, δ)C(Ω) ≤ · · · ≤ 2−rδr

∥∥f (r)
∥∥
C(Ω)

, if f ∈ Cr (Ω) .

Let X be a Banach space with a norm ‖·‖X and r ∈ N. We define Peetre’s K-functional for
the pair X and W r

X as follows :

Kr (f, δ,X)X := inf
g∈W r

X

{
‖f − g‖X + δr

∥∥∥g(r)
∥∥∥
X

}
, δ > 0.

We set T rδ f := (Tδf)
r
.

Lemma 2.2. Let 0 ≤ δ <∞, r − 1 ∈ N, and f ∈ Cr (Ω) be given. Then

(2.15)
dr

dxr
T rδ f (x) =

d

dx
Tδ

dr−1

dxr−1
T r−1
δ f (x) on Ω.

Lemma 2.3. (see e.g.[17, p.177]) Let Ω ⊆ R be a measurable set, δ > 0, f ∈ C (Ω) and T̃δf (·) =
f (·+ δ). Then, for any r ∈ N, there holds



222 Ramazan Akgün

1

rr + 2r
≤

sup
|h|≤δ

∥∥∥(I − T̃h)r f∥∥∥
C(Ω)

Kr (f, δ, C (Ω))C(Ω)

≤ 2r.

Main result of this section is the following theorem.

Theorem 2.8. Let Ω ⊆ R be a measurable set, 0 < δ <∞, f ∈ C (Ω), r ∈ N and g ∈ C2 (Ω). Then,
the following inequalities ∥∥∥∥ ddxTδf (x)

∥∥∥∥
C(Ω)

≤ 2

δ
‖f‖C(Ω) ,∥∥∥∥ d2

dx2
Tδf (x)

∥∥∥∥
C(Ω)

≤ 2

δ

∥∥∥∥ ddxTδf
∥∥∥∥
C(Ω)

,∥∥∥∥g (x)− Tδg (x) +
δ

2

d

dx
g (x)

∥∥∥∥
C(Ω)

≤ δ2

6

∥∥∥∥ d2

dx2
g

∥∥∥∥
C(Ω)

,

(c8 (r))
−1
Kr (f, δ, C (Ω))C(Ω) ≤ ‖(I − Tδ)

r
f‖C(Ω) ≤ 2rKr (f, δ, C (Ω))C(Ω)(2.16)

are hold with c8 (1) = 36, c8 (r) = 2r (rr + (34)r) for r > 1.

As a corollary of Theorem 2.8, we can state the following result.

Proposition 2.4. If 0 < h ≤ δ <∞ and f ∈ C (Ω) , then

(2.17) ‖(I − Th) f‖C(Ω) ≤ 72 ‖(I − Tδ) f‖C(Ω) .

As a corollary of (2.16) and Lemma 2.3, we can write

Corollary 2.2. Let Ω ⊆ R be a measurable set, δ > 0, f ∈ C (Ω) and r ∈ N. Then,
(i) there holds

1 + 2−rrr ≤
sup
|h|≤δ

∥∥∥(I − T̃h)r f∥∥∥
C(Ω)

‖(I − Tδ)r f‖C(Ω)

≤ 2rc8 (r) ,

(ii) for 0 < δ1 ≤ δ2, there holds(
1 + 2−rrr

)
Ωr (f, δ1)C(Ω) ≤ c8 (r) 2rΩr (f, δ2)C(Ω) .

Remark 2.2. From Theorem 23.62 of [57, p.579], we have

(2.18) lim
δ↘0

Ω1(f, δ)C(R) = lim
δ↘0
‖(I − Tδ) f‖C(R) = 0.

Corollary 2.3. If f ∈ C (R), 0 < δ <∞, and r ∈ N, then, by (2.18) and (***),

lim
δ↘0

Ωr(f, δ)C(R) = lim
δ↘0
‖(I − Tδ)r f‖C(R) = 0

holds.

Let Gσ (X) be the subspace of entire function of exponential type σ that belonging to a Ba-
nach space X . The quantity

(2.19) Aσ(f)X := inf
g
{‖f − g‖X : g ∈ Gσ (X)}

is called the deviation of the function f ∈ X from Gσ (X).
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Let Gσ,p(·) := Gσ
(
Lp(·)

)
be the subspace of integral function f of exponential type σ that

belonging to Lp(·). The quantity

Aσ(f)p(·) := inf
g
{‖f − g‖p(·) : g ∈ Gσ,p(·)}

is the deviation of the function f ∈ Lp(·) from Gσ .

Remark 2.3. Let σ > 0, 1 ≤ p ≤ ∞, f ∈ Lp (R),

ϑ (x) :=
2

π

sin (x/2) sin(3x/2)

x2

and

J (f, σ) = σ

∫
R

f (x− u)ϑ (σu) du

be the de la Valèe Poussin operator ([13, definition given in (5.3)]). It is known (see (5.4)-(5.5) of [13])
that, if f ∈ Lp (R), 1 ≤ p ≤ ∞, then

(i) J (f, σ) ∈ G2σ (Lp (R)),
(ii) J (gσ, σ) = gσ for any gσ ∈ Gσ (Lp (R)),

(iii) ‖J (f, σ) ‖Lp(R) ≤ 3
2‖f‖Lp(R),

(iv) (J (f, σ))
(r)

= J
(
f (r), σ

)
for any r ∈ N and f ∈ (Lp (R))

r,
(v) ‖J

(
f, σ2

)
− f‖Lp(R) → 0 (as σ →∞) and hence

‖
(
J
(
f,
σ

2

))(k)

− f (k)‖Lp(R) → 0 as σ →∞

for f ∈W r
Lp(R) and 1 ≤ k ≤ r.

Corollary 2.4. Let 0 < σ <∞.
(i) If 1 ≤ p <∞, f ∈ Lp (R). Then, using (v) of the last remark, we conclude

lim
σ→∞

Aσ(f)Lp(R) = 0.

(ii) Let g : R→ C be bounded on the real axis R. Then (see [14])

lim
σ→∞

Aσ(g)C(R) = 0

if and only if g is uniformly continuous on R.

Theorem 2.9. Let r ∈ N, σ > 0, δ ∈ (0, 1) and f ∈ C(R). Then, the following Jackson type inequality

(2.20) Aσ (f)C(R) ≤ 5π4r−1c8 (r) Ωr (f, 1/σ)C(R) ,

and its weak inverse

(2.21) Ωr (f, δ)C(R) ≤
(
1 + 22r−1

)
2r−1δr

(
A0 (f)C(R) +

∫ 1/δ

1/2

ur−1Au (f)C(R) du

)
are hold.

We set bσc := max {n ∈ Z : n ≤ σ}.

Theorem 2.10. Let r ∈ N, f ∈ Xr
C(R) and σ > 0. Then

(a) (i) there exists (see [13, Proposition 25]) a gσ ∈ Gσ (C(R)) such that

Aσ (f)C(R) ≤ ‖f − gσ‖C(R) ≤
5π

4

4r

σr
‖f (r)‖C(R),
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(ii) and its weak inverse

‖f (k)‖C(R) ≤
(
1 + 22k−1

)
2k+2πkc8 (k)

∞∑
ν=0

(ν + 1)r

ν + 1
Aν (f)C(R)

holds whenever k = 1, 2, · · · , r and
∑∞
ν=0(ν + 1)r−1Aν (f)C(R) <∞.

(b) (i) the following inequality (see [29, p.397])

Aσ (f)C(R) ≤
(5π)

r

σr
Aσ

(
f (r)

)
C(R)

,

(ii) and its weak inverse

Aσ

(
f (r)

)
C(R)

≤
∥∥∥f (r) −

(
J
(
f (r),

σ

2

))∥∥∥
C(R)

≤
(
1 + 22r−1

)
2r+2πrc8 (r)

Aσ (f)C(R)

bσc∑
k=0

kr

k
+

∞∑
ν=bσc+1

(ν + 1)
r

ν + 1
Aν (f)C(R)


hold when

∑∞
ν=0(ν + 1)r−1Aν (f)C(R) <∞.

Theorem 2.11. Let r, k ∈ N, 0 < t ≤ 1/2, 0 ≤ δ <∞ and f ∈ C(R). Then
(i) there holds

Ωr+k (f, δ)C(R) ≤ 2kΩr (f, δ)C(R) ,

(ii) and its weak inverse (Marchaud inequality)

Ωr (f, t)C(R) ≤ C9 (r, k) tr
∫ 1

t

Ωr+k (f, u)C(R)

ur+1
du

with C9 (r, k) = 10π
(
1 + 22r−1

)
22r+3kc8 (r + k) .

Theorem 2.12. Let σ > 0 and f ∈ C(R). If
∑∞
ν=0(ν+ 1)k−1Aν (f)C(R) <∞, holds for some k ∈ N,

then
(i) the following Jackson type inequality for derivatives

Aσ (f)C(R) ≤ (5π)
k+1

c8 (r)σ−kΩr

(
f (k), σ−1

)
C(R)

,

(ii) and its weak inverse (see Theorem 6.3.4 of [29, p.343])

Ωr

(
f (k),

1

σ

)
C(R)

≤ 22k+r+1

 1

σr

bσc∑
ν=0

(ν + 1)
r+k

ν + 1
Aν (f)C(R) +

∞∑
ν=bσc+1

νk

ν
Aν (f)C(R)


are hold.

2.1. Proofs of the results of section 2.

Proof of Lemma 2.1. For δ = 0 (2.14) is obvious. For 0 < δ <∞, and r = 1, one can find

d

dx
Tδf(x) =

d

dx

(
1

δ

∫ δ

0

f (x+ t) dt

)
=

1

δ

∫ δ

0

d

dx
f (x+ τ) dτ(2.22)

=
1

δ

∫ δ

0

(
d

dx
f

)
(x+ τ) dτ = Tδ

d

dx
f(x).

For r > 1, (2.14) follows from (2.22). �
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Proof of Theorem 2.7. (1)-(3) is known. (4) is seen from binomial expansion. To prove (5), it is
sufficient to note inequality (see [10])

‖(I − Tδ) f‖C(Ω) ≤ 2−1δ ‖f ′‖C(Ω) , δ > 0

for f ∈ C1 (Ω). Then

‖(I − Tδ)r f‖C(Ω) ≤ 2−1δ
∥∥∥(I − Tδ)r−1

f ′
∥∥∥
C(Ω)

≤ · · · ≤ 2−rδr
∥∥∥f (r)

∥∥∥
C(Ω)

for f ∈ Cr (Ω), because
[(I − Tδ)r f ]

′
= (I − Tδ)r f ′.

�

Proof of Lemma 2.2. For r = 2, by Lemma 2.1,

d2

dx2
T 2
δ f =

d

dx

d

dx
TδTδf =

d

dx

d

dx
TδΨ, [Ψ := Tδf ]

=
d

dx
Tδ

d

dx
Ψ =

d

dx
Tδ

d

dx
Tδf

and the result (2.15) follows. For r = 3, by Lemma 2.1,

d3

dx3
T 3
δ f =

d

dx

d2

dx2
T 2
δ Tδf =

d

dx

d2

dx2
T 2
δ Ψ =

d

dx

d

dx
Tδ

d

dx
TδΨ

=
d

dx

d

dx
Tδ

d

dx
Tδ

2f =
d

dx
Tδ

d

dx

d

dx
Tδ

2f =
d

dx
Tδ

d2

dx2
T 2
δ f

and (2.15) holds. Let (2.15) holds for k ∈ N:

(2.23)
dk

dxk
T kδ f =

d

dx
Tδ

dk−1

dxk−1
T k−1
δ f.

Then, for k + 1, (2.23) and Lemma 2.1 implies that

dk+1

dxk+1
T k+1
δ f =

d

dx

dk

dxk
T kδ Tδf =

d

dx

dk

dxk
T kδ Ψ =

d

dx

d

dx
Tδ

dk−1

dxk−1
T k−1
δ Ψ

=
d

dx

d

dx
Tδ

dk−1

dxk−1
T kδ f =

d

dx
Tδ

d

dx

dk−1

dxk−1
T kδ f =

d

dx
Tδ

dk

dxk
T kδ f.

�

Proof of Theorem 2.8. For f ∈ C (Ω), we have∥∥∥∥ ddxTδf (x)

∥∥∥∥
C(Ω)

=

∥∥∥∥∥ ddx 1

δ

∫ δ

0

f (x+ t) dt

∥∥∥∥∥
C(Ω)

=

∥∥∥∥∥1

δ

d

dx

∫ x+δ

x

f (τ) dτ

∥∥∥∥∥
C(Ω)

=

∥∥∥∥1

δ
(f (x+ δ)− f (x))

∥∥∥∥
C(Ω)

≤ 2

δ
‖f‖C(Ω) .(2.24)

Inequality (2.24) also implies∥∥∥∥∥
(
d

dx

)2

Tδf (x)

∥∥∥∥∥
C(Ω)

≤ 2

δ

∥∥∥∥ ddxTδf
∥∥∥∥
C(Ω)

for f ∈ C (Ω). If f ∈ C2 (Ω), one can get

(2.25)
∥∥∥∥f (x)− Tδf (x) +

δ

2

d

dx
f (x)

∥∥∥∥
C(Ω)

≤ δ2

6

∥∥∥∥ d2

dx2
f

∥∥∥∥
C(Ω)

.
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To obtain (2.25), we will use the Taylor formula

f (x+ t) = f(x) + t
d

dx
f(x) +

t2

2

d2

dx2
f(ξ)

for some ξ ≤ [x, x+ t]. Then, integrating the last equation with respect to t

1

δ

∫ δ

0

f (x+ t) dt = f(x) +
1

δ

∫ δ

0

tdt
d

dx
f(x) +

1

2

1

δ

∫ δ

0

t2dt
d2

dx2
f(ξ),

Tδf (x) = f(x) +
δ

2

d

dx
f (x) +

δ2

6

d2

dx2
f(ξ)

and (2.25) holds.
Now, (2.24) and (2.25) imply that

(2.26) (1/36)K1 (f, δ, C (Ω))C(Ω) ≤ ‖(I − Tδ) f‖C(Ω) ≤ 2K1 (f, δ, C (Ω))C(Ω) .

Firstly, let us prove the right hand side of (2.26). For any g ∈ C1 (Ω)

‖f − Tδf‖C(Ω) ≤ ‖f − g‖C(Ω) + ‖g − Tδg‖C(Ω) + ‖Tδ (g − f)‖C(Ω)

≤ 2 ‖f − g‖C(Ω) +
δ

2
‖g′‖C(Ω) ≤ 2K1 (f, δ, C (Ω))C(Ω) .

For the left hand side of inequality (2.26), we need inequalities∥∥f − T 2
δ f
∥∥
C(Ω)

≤ 2 ‖f − Tδf‖C(Ω) ,(2.27)

δ

∥∥∥∥ ddxT 2
δ f

∥∥∥∥
C(Ω)

≤ 34 ‖f − Tδf‖C(Ω) .(2.28)

First we prove (2.27). Then∥∥f − T 2
δ f
∥∥
C(Ω)

≤ ‖f − Tδf‖C(Ω) + ‖Tδf − TδTδf‖C(Ω) ≤ 2 ‖f − Tδf‖C(Ω) .

Now, we consider inequality (2.28). In (2.25), we replace f by T 2
δ f and obtain∥∥∥∥T 2

δ f (x)− TδT 2
δ f (x) +

δ

2

d

dx
T 2
δ f (x)

∥∥∥∥
C(Ω)

≤ δ2

6

∥∥∥∥ d2

dx2
T 2
δ f

∥∥∥∥
C(Ω)

.

On the other hand, by (2.24),∥∥∥∥ d2

dx2
T 2
δ f

∥∥∥∥
C(Ω)

≤ 2

δ

∥∥∥∥ ddxTδf
∥∥∥∥
C(Ω)

≤ 2

δ

{∥∥∥∥ ddxT 2
δ f

∥∥∥∥
C(Ω)

+

∥∥∥∥ ddxTδ (Tδf − f)

∥∥∥∥
C(Ω)

}

≤ 2

δ

∥∥∥∥ ddxT 2
δ f

∥∥∥∥
C(Ω)

+
4

δ2
‖Tδf − f‖C(Ω) .
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Hence,

δ

2

∥∥∥∥ ddxT 2
δ f

∥∥∥∥
C(Ω)

≤
∥∥∥∥T 2

δ f − TδT 2
δ f −

δ

2

d

dx
T 2
δ f

∥∥∥∥
C(Ω)

+
∥∥T 2

δ f − TδT 2
δ f
∥∥
C(Ω)

≤ δ2

6

∥∥∥∥ d2

dx2
T 2
δ f

∥∥∥∥
C(Ω)

+
∥∥T 2

δ f − TδT 2
δ f
∥∥
C(Ω)

≤ δ2

6

2

δ

{∥∥∥∥ ddxT 2
δ f

∥∥∥∥
C(Ω)

+
2

δ
‖Tδf − f‖C(Ω)

}
+
∥∥T 2

δ f − f
∥∥
C(Ω)

+
∥∥Tδ (T 2

δ f − f
)∥∥
C(Ω)

+ ‖Tδf − f‖C(Ω) .

Then

δ

6

∥∥∥∥ ddxT 2
δ f

∥∥∥∥
C(Ω)

≤ 17

3
‖Tδf − f‖C(Ω) ,

δ

∥∥∥∥ ddxT 2
δ f

∥∥∥∥
C(Ω)

≤ 34 ‖Tδf − f‖C(Ω) .

To finish proof of the left hand side of inequality (2.16) with r = 1, we proceed as

K1 (f, δ, C (Ω))C(Ω) ≤
∥∥f − T 2

δ f
∥∥
C(Ω)

+ δ

∥∥∥∥ ddxT 2
δ f

∥∥∥∥
C(Ω)

≤ 36 ‖Tδf − f‖C(Ω) .

The proof of (2.16) with r = 1 now completed.
Let r > 1 be a natural number and we define

g (·) =

r∑
l=1

(−1)
l−1

(
r

l

)
T 2rl
δ f (·) .

Then,

‖f − g‖C(Ω) =
∥∥∥(I − T 2r

δ

)r
f
∥∥∥
C(Ω)

≤ (2r)r ‖(I − Tδ)r f‖C(Ω) .

On the other hand,

δr
∥∥∥∥ drdxr T 2r

δ f

∥∥∥∥
C(Ω)

= δr−1δ

∥∥∥∥ ddxT 2
δ

(
dr−1

dxr−1

)
T 2r−2
δ f

∥∥∥∥
C(Ω)

≤ 34δr−1

∥∥∥∥(I − Tδ)
dr−1

dxr−1
T 2r−2
δ f

∥∥∥∥
C(Ω)

≤ (34)
2
δr−2

∥∥∥∥(I − Tδ)2 dr−2

dxr−2
T 2r−4
δ f

∥∥∥∥
C(Ω)

≤ · · · ≤ (34)r ‖(I − Tδ)r f‖C(Ω) .

Then

δr
∥∥∥∥ drdxr T 2rl

δ f

∥∥∥∥
C(Ω)

≤ (34)r
∥∥∥(I − Tδ)r T 2r(l−1)

δ f
∥∥∥
C(Ω)

= (34)r
∥∥∥T 2r(l−1)

δ (I − Tδ)r f
∥∥∥
C(Ω)

≤ (34)r ‖(I − Tδ)r f‖C(Ω) .
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Using the last inequality, we find

δr
∥∥∥∥ drdxr g

∥∥∥∥
C(Ω)

= δr

∥∥∥∥∥ drdxr
r∑
l=1

(−1)
l−1

(
r

l

)
T 2rl
δ f

∥∥∥∥∥
C(Ω)

= δr

∥∥∥∥∥
r∑
l=1

(−1)
l−1

(
r

l

)
dr

dxr
T 2rl
δ f

∥∥∥∥∥
C(Ω)

≤
r∑
l=1

∣∣∣∣(rl
)∣∣∣∣ δr ∥∥∥∥ drdxr T 2rl

δ f

∥∥∥∥
C(Ω)

≤ 2r(34)r ‖(I − Tδ)r f‖C(Ω)

and

Kr (f, δ, C (Ω))C(Ω) ≤ ‖f − g‖C(Ω) + δr
∥∥∥∥ drdxr g

∥∥∥∥
C(Ω)

≤ 2r (rr + (34)r) ‖(I − Tδ)r f‖C(Ω) .

For the opposite direction of the last inequality, when g ∈W r
p(·),

Ωr (f, δ)C(Ω) ≤ 2r ‖f − g‖C(Ω) + Ωr (g, δ)C(Ω)

≤ 2r ‖f − g‖C(Ω) + 2−rδr
∥∥∥g(r)

∥∥∥
C(Ω)

,(2.29)

and taking infimum on g ∈W r
p(·) in (2.29), we get

Ωr (f, δ)C(Ω) ≤ 2rKr (f, δ, C (Ω))C(Ω) .

�

Proof of Proposition 2.4. Let f ∈ C (Ω). Then

‖(I − Th) f‖C(Ω) ≤ 2K1 (f, h, C (Ω))C(Ω)

≤ 2K1 (f, δ, C (Ω))C(Ω) ≤ 72 ‖(I − Tδ) f‖C(Ω) .

�

Proof of Theorem 2.9. (i) We consider Jackson type inequality (2.20). For any g ∈ Xr
C(R), we have

Aσ (f)C(R) ≤ Aσ (f − g)C(R) +Aσ (g)C(R)

≤ ‖f − g‖C(R) +
5π

4

4r

σr

∥∥∥∥ drdxr g
∥∥∥∥
C(R)

.

Taking infimum on g ∈ Xr
C(R) in the last inequality, we have

Aσ (f)C(R) ≤
5π4r

4
Kr

(
f,

1

σ
, C(R)

)
C(R)

≤ 5π

4
c8 (r) 4r

∥∥∥(I − T 1
σ

)r
f
∥∥∥
C(R)

.

(ii) We give the proof of inverse estimate (2.21). Let σ > 0 and gσ ∈ Gσ (C(R)) be the best
approximating IFFD of f ∈ C(R). Suppose that r ∈ N, 0 < δ < 1. Then, there exists a m ∈ N
such that b1/δc = 2m−1. Hence, 2m−1 ≤ 1/δ < 2m. Now, we have

Ωr (f, δ)C(R) ≤ Ωr (f − g2m , δ)C(R) + Ωr (g2m , δ)C(R)

≤ 2rA2m (f)C(R) + 2−rδr
∥∥∥∥ drdxr g2m

∥∥∥∥
C(R)

.
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On the other hand∥∥∥∥ drdxr g2m

∥∥∥∥
C(R)

=

∥∥∥∥∥
m∑
γ=1

(
dr

dxr
g2γ −

dr

dxr
g2γ−1

)
+

(
dr

dxr
g1 −

dr

dxr
g0

)∥∥∥∥∥
C(R)

≤
m∑
γ=1

2γr ‖g2γ − g2γ−1‖C(R) + ‖g1 − g0‖C(R)

≤ A0 (f)C(R) +A1 (f)C(R) +

m∑
γ=1

2γr
(
A2γ (f)C(R) +A2γ−1 (f)C(R)

)
≤ A0 (f)C(R) + 2rA1 (f)C(R) + 2

m∑
γ=1

2γrA2γ−1 (f)C(R)

≤ 2

(
A0 (f)C(R) +

m∑
γ=1

2γrA2γ−1 (f)C(R)

)
.

Then,

δr

2r

∥∥∥∥ drdxr g2m

∥∥∥∥
C(R)

≤ 2

2r
δr

(
A0 (f)C(R) +

m∑
γ=1

2γrAqγ−1 (f)C(R)

)
.

Hence,

Ωr (f, δ)C(R) ≤
2(m+1)r

2mr
A2m (f)C(R) +

2

2r
δr

(
A0 (f)C(R) +

m∑
γ=1

2γrAqγ−1 (f)C(R)

)

≤
(
1 + 22r−1

)
21−r22rδr

A0 (f)C(R) +

m∑
γ=1

2γ−1∫
2γ−2

ur−1Au (f)C(R) du


≤
(
1 + 22r−1

)
2r−1δr

(
A0 (f)C(R) +

∫ 2m−1

1/2

ur−1Au (f)C(R) du

)

≤
(
1 + 22r−1

)
2r−1δr

(
A0 (f)C(R) +

∫ 1/δ

1/2

ur−1Au (f)C(R) du

)
.

�

Proof of Theorem 2.10. Results a) (i) and b) (i) are known. Let us consider a) (ii). Suppose that
∞∑
ν=0

(ν+1)r

ν+1 Aν (f)C(R) <∞ and k ∈ {1, 2, · · · , r}. Then, using Nikolskii inequality, one gets

‖f (k)‖C(R) = lim
σ→∞

‖J
(
f (k),

σ

2

)
‖C(R) = lim

σ→∞
‖
(
J
(
f,
σ

2

))(k)

‖C(R)

≤ πk

2k

sup
|h|≤δ

∥∥∥∥(I − T̃h)k (J (f, σ2 ))∥∥∥∥
C(R)

δk
≤ πk

2k

2kc8 (k) Ωk
(
J
(
f, σ2

)
, δ
)
C(R)

δk
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≤
(
1 + 22k−1

)
2k+2πkc8 (k)

b1/δc∑
ν=0

(ν + 1)k

ν + 1
Aν

(
J
(
f,
σ

2

))
C(R)

≤
(
1 + 22k−1

)
2k+2πkc8 (k)

∞∑
ν=0

(ν + 1)r

ν + 1
Aν (f)C(R) .

Note that (ii) b) is follow from (i) b). �

Proof of Theorem 2.11. (i) follows from properties of modulus of smoothness. We consider Mar-
chaud type inequality (ii). Let 0 < t < 1/2. Assume that 2m−1 ≤ 1

t < 2m for some m ∈ N.
Then,

Ωr(f, t)C(R) ≤
(
1 + 22r−1

)
21−rtr

(
m∑
ν=1

2νrA2ν−1 (f)C(R) +A0 (f)C(R)

)

≤ 5π

2

(
1 + 22r−1

)
2r+2kc8 (r + k) tr

(
A0 (f)C(R) +

m∑
ν=1

2νrΩk+r(f,
1

2ν
)C(R)

)

≤ 5π

2

(
1 + 22r−1

)
22r+3kc8 (r + k) tr

Ωk+r(f,
1

2
)C(R) +

m∑
ν=1

2−v+1∫
2−v

Ωk+r(f, u)C(R)

ur+1
du


≤ 5π

2

(
1 + 22r−1

)
22r+3kc8 (r + k) tr

Ωk+r(f,
1

2
)C(R) +

2−m+1∫
2−1

Ωk+r(f, u)C(R)

ur+1
du


≤ 5π

(
1 + 22r−1

)
22r+3kc8 (r + k) tr

 1∫
1/2

Ωk+r(f, u)C(R)

ur+1
du+

1∫
t

Ωk+r(f, u)C(R)

ur+1
du


≤ 10π

(
1 + 22r−1

)
22r+3kc8 (r + k) tk

1∫
t

Ωk+r(f, u)C(R)

ur+1
du.

�

Using this section’s estimates and Transference result Theorem 1.5, in the next section we
will give several results on difference operator ‖(I − Tδ)r f‖p(·) and approximation by IFFD in
Lp(·).

3. APPLICATIONS ON DIFFERENCE OPERATOR AND APPROXIMATION

Notation . Since the 48c7 (c3 (p)) c5 (p+, c3 (p)) of (1.11) will be used very frequently in the next parts,
we will set c10:=c10 (p+, c3 (p)):=48c7 (c3 (p)) c5 (p+, c3 (p)) .

Lemma 3.4. Let p ∈ PLog (R), r ∈ N, and 0 < δ <∞. Then

‖(I − Tδ)r f‖p(·) ≤ c
r
102−rδr

∥∥∥f (r)
∥∥∥
p(·)

, f ∈W r
Lp(·)

hold.

We will use notation Kr (f, δ, p (·)) := Kr

(
f, δ, Lp(·)

)
Lp(·)

for r ∈ N, p ∈ PLog (B), δ > 0 and
f ∈ Lp(·) (B).

As a corollary of Transference result, we can obtain the following Lemma.
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Lemma 3.5. Let 0 < h ≤ δ <∞, p ∈ PLog (R) and f ∈ Lp(·). Then

(3.30) ‖(I − Th) f‖p(·) ≤ c8
(
72, p+, c3 (p)

)
‖(I − Tδ) f‖p(·)

holds.

In the following theorem, we show thatK-functionalKr(f, δ, p (·)) and Ωr(f, δ)p(·) are equiv-
alent.

Theorem 3.13. Let p(·) ∈ PLog (R). If Lp(·), then the K-functional Kr (f, δ, p (·)) and the modulus
Ωr (f, δ)p(·) are equivalent, namely,

1

48c7 (c3 (p)) 2rc5 (p+, c3 (p))
≤ Kr (f, δ, p (·))

Ωr(f, δ)p(·)

≤ 48c7 (c3 (p)) {(2r)r + 2r(34)r} c5
(
p+, c3 (p)

)
.

Theorem 3.14. For p(·) ∈ PLog (R), f, g ∈ Lp(·) and δ > 0, the modulus of smoothness Ωr (f, δ)p(·)
has the following properties:

(1) Ωr (f, δ)p(·) is non-negative; non-decreasing function of δ.
(2) For f, g ∈ Lp(·) and δ > 0,

(3.31) Ωr(f + g, δ)p(·) ≤ Ωr(f, δ)p(·) + Ωr(g, δ)p(·).

(3) For f ∈ Lp(·),

(3.32) lim
δ→0

Ωr(f, δ)p(·) = 0.

As a corollary of Theorem 3.13,

Corollary 3.5. Let p(·) ∈ PLog (R). If δ, λ ∈ (0, 1), f ∈ Lp(·), then

Ωr (f, λδ)p(·)

(1 + bλc)r Ωr (f, δ)p(·)
≤ (48)

2
c27 (c3 (p)) 2rc25

(
p+, c3 (p)

)
((2r)r + 2r(34)r)

holds.

Theorem 3.15. Let p(·) ∈ PLog (R), r ∈ N, σ > 0 and f ∈ Lp(·). Then,

(3.33) Aσ (f)p(·) ≤ c11

∥∥(I − T1/σ

)r
f
∥∥
p(·)

with c11 := c11(r, p+, c3 (p)) := 30π8rc5 (p+, c3 (p)) c7 (c3 (p)) c8 (r).

Now, we present the inverse theorem.

Theorem 3.16. Let p(·) ∈ PLog (R), r ∈ N, δ ∈ (0, 1) and f ∈ Lp(·). Then,

Ωr (f, δ)p(·) ≤ c12δ
r

A0 (f)p(·) +

1/δ∫
1/2

ur−1Au/2 (f)p(·) du


holds with c12 := c12 (r, p+, c3 (p)) := c1312c7 (c3 (p))

(
1 + 22r−1

)
2r, where

c13 := c13 (p+, c3 (p)) := 2c5 (p+, c3 (p)) (1 + 72c7 (c3 (p)) c5 (p+, c3 (p))) .

In this section, we obtain Marchaud inequality.
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Theorem 3.17. Let r, k ∈ N, p ∈ PLog (R), f ∈ Lp(·) and t ∈ (0, 1/2). Then,

Ωr (f, t)p(·) ≤ c14t
r

∫ 1

t

Ωr+k (f, u)p(·)

ur+1
du

holds with c14 := c14(r, k, p+, c3 (p)) := 48c7 (c3 (p))C9 (r, k) c5 (p+, c3 (p)) .

Theorem 3.18. Let p ∈ PLog (R), r ∈ N and f ∈ Lp(·). If
∞∑
ν=0

νk−1Aν/2 (f)p(·) <∞

holds for some k ∈ N, then f (k) ∈ Lp(·) and

(3.34) Ωr

(
f (k),

1

σ

)
p(·)
≤ c14

 1

σr

bσc∑
ν=0

(ν + 1)
r+k−1

Aν/2 (f)p(·) +

∞∑
ν=bσc+1

νk−1Aν/2 (f)p(·)


with c14 := c14(r, k, p+, c3 (p)) := 48c7 (c3 (p)) c5 (p+, c3 (p)) 22k+r+2.

3.1. Proofs of the results of section 3.

Proof of Lemma 3.4. We note that (see [10]) the following inequality

(3.35) ‖(I − Tδ) f‖p(·) ≤ 2−1c10δ ‖f ′‖p(·) , δ > 0

holds for f ∈ Lp(·). Then

Ωr (f, δ)p(·) = ‖(I − Tδ)r f‖p(·) ≤ ... ≤ 2−rcr10δ
r
∥∥∥f (r)

∥∥∥
p(·)

, δ > 0

for f ∈W r
Lp(·)

. �

Proof of Theorem 3.13. For any g ∈W r
Lp(·)

(Ω), we have Fg ∈ Cr (Ω). Since Ff is linear in f,

(I − Tδ)r Ff = F(I−Tδ)rf and (Fg)
(r)

= Fg(r) ,

using Theorem 1.5 we obtain

‖(I − Tδ)r f‖p(·) ≤ 24c7 (c3 (p))
∥∥F(I−Tδ)rf

∥∥
C(Ω)

= 24c7 (c3 (p)) ‖(I − Tδ)r Ff‖C(Ω)

≤ 24c7 (c3 (p)) 2rKr (Ff , δ, C (Ω))C(Ω)

≤ 24c7 (c3 (p)) 2r
{
‖Ff − Fg‖C(Ω) + δr

∥∥∥(Fg)
(r)
∥∥∥
C(Ω)

}
= 24c7 (c3 (p)) 2r

{∥∥F(f−g)
∥∥
C(Ω)

+ δr
∥∥Fg(r)∥∥C(Ω)

}
≤ 48c7 (c3 (p)) 2rc5

(
p+, c3 (p)

){
‖f − g‖p(·) + δr

∥∥∥g(r)
∥∥∥
p(·)

}
.

Taking infimum and considering definition of K-functional one gets,

‖(I − Tδ)r f‖p(·) ≤ 48c7 (c3 (p)) 2rc5
(
p+, c3 (p)

)
Kr (f, δ, p (·)) .

Now, we consider the opposite direction of the last inequality. For

g (·) =

r∑
l=1

(−1)
l−1

(
r

l

)
T 2rl
δ f (·) ,
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we have

Kr (f, δ, p (·)) ≤ ‖f − g‖p(·) + δr
∥∥∥∥ drdxr g

∥∥∥∥
p(·)

≤ 24c7 (c3 (p))
{∥∥F(f−g)

∥∥
C(Ω)

+ δr
∥∥Fg(r)∥∥C(Ω)

}
= 24c7 (c3 (p))

{
‖Ff − Fg‖C(Ω) + δr

∥∥∥(Fg)
(r)
∥∥∥
C(Ω)

}

≤ 24c7 (c3 (p))


∥∥∥(I − T 2r

δ

)r
Ff

∥∥∥
C(Ω)

+δr

∥∥∥∥∥∥
(

r∑
l=1

(−1)
l−1

(
r

l

)
T 2rl
δ Ff

)(r)
∥∥∥∥∥∥
C(Ω)


= 24c7 (c3 (p))

{∥∥∥(I − T 2r
δ

)r
Ff

∥∥∥
C(Ω)

+

r∑
l=1

∣∣∣∣(rl
)∣∣∣∣ δr ∥∥∥(T 2rl

δ Ff
)(r)∥∥∥

C(Ω)

}
≤ 24c7 (c3 (p))

{
(2r)r ‖(I − Tδ)r Ff‖C(Ω) + 2r(34)r ‖(I − Tδ)r Ff‖C(Ω)

}
= 24c7 (c3 (p)) {(2r)r + 2r(34)r}

∥∥F(I−Tδ)rf
∥∥
C(Ω)

≤ 48c7 (c3 (p)) {(2r)r + 2r(34)r} c5
(
p+, c3 (p)

)
‖(I − Tδ)r f‖p(·) .

�

Proof of Theorem 3.14. Properties (1) and (2), by definition of Ωr (f, δ)p(·) and the triangle in-
equality of Lp(·) are clearly valid. By using [21, Theorem 10.1] and [35, Lemma 2], the relation
(3.32) is satisfied. �

Proof of Corollary 3.5. We have

Ωr (f, λδ)p(·)

(1 + bλc)r Ωr (f, δ)p(·)
≤ 48c7 (c3 (p)) 2rc5 (p+, c3 (p))

(1 + bλc)r
Kr (f, λδ, p (·))

Ωr (f, δ)p(·)

≤ (48)
2
c27 (c3 (p)) 2rc25 (p+, c3 (p))

(1 + bλc)r
(1 + bλc)r

1
{(2r)r + 2r(34)r}

= (48)
2
c27 (c3 (p)) 2rc25

(
p+, c3 (p)

)
{(2r)r + 2r(34)r} .

�

Proof of Theorem 3.15. First we obtain

(3.36) A2σ (f)p(·) ≤ 30π8rc5
(
p+, c3 (p)

)
c7 (c3 (p)) c8 (r)

∥∥(I − T1/(2σ)

)r
f
∥∥
p(·)

and (3.33) follows from (3.36). Let gσ be an exponential type entire function of degree ≤ σ,
belonging to C(R), as best approximation of Ff ∈ C(R). Since FVσf = VσFf and Vσgσ = gσ ,
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there holds

A2σ (f)p(·) ≤ ‖f − Vσf‖p(·) ≤ 24c7 (c3 (p)) ‖Ff−Vσf‖C(R)

= 24c7 (c3 (p)) ‖Ff − VσFf‖C(R)

= 24c7 (c3 (p)) ‖Ff − gσ + gσ − VσFf‖C(R)

= 24c7 (c3 (p)) ‖Ff − gσ + Vσgσ − VσFf‖C(R)

≤ 24c7 (c3 (p)) (Aσ (Ff )C(R) +
3

2
Aσ (Ff )C(R))

= 12c7 (c3 (p))Aσ (Ff )C(R) .

For any g ∈W r
C(R)

Aσ (u)C(R) ≤ Aσ (u− g)C(R) +Aσ (g)C(R)

≤ ‖u− g‖C(R) +
5π

4

4r

σr

∥∥∥∥ drdxr g
∥∥∥∥
C(R)

≤ 5π4r

4
Kr

(
u,

1

σ
, C(R)

)
C(R)

≤ 5π8r

4
Kr

(
u,

1

2σ
, C(R)

)
C(R)

≤ 5π8r

4
c8 (r)

∥∥∥(I − T 1
2σ

)r
u
∥∥∥
C(R)

.

Therefore,

A2σ (f)p(·) ≤ 12c7 (c3 (p))Aσ (Ff )C(R)

≤ 15π8rc7 (c3 (p)) c8 (r)
∥∥∥(I − T 1

2σ

)r
Ff

∥∥∥
C(R)

= 15π8rc7 (c3 (p)) c8 (r)
∥∥∥F(I−T1/(2σ))

r
f

∥∥∥
C(R)

≤ 30π8rc5
(
p+, c3 (p)

)
c7 (c3 (p)) c8 (r)

∥∥(I − T1/(2σ)

)r
f
∥∥
p(·) .

�

Proof of Theorem 3.16. Let gσ be an exponential type entire function of degree ≤ σ, belonging to
Lp(·), as best approximation of f ∈ Lp(·). Then

Ωr (f, δ)p(·) = ‖(I − Tδ)r f‖p(·)
≤ 24c7 (c3 (p))

∥∥F(I−Tδ)rf
∥∥
C(R)

= 24c7 (c3 (p)) ‖(I − Tδ)r Ff‖C(R)

≤ 12c7 (c3 (p))
(
1 + 22r−1

)
2rδr

(
A0 (Ff )C(R) +

∫ 1/δ

1/2

ur−1Au (Ff )C(R) du

)

≤ c1312c7 (c3 (p))
(
1 + 22r−1

)
2rδr

(
A0 (f)p(·) +

∫ 1/δ

1/2

ur−1Au/2 (f)p(·) du

)
,

because

A2σ (Ff )C(R) ≤ ‖Ff − VσFf‖C(R) = ‖Ff−Vσf‖C(R) ≤ 2c5
(
p+, c3 (p)

)
‖f − Vσf‖p(·)
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= 2c5
(
p+, c3 (p)

)
‖f − gσ + gσ − Vσf‖p(·)

≤ 2c5
(
p+, c3 (p)

) (
‖f − gσ‖p(·) + ‖Vσgσ − Vσf‖p(·)

)
≤ 2c5

(
p+, c3 (p)

) (
‖f − gσ‖p(·) + 72c7 (c3 (p)) c5

(
p+, c3 (p)

)
‖gσ − f‖p(·)

)
= 2c5

(
p+, c3 (p)

) (
1 + 72c7 (c3 (p)) c5

(
p+, c3 (p)

))
Aσ (f)

p(·)
.

�

Proof of Theorem 3.17. Let gσ be an exponential type entire function of degree ≤ σ, belonging to
Lp(·), as best approximation of f ∈ Lp(·). Then

Ωr (f, t)p(·) = ‖(I − Tt)r f‖p(·) ≤ 24c7 (c3 (p))
∥∥F(I−Tt)rf

∥∥
C(R)

= 24c7 (c3 (p)) ‖(I − Tt)r Ff‖C(R)

≤ 24c7 (c3 (p))C9 (r, k) tr
∫ 1

t

∥∥∥(I − Tu)
r+k

Ff

∥∥∥
C(R)

ur+1
du

= 24c7 (c3 (p))C9 (r, k) tr
∫ 1

t

∥∥∥F(I−Tu)r+kf

∥∥∥
C(R)

ur+1
du

≤ 48c7 (c3 (p))C9 (r, k) c5
(
p+, c3 (p)

)
tr
∫ 1

t

∥∥∥(I − Tu)
r+k

f
∥∥∥
p(·)

ur+1
du

= 48c7 (c3 (p))C9 (r, k) c5
(
p+, c3 (p)

)
tr
∫ 1

t

Ωr+k (f, u)p(·)

ur+1
du.

�

Proof of Theorem 3.18. Proof of (3.34) is similar to that of proof of Theorem 3.17. �
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