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Abstract— Refactoring is a maintenance task that refers to the process of restructuring software source code to enhance its 

quality without affecting its external behavior. Manually inspecting and analyzing the source code of the system under 

consideration to identify refactoring opportunities are time consuming and costly process. Researchers typically propose fully 

or semi-automated techniques to predict or identify the refactoring opportunities. In the present study, we demonstrate an 

application for a proposed framework that assesses the quality of the studies reported in the published primary studies (PSs) 

on the refactoring prediction/ identification techniques. The framework is applied on 47 selected PSs to assess the quality of 

the studies based on their design, conduct, analysis, and conclusion. We used the results to comment on the weakness of the 

existing PSs and the issues that have to be considered with much attention in the future studies.   

Keywords— Refactoring activity, refactoring opportunity, object-oriented code, study quality assessment. 

1. INTRODUCTION 
 

Refactoring refers to altering the internal structure of an 

existing object-oriented software code without changing its 

external behavior [21] and it aims at improving several 

quality attributes, of a considered code, such as testability 

and maintainability [21]. Fowler [21] defined several 

refactoring scenarios and explained how they can be 

applied. Researchers have identified four stages during 

which refactoring process is typically carried out [33, 40, 

53]. In the first stage, the refactoring candidates are 

determined. In the second stage, the advantage and cost of 

carrying out the refactoring are analyzed. In the third stage, 

the consequent code modification is performed, and in the 

last stage, the performed code modification is examined for 

its preservation for the external software behavior. In this 

paper, we are interested in assessing the quality of studies 

that propose or apply techniques related to the first 

refactoring stage. Assessing the quality of studies related to 

techniques applied during other refactoring stages can be 

considered in future researches. This paper considers 47 

papers identified by Al Dallal [2] as the PSs that 

empirically evaluate techniques for identifying refactoring 

opportunities. An assessment framework proposed by Al 

Dallal [2] is applied to assess the quality of selected PSs in 

terms of their design, conduct, analysis, and conclusion. 

The obtained results are useful for software engineers to 

select the best available techniques once performing 

refactoring. In addition, the framework is useful for 

researchers in the area of software refactoring as it guides 

them to perform and report studies that are potentially 

practical and trustable. This paper extends the conference 

version paper [54] that introduces the considered 

framework but with less details. 

This paper is organized as follows. Section 2 provides an 

overview of the assessment framework. Section 3 reports 

and discusses the assessment results. Finally, Section 4 

presents our conclusions. 

2. ASSESSMENT FRAMEWORK 
 

We followed the guidelines suggested by Kitchenham and 

Charters [28] to construct the quality checklist given in 

Table 1. The checklist includes 18 quality assessment 

questions, considers several quality aspects, including the 

study design, conduct, analysis, and conclusion, and was 

applied to assess the corresponding quality of each of the 

PSs considered. Each question is evaluated as "Yes", 

"Partially", or "No" with a corresponding score of 1, 0.5, or 

0, respectively. For example, regarding QA1, the score was 

given as "0" if the author did not mention which 

identification technique was applied in the study, a score of 

"0.5" was reported if the author indicated which technique 

was applied but did not describe the technique or described 

the technique unclearly, and a score of "1" was given if the 

author clearly described the applied technique. For QA2, 
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the score was given as "0" if the author did not mention 

which refactoring activities were applied, a score of "0.5" 

was reported if the author reported the applied refactoring 

activities but did not define them, and a score of "1" was 

given if the author stated and defined the applied 

refactoring activities. Some of the questions were not 

applicable to some PSs; these PSs were not evaluated for 

those questions. For example, some PSs did not use any 

statistical methods, and therefore, the corresponding 

questions QA10 and QA11 were not evaluated.  

Table 1: PS quality assessment questions 

ID Question 

Design 

QA1 
Are the applied identification techniques for 

refactoring opportunities clearly described? 

QA2 
Are the refactoring activities considered clearly 

stated and defined? 

QA3 Are the aims of the study clearly stated? 

QA4 Was the sample size justified? 

QA5 Are the evaluation measures fully defined? 

Conduct 

QA6 
Are the data collection methods adequately 

described? 

Analysis 

QA7 
Are the results of applying the identification 

techniques evaluated? 

QA8 
Are the data sets adequately described? (size, 

programming languages, source) 

QA9 
Are the study participants or observational units 

adequately described? 

QA10 Are the statistical methods described? 

QA11 Are the statistical methods justified? 

QA12 Is the purpose of the analysis clear? 

QA13 Are the scoring systems (performance 

evaluation) described? 

Conclusion 

QA14 Are all study questions answered? 

QA15 Are negative findings presented? 

QA16 Are the results compared with previous reports? 

QA17 Do the results add to the literature? 

QA18 Are validity threats discussed? 
 

The research assistant extracted and reported the data 

corresponding to the study quality assessment. In addition, 

for each PS, the research assistant highlighted the paper text 

related to each quality assessment question and provided his 

assessment score (i.e., 0, 0.5, or 1). The author checked all 

this work. Disagreements were discussed until a consensus 

was reached.    

To assess a PS, we added the scores for each question and 

found the percentage over the applicable questions for that 

PS. For example, the summation of the scores for S15, as 

shown in Table 3, is 8 and the number of applicable 

questions is 16, and thus, the overall percentage is 50%. 

3. ASSESSMENT RESULTS 
 

We applied the assessment framework given in Table 1 to 

evaluate the quality of the 47 selected papers given in Table 

2. The framework application results are provided in Table 

3. The results of the quality assessment study show that the 

scores of the PSs range widely from 33.3% to 94.4% with 

an average of 69.2%. More specifically, the scores of 

conference PSs range between 44.4% and 88.9% with an 

average of 64.2%, and the scores of journal PSs range from 

33.3% to 94.4% with an average of 73.5%, considerably 

better than the conference PSs. We found that 14 journal 

PSs (52.4%) scored above 77.8% (higher than the second 

best conference PS score). These results were expected and 

confirm the results found in other literature reviews (e.g., 

[41]) that, with some exceptions, journal papers are 

typically more complete and of better quality than 

conference papers for several reasons, including space 

limitations, number of pages, and the depth required of the 

reported empirical evaluation. For interested readers, we 

recommend the six PSs (S8, S10, S37, S6, S1, and S27, in 

order from the highest) that scored higher than 85%. 

Table 2: Mapping between the identifiers and references of 

the PSs 

S1: [1] S13: [14] S25: [27] S37: [43] 

S2: [3] S14: [15] S26: [29] S38: [44] 

S3: [4] S15: [16] S27: [30] S39: [45] 

S4: [5] S16: [17] S28: [31] S40: [46] 

S5: [6] S17: [18] S29: [32] S41: [47] 

S6: [7] S18: [19] S30: [34] S42: [48] 

S7: [8] S19: [20] S31: [35] S43: [49] 

S8: [9] S20: [22] S32: [36] S44: [50] 

S9: [10] S21: [23] S33: [37] S45: [51] 

S10: [11] S22: [24] S34: [38] S46: [52] 

S11: [12] S23: [25] S35: [39] S47: [53] 

S12: [13] S24: [26] S36: [42]  

 

The results in Table 3 show that all of the PSs either 

partially or adequately described the techniques applied for 

identifying refactoring opportunities (QA1), stated the aims 
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of the study (QA3), and answered all study questions 

(QA14). Most of the PSs adequately described the data sets 

(QA8), clearly stated the purpose of the analysis (QA12), 

and reported analysis results that sufficiently add to the 

literature (QA17).  

 

Table 3: Assessment Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID 
PS Quality Assessment Results 

Total 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

S1 1 1 1 1 1 1 1 1 0.5 1 1 1 1 1 0 0 1 1 86.1 

S2 1 1 1 0.5 1 1 1 1 0.5 1 1 1 1 1 0 0 1 1 83.3 

S3 1 0.5 1 0 0 0 0 1 0 1 0.5 1 0 1 

 

0 0.5 0 44.1 

S4 1 0.5 1 0 0 0.5 1 1 0 1 1 0 0 1 0.5 0 0.5 0 50.0 

S5 1 0.5 1 0 0 0.5 1 1 0.5 1 0.5 1 0 1 

 

0 0.5 0 55.9 

S6 1 1 1 1 1 0.5 1 1 0.5 1 1 1 0 1 1 1 1 1 88.9 

S7 1 0.5 1 0.5 1 1 1 0.5 1 1 1 1 0.5 1 1 0 1 1 83.3 

S8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 94.4 

S9 1 1 1 1 0.5 1 1 0.5 1 1 1 1 0 1 1 0 1 1 83.3 

S10 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0.5 1 1 1 91.7 

S11 1 0.5 1 0 0 0.5 1 0.5 0.5 1 1 1 0 1 0 1 1 0 61.1 

S12 1 1 1 0 0.5 1 1 0.5 1 1 1 0.5 0 0.5 1 0 1 0 66.7 

S13 1 1 1 0.5 0.5 1 1 1 0.5 1 1 1 0 1 1 1 1 0 80.6 

S14 1 1 1 0 1 0.5 1 1 0.5 1 1 1 0 1 1 1 1 0 77.8 

S15 0.5 1 1 0 0 0.5 1 0.5 0.5 

  

1 0 1 0.5 0 0.5 0 50.0 

S16 1 1 1 0 0.5 1 1 0.5 0.5 1 0.5 1 0 1 1 0 0.5 0 63.9 

S17 1 0.5 1 0.5 0 1 1 0 0.5 0.5 0 1 0 1 0.5 0 1 0 52.8 

S18 1 1 1 0.5 0.5 1 1 1 1 1 1 1 0 1 1 0 1 1 83.3 

S19 0.5 0.5 1 0 0 1 1 0.5 0.5 0 0 1 0 1 1 0 0 0 44.4 

S20 1 1 1 0.5 0 0.5 0 1 0.5 1 0.5 0.5 0 1 0 0 1 0 52.8 

S21 1 0.5 0.5 0.5 0 1 0 1 0.5 

  

0 0 0.5 0 0 0.5 0 33.3 

S22 1 1 1 1 0 0.5 1 1 0.5 

  

1 0 1 0.5 1 1 0.5 75.0 

S23 1 1 1 0 1 1 1 0.5 0.5 1 0.5 0.5 1 0.5 0 1 1 0 69.4 

S24 1 1 1 0 1 1 1 1 0.5 

  

1 1 0.5 1 0 0.5 0.5 75.0 

S25 1 0.5 1 1 0 1 1 1 0.5 

  

1 0 1 0.5 0 1 0.5 68.8 

S26 1 0.5 1 1 0 1 0 1 1 

  

1 0 1 0 0 1 1 65.6 

S27 1 0 1 1 1 1 1 1 0.5 1 0.5 1 0.5 1 1 1 1 1 86.1 

S28 1 

 

1 1 1 0.5 1 1 0.5 1 1 1 1 1 0 1 1 0 77.8 

S29 1 0.5 1 1 0.5 0.5 0.5 1 0 

  

0 0 0.5 

 

0 0.5 0 46.7 

S30 1 0.5 1 0.5 0 0.5 1 1 0.5 

  

0.5 0 1 1 0 1 0.5 62.5 

S31 0.5 1 1 1 0.5 0.5 1 1 0 0.5 1 1 0 1 0 0 1 0.5 63.9 

S32 1 1 1 0 1 1 1 1 0.5 1 1 1 0 1 

 

1 1 0.5 82.4 

S33 1 1 1 0 1 1 1 1 0.5 1 1 1 0 1 

 

1 1 0.5 82.4 

S34 1 0.5 1 0 0.5 1 1 1 0.5 1 1 0.5 0.5 1 

 

0 1 0.5 70.6 

S35 1 1 1 0 0.5 0.5 1 1 0.5 0 0.5 1 0 0.5 

 

0 1 0.5 58.8 

S36 1 1 1 0 0 0.5 1 1 0 1 1 0.5 0 0.5 0 0 1 0 52.8 

S37 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 88.9 

S38 1 0.5 1 0.5 0.5 0.5 1 1 0 1 1 1 0 1 1 0 1 0 66.7 

S39 1 1 1 0 0 0 1 1 0 1 1 1 0 1 

 

1 1 0 64.7 

S40 1 0.5 1 1 0 0 0 1 1 

  

1 0 1 0 1 1 0.5 62.5 

S41 1 0.5 1 0 0 1 0 1 1 

  

0.5 0 1 0 0 0.5 0 46.9 

S42 1 1 1 0 0.5 1 1 1 1 

  

1 0 1 1 0 1 0.5 75.0 

S43 1 1 1 1 0.5 1 1 1 0.5 1 1 1 0 1 1 0 1 0 77.8 

S44 1 1 1 0.5 1 1 1 1 1 

  

1 0 1 1 0 1 1 84.4 

S45 1 1 1 0 0.5 1 1 1 1 

  

1 0 1 1 0 1 1 78.1 

S46 1 0.5 1 0.5 0.5 1 1 1 0.5 1 0.5 1 0 1 1 0 1 1 75.0 

S47 1 0 1 0 0.5 1 1 0.5 1 

  

1 0 1 1 0 0.5 1 65.6 
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Regarding QA2, it was found that a considerable percentage 

of the PSs (36.2% + 4.3% = 40.5%) did not provide 

definitions of the refactoring activities considered, and two 

PSs (S27 and S47) did not specify the refactoring activities. 

In PS S27, the authors stated that their technique is 

applicable to generalization refactoring activities without 

stating or defining these activities. In addition, the technique 

proposed in S47 is applicable for Extract Class refactoring, 

although the authors never used this refactoring activity 

name. Question QA2 is not applicable to S28 because the 

proposed technique was claimed to be applicable to all 

refactoring activities. 

For QA4, we considered the total sizes of the data sets used 

in a PS, where large, medium, and small data sets were given 

values of 1, 0.5, and 0, respectively. Regarding QA5, it was 

found that only 31.9% of the PSs fully defined the measures 

applied to evaluate the refactoring results. The rest of the 

PSs either did not define the evaluation measures (36.2%) or 

defined only some of them (31.9%). These PSs either 

assumed that the readers were familiar with the evaluation 

measures used or omitted the definitions because of space 

limitations. Most of the PSs (80.8%) failed to describe the 

scoring systems for the evaluation measures and thus left the 

conclusions subjective. We believe that the reason for the 

lack of scoring system descriptions was that the authors 

relied on existing evaluation measures, such as Precision and 

Recall that do not have common standard score descriptions. 

For example, a score of 65 does not have a common 

interpretation (i.e., whether it is good, satisfactory, or poor). 

Describing the scoring systems (QA13) makes the 

conclusions objective and facilitates comparing the results 

with the results obtained in other studies. In addition, 

defining the evaluation measures is important to eliminate 

any ambiguity regarding the interpretation of the results. 

More than half of the PSs adequately described the data 

collection methods (QA6), which helps to make the reported 

studies repeatable. Regarding QA9, most of the PSs (70.2%) 

failed to provide sufficient information regarding the 

expertise of the study participants, and the evaluation results 

greatly depend on such experience. The absence of such 

information makes the evaluation results questionable. PSs 

that adequately described the applied tools but reported 

insufficient information about the study participants were 

given a value of 0.5 and made up 55.3% of the PSs. Among 

the PSs that applied statistical methods, a high percentage 

clearly described the statistical methods and at least partially 

provided justifications for applying them (related to QA10 

and QA11). Regarding QA15, we observed that more than 

half of the PSs with negative findings represented and 

interpreted the negative findings. The rest of the PSs either 

listed the negative findings but failed to interpret them or did 

not present the negative findings at all. Presenting and 

interpreting negative findings is important to understand the 

limitations of the proposed technique and thus help to find 

ways to improve the technique. The results of QA16 are 

related to the results reported in Section 4.4.4 and show that 

most of the PSs lack comparison studies. Finally, most of the 

PSs did not sufficiently discuss validity threats, which makes 

the causal inference and generalization of the results 

questionable. We noted that only 13.6% of the conference 

studies sufficiently discussed validity threats, whereas 48% 

of the journal studies did. This difference may be due to the 

conference papers’ space limitations. 

4. CONCLUSIONS 
 

The paper presents a framework that can be applied by 

researchers in the field to assess the quality of the existing 

papers or new papers to be published. As a case study, the 

framework is applied on existing PSs in the field of 

identifying refactoring opportunities. The proposed 

framework can be also used as a checklist for researchers to 

ensure that they included the main elements and considered 

the key factors in their study.      

Generally, the quality assessment study shows that most of 

the PSs scored well for questions QA1, QA3, QA7, QA8, 

QA10, QA11, QA12, QA14, and QA17. Researchers are 

advised to focus more on issues regarding questions QA2, 

QA4, QA5, QA9, QA13, QA16, and QA18, where we found 

that most of the PSs have weaknesses. Only 57%, 32%, 32%, 

30%, 13%, 30%, and 32% of the papers addressed these 

questions, respectively, well. More specifically, researchers 

have to ensure that they clearly state and define the 

considered refactoring activities and applied evaluation 

measures and scoring system. In addition, they have to 

explicitly provide descriptions for the applied software tools 

and details of the study participants. Finally, researchers are 

advised to compare their results with existing ones, use data 

with relatively large enough size, and state and discuss the 

validity threats of their studies.     
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