
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

91

Quality Assessment for Primary Studies on Identifying

Refactoring Opportunities in Object-Oriented Code

Jehad Al DALLAL

j.aldallal@ku.edu.kw

(Geliş/Received: 29.10.2015; Kabul/Accepted: 05.04.2016)

DOI: 10.17671/btd.00357

Abstract— Refactoring is a maintenance task that refers to the process of restructuring software source code to enhance its

quality without affecting its external behavior. Manually inspecting and analyzing the source code of the system under

consideration to identify refactoring opportunities are time consuming and costly process. Researchers typically propose fully

or semi-automated techniques to predict or identify the refactoring opportunities. In the present study, we demonstrate an

application for a proposed framework that assesses the quality of the studies reported in the published primary studies (PSs)

on the refactoring prediction/ identification techniques. The framework is applied on 47 selected PSs to assess the quality of

the studies based on their design, conduct, analysis, and conclusion. We used the results to comment on the weakness of the

existing PSs and the issues that have to be considered with much attention in the future studies.

Keywords— Refactoring activity, refactoring opportunity, object-oriented code, study quality assessment.

1. INTRODUCTION

Refactoring refers to altering the internal structure of an

existing object-oriented software code without changing its

external behavior [21] and it aims at improving several

quality attributes, of a considered code, such as testability

and maintainability [21]. Fowler [21] defined several

refactoring scenarios and explained how they can be

applied. Researchers have identified four stages during

which refactoring process is typically carried out [33, 40,

53]. In the first stage, the refactoring candidates are

determined. In the second stage, the advantage and cost of

carrying out the refactoring are analyzed. In the third stage,

the consequent code modification is performed, and in the

last stage, the performed code modification is examined for

its preservation for the external software behavior. In this

paper, we are interested in assessing the quality of studies

that propose or apply techniques related to the first

refactoring stage. Assessing the quality of studies related to

techniques applied during other refactoring stages can be

considered in future researches. This paper considers 47

papers identified by Al Dallal [2] as the PSs that

empirically evaluate techniques for identifying refactoring

opportunities. An assessment framework proposed by Al

Dallal [2] is applied to assess the quality of selected PSs in

terms of their design, conduct, analysis, and conclusion.

The obtained results are useful for software engineers to

select the best available techniques once performing

refactoring. In addition, the framework is useful for

researchers in the area of software refactoring as it guides

them to perform and report studies that are potentially

practical and trustable. This paper extends the conference

version paper [54] that introduces the considered

framework but with less details.

This paper is organized as follows. Section 2 provides an

overview of the assessment framework. Section 3 reports

and discusses the assessment results. Finally, Section 4

presents our conclusions.

2. ASSESSMENT FRAMEWORK

We followed the guidelines suggested by Kitchenham and

Charters [28] to construct the quality checklist given in

Table 1. The checklist includes 18 quality assessment

questions, considers several quality aspects, including the

study design, conduct, analysis, and conclusion, and was

applied to assess the corresponding quality of each of the

PSs considered. Each question is evaluated as "Yes",

"Partially", or "No" with a corresponding score of 1, 0.5, or

0, respectively. For example, regarding QA1, the score was

given as "0" if the author did not mention which

identification technique was applied in the study, a score of

"0.5" was reported if the author indicated which technique

was applied but did not describe the technique or described

the technique unclearly, and a score of "1" was given if the

author clearly described the applied technique. For QA2,

mailto:j.aldallal@ku.edu.kw

92 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

the score was given as "0" if the author did not mention

which refactoring activities were applied, a score of "0.5"

was reported if the author reported the applied refactoring

activities but did not define them, and a score of "1" was

given if the author stated and defined the applied

refactoring activities. Some of the questions were not

applicable to some PSs; these PSs were not evaluated for

those questions. For example, some PSs did not use any

statistical methods, and therefore, the corresponding

questions QA10 and QA11 were not evaluated.

Table 1: PS quality assessment questions

ID Question

Design

QA1
Are the applied identification techniques for

refactoring opportunities clearly described?

QA2
Are the refactoring activities considered clearly

stated and defined?

QA3 Are the aims of the study clearly stated?

QA4 Was the sample size justified?

QA5 Are the evaluation measures fully defined?

Conduct

QA6
Are the data collection methods adequately

described?

Analysis

QA7
Are the results of applying the identification

techniques evaluated?

QA8
Are the data sets adequately described? (size,

programming languages, source)

QA9
Are the study participants or observational units

adequately described?

QA10 Are the statistical methods described?

QA11 Are the statistical methods justified?

QA12 Is the purpose of the analysis clear?

QA13 Are the scoring systems (performance

evaluation) described?

Conclusion

QA14 Are all study questions answered?

QA15 Are negative findings presented?

QA16 Are the results compared with previous reports?

QA17 Do the results add to the literature?

QA18 Are validity threats discussed?

The research assistant extracted and reported the data

corresponding to the study quality assessment. In addition,

for each PS, the research assistant highlighted the paper text

related to each quality assessment question and provided his

assessment score (i.e., 0, 0.5, or 1). The author checked all

this work. Disagreements were discussed until a consensus

was reached.

To assess a PS, we added the scores for each question and

found the percentage over the applicable questions for that

PS. For example, the summation of the scores for S15, as

shown in Table 3, is 8 and the number of applicable

questions is 16, and thus, the overall percentage is 50%.

3. ASSESSMENT RESULTS

We applied the assessment framework given in Table 1 to

evaluate the quality of the 47 selected papers given in Table

2. The framework application results are provided in Table

3. The results of the quality assessment study show that the

scores of the PSs range widely from 33.3% to 94.4% with

an average of 69.2%. More specifically, the scores of

conference PSs range between 44.4% and 88.9% with an

average of 64.2%, and the scores of journal PSs range from

33.3% to 94.4% with an average of 73.5%, considerably

better than the conference PSs. We found that 14 journal

PSs (52.4%) scored above 77.8% (higher than the second

best conference PS score). These results were expected and

confirm the results found in other literature reviews (e.g.,

[41]) that, with some exceptions, journal papers are

typically more complete and of better quality than

conference papers for several reasons, including space

limitations, number of pages, and the depth required of the

reported empirical evaluation. For interested readers, we

recommend the six PSs (S8, S10, S37, S6, S1, and S27, in

order from the highest) that scored higher than 85%.

Table 2: Mapping between the identifiers and references of

the PSs

S1: [1] S13: [14] S25: [27] S37: [43]

S2: [3] S14: [15] S26: [29] S38: [44]

S3: [4] S15: [16] S27: [30] S39: [45]

S4: [5] S16: [17] S28: [31] S40: [46]

S5: [6] S17: [18] S29: [32] S41: [47]

S6: [7] S18: [19] S30: [34] S42: [48]

S7: [8] S19: [20] S31: [35] S43: [49]

S8: [9] S20: [22] S32: [36] S44: [50]

S9: [10] S21: [23] S33: [37] S45: [51]

S10: [11] S22: [24] S34: [38] S46: [52]

S11: [12] S23: [25] S35: [39] S47: [53]

S12: [13] S24: [26] S36: [42]

The results in Table 3 show that all of the PSs either

partially or adequately described the techniques applied for

identifying refactoring opportunities (QA1), stated the aims

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

93

of the study (QA3), and answered all study questions

(QA14). Most of the PSs adequately described the data sets

(QA8), clearly stated the purpose of the analysis (QA12),

and reported analysis results that sufficiently add to the

literature (QA17).

Table 3: Assessment Results

ID
PS Quality Assessment Results

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S1 1 1 1 1 1 1 1 1 0.5 1 1 1 1 1 0 0 1 1 86.1

S2 1 1 1 0.5 1 1 1 1 0.5 1 1 1 1 1 0 0 1 1 83.3

S3 1 0.5 1 0 0 0 0 1 0 1 0.5 1 0 1

0 0.5 0 44.1

S4 1 0.5 1 0 0 0.5 1 1 0 1 1 0 0 1 0.5 0 0.5 0 50.0

S5 1 0.5 1 0 0 0.5 1 1 0.5 1 0.5 1 0 1

0 0.5 0 55.9

S6 1 1 1 1 1 0.5 1 1 0.5 1 1 1 0 1 1 1 1 1 88.9

S7 1 0.5 1 0.5 1 1 1 0.5 1 1 1 1 0.5 1 1 0 1 1 83.3

S8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 94.4

S9 1 1 1 1 0.5 1 1 0.5 1 1 1 1 0 1 1 0 1 1 83.3

S10 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0.5 1 1 1 91.7

S11 1 0.5 1 0 0 0.5 1 0.5 0.5 1 1 1 0 1 0 1 1 0 61.1

S12 1 1 1 0 0.5 1 1 0.5 1 1 1 0.5 0 0.5 1 0 1 0 66.7

S13 1 1 1 0.5 0.5 1 1 1 0.5 1 1 1 0 1 1 1 1 0 80.6

S14 1 1 1 0 1 0.5 1 1 0.5 1 1 1 0 1 1 1 1 0 77.8

S15 0.5 1 1 0 0 0.5 1 0.5 0.5

1 0 1 0.5 0 0.5 0 50.0

S16 1 1 1 0 0.5 1 1 0.5 0.5 1 0.5 1 0 1 1 0 0.5 0 63.9

S17 1 0.5 1 0.5 0 1 1 0 0.5 0.5 0 1 0 1 0.5 0 1 0 52.8

S18 1 1 1 0.5 0.5 1 1 1 1 1 1 1 0 1 1 0 1 1 83.3

S19 0.5 0.5 1 0 0 1 1 0.5 0.5 0 0 1 0 1 1 0 0 0 44.4

S20 1 1 1 0.5 0 0.5 0 1 0.5 1 0.5 0.5 0 1 0 0 1 0 52.8

S21 1 0.5 0.5 0.5 0 1 0 1 0.5

0 0 0.5 0 0 0.5 0 33.3

S22 1 1 1 1 0 0.5 1 1 0.5

1 0 1 0.5 1 1 0.5 75.0

S23 1 1 1 0 1 1 1 0.5 0.5 1 0.5 0.5 1 0.5 0 1 1 0 69.4

S24 1 1 1 0 1 1 1 1 0.5

1 1 0.5 1 0 0.5 0.5 75.0

S25 1 0.5 1 1 0 1 1 1 0.5

1 0 1 0.5 0 1 0.5 68.8

S26 1 0.5 1 1 0 1 0 1 1

1 0 1 0 0 1 1 65.6

S27 1 0 1 1 1 1 1 1 0.5 1 0.5 1 0.5 1 1 1 1 1 86.1

S28 1

1 1 1 0.5 1 1 0.5 1 1 1 1 1 0 1 1 0 77.8

S29 1 0.5 1 1 0.5 0.5 0.5 1 0

0 0 0.5

0 0.5 0 46.7

S30 1 0.5 1 0.5 0 0.5 1 1 0.5

0.5 0 1 1 0 1 0.5 62.5

S31 0.5 1 1 1 0.5 0.5 1 1 0 0.5 1 1 0 1 0 0 1 0.5 63.9

S32 1 1 1 0 1 1 1 1 0.5 1 1 1 0 1

1 1 0.5 82.4

S33 1 1 1 0 1 1 1 1 0.5 1 1 1 0 1

1 1 0.5 82.4

S34 1 0.5 1 0 0.5 1 1 1 0.5 1 1 0.5 0.5 1

0 1 0.5 70.6

S35 1 1 1 0 0.5 0.5 1 1 0.5 0 0.5 1 0 0.5

0 1 0.5 58.8

S36 1 1 1 0 0 0.5 1 1 0 1 1 0.5 0 0.5 0 0 1 0 52.8

S37 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 88.9

S38 1 0.5 1 0.5 0.5 0.5 1 1 0 1 1 1 0 1 1 0 1 0 66.7

S39 1 1 1 0 0 0 1 1 0 1 1 1 0 1

1 1 0 64.7

S40 1 0.5 1 1 0 0 0 1 1

1 0 1 0 1 1 0.5 62.5

S41 1 0.5 1 0 0 1 0 1 1

0.5 0 1 0 0 0.5 0 46.9

S42 1 1 1 0 0.5 1 1 1 1

1 0 1 1 0 1 0.5 75.0

S43 1 1 1 1 0.5 1 1 1 0.5 1 1 1 0 1 1 0 1 0 77.8

S44 1 1 1 0.5 1 1 1 1 1

1 0 1 1 0 1 1 84.4

S45 1 1 1 0 0.5 1 1 1 1

1 0 1 1 0 1 1 78.1

S46 1 0.5 1 0.5 0.5 1 1 1 0.5 1 0.5 1 0 1 1 0 1 1 75.0

S47 1 0 1 0 0.5 1 1 0.5 1

1 0 1 1 0 0.5 1 65.6

94 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

Regarding QA2, it was found that a considerable percentage

of the PSs (36.2% + 4.3% = 40.5%) did not provide

definitions of the refactoring activities considered, and two

PSs (S27 and S47) did not specify the refactoring activities.

In PS S27, the authors stated that their technique is

applicable to generalization refactoring activities without

stating or defining these activities. In addition, the technique

proposed in S47 is applicable for Extract Class refactoring,

although the authors never used this refactoring activity

name. Question QA2 is not applicable to S28 because the

proposed technique was claimed to be applicable to all

refactoring activities.

For QA4, we considered the total sizes of the data sets used

in a PS, where large, medium, and small data sets were given

values of 1, 0.5, and 0, respectively. Regarding QA5, it was

found that only 31.9% of the PSs fully defined the measures

applied to evaluate the refactoring results. The rest of the

PSs either did not define the evaluation measures (36.2%) or

defined only some of them (31.9%). These PSs either

assumed that the readers were familiar with the evaluation

measures used or omitted the definitions because of space

limitations. Most of the PSs (80.8%) failed to describe the

scoring systems for the evaluation measures and thus left the

conclusions subjective. We believe that the reason for the

lack of scoring system descriptions was that the authors

relied on existing evaluation measures, such as Precision and

Recall that do not have common standard score descriptions.

For example, a score of 65 does not have a common

interpretation (i.e., whether it is good, satisfactory, or poor).

Describing the scoring systems (QA13) makes the

conclusions objective and facilitates comparing the results

with the results obtained in other studies. In addition,

defining the evaluation measures is important to eliminate

any ambiguity regarding the interpretation of the results.

More than half of the PSs adequately described the data

collection methods (QA6), which helps to make the reported

studies repeatable. Regarding QA9, most of the PSs (70.2%)

failed to provide sufficient information regarding the

expertise of the study participants, and the evaluation results

greatly depend on such experience. The absence of such

information makes the evaluation results questionable. PSs

that adequately described the applied tools but reported

insufficient information about the study participants were

given a value of 0.5 and made up 55.3% of the PSs. Among

the PSs that applied statistical methods, a high percentage

clearly described the statistical methods and at least partially

provided justifications for applying them (related to QA10

and QA11). Regarding QA15, we observed that more than

half of the PSs with negative findings represented and

interpreted the negative findings. The rest of the PSs either

listed the negative findings but failed to interpret them or did

not present the negative findings at all. Presenting and

interpreting negative findings is important to understand the

limitations of the proposed technique and thus help to find

ways to improve the technique. The results of QA16 are

related to the results reported in Section 4.4.4 and show that

most of the PSs lack comparison studies. Finally, most of the

PSs did not sufficiently discuss validity threats, which makes

the causal inference and generalization of the results

questionable. We noted that only 13.6% of the conference

studies sufficiently discussed validity threats, whereas 48%

of the journal studies did. This difference may be due to the

conference papers’ space limitations.

4. CONCLUSIONS

The paper presents a framework that can be applied by

researchers in the field to assess the quality of the existing

papers or new papers to be published. As a case study, the

framework is applied on existing PSs in the field of

identifying refactoring opportunities. The proposed

framework can be also used as a checklist for researchers to

ensure that they included the main elements and considered

the key factors in their study.

Generally, the quality assessment study shows that most of

the PSs scored well for questions QA1, QA3, QA7, QA8,

QA10, QA11, QA12, QA14, and QA17. Researchers are

advised to focus more on issues regarding questions QA2,

QA4, QA5, QA9, QA13, QA16, and QA18, where we found

that most of the PSs have weaknesses. Only 57%, 32%, 32%,

30%, 13%, 30%, and 32% of the papers addressed these

questions, respectively, well. More specifically, researchers

have to ensure that they clearly state and define the

considered refactoring activities and applied evaluation

measures and scoring system. In addition, they have to

explicitly provide descriptions for the applied software tools

and details of the study participants. Finally, researchers are

advised to compare their results with existing ones, use data

with relatively large enough size, and state and discuss the

validity threats of their studies.

REFERENCES

[1] Al Dallal J. 2012. Constructing models for predicting extract subclass

refactoring opportunities using object-oriented quality metrics,

Journal Information and Software Technology archive. 54, 10, 1125-

1141.

[2] Al Dallal J. 2015. Identifying refactoring opportunities in object-

oriented code: a systematic literature review, Information and

Software Technology. 58, 231–249.

[3] Al Dallal J. and Briand L.C. 2012. A Precise Method-Method

Interaction-Based Cohesion Metric for Object-Oriented Classes, ACM

Transactions on Software Engineering and Methodology (TOSEM)

TOSEM, 21, 2, Article No. 8.

[4] Alkhalid A., Alshayeb M., and Mahmoud S. 2010. Software

refactoring at the function level using new Adaptive K-Nearest

Neighbor algorithm, Advances in Engineering Software, 41, 10-11,

1160-1178.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

95

[5] Alkhalid A., Alshayeb M., and Mahmoud S.A. 2011. Software

refactoring at the class level using clustering techniques, Journal of

Research and Practice in Information Technology, 43, 4, 285-306.

[6] Alkhalid A., Alshayeb M., and Mahmoud S.A. 2011. Software

refactoring at the package level using clustering techniques, Software

IET, 5, 3, 276-284.

[7] Bavota G., De Lucia A., Marcus A., and Oliveto R. 2013a,

Automating extract class refactoring: an improved method and its

evaluation, Empirical Software Engineering, 1-48.

[8] Bavota G., De Lucia A,, Marcus A., and Oliveto R. 2013b. Using

structural and semantic measures to improve software modularization,

Empirical Software Engineering, 18, 5, 901-932.

[9] Bavota G., De Lucia A., and Oliveto R. 2011. Identifying Extract

Class refactoring opportunities using structural and semantic cohesion

measures, Journal of Systems and Software, 84, 3, 397-414.

[10] Bavota G., Gethers M., Oliveto R., Poshyvanyk D., and De Lucia A.

2014. Improving software modularization via automated analysis of

latent topics and dependencies, ACM Transactions on Software

Engineering and Methodologies, 23, 1, Article No. 4.

[11] Bavota G., Oliveto R., Gethers M., Poshyvanyk D., and De Lucia A.

2014. Methodbook: Recommending move method refactorings via

relational topic models, IEEE Transactions on Software Engineering,

40, 7, 671-694.

[12] Bavota G., OlivetoR., De Lucia A., Antoniol G., and Gueheneuc Y.

2010. Playing with refactoring: Identifying extract class opportunities

through game theory, In: IEEE International Conference on Software

Maintenance (ICSM), 1-5.

[13] Cassell K., Andreae P., and Groves L. 2011. A dual clustering

approach to the extract class refactoring, In: Proceedings on the 23rd

International Conference on Software Engineering and Knowledge

Engineering (SEKE'11), Miami, FL, USA.

[14] Czibula I.G. and Czibula G.2008. Hierarchical clustering based

automatic refactorings detection, WSEAS Transactions on

Electronics, 5, 7, 291-302.

[15] Czibula I.G. and Serban G. 2006. Improving systems design using a

clustering approach, IJCSNS International Journal of Computer

Science and Network Security, 6, 12, 40-49.

[16] Du Bois B., Demeyer S., and Verelst J. 2004. Refactoring - improving

coupling and cohesion of existing code, In: Proceedings of the 11th

Working Conference on Reverse Engineering, 144-151.

[17] Fokaefs M., Tsantalis N., Chatzigeorgiou A., and Sander J. 2009.

Decomposing object-oriented class modules using an agglomerative

clustering technique, IEEE International Conference on Software

Maintenance, Canada, 93-101.

[18] Fokaefs M., Tsantalis N., and Stroulia E. 2011. A. Chatzigeorgiou,

JDeodorant: identification and application of extract class

refactorings, In: Proceedings of the 33rd International Conference on

Software Engineering, 1037-1039.

[19] Fokaefs M., Tsantalis N., Stroulia E., and Chatzigeorgiou A. 2012.

Identification and application of Extract Class refactorings in object-

oriented systems, Journal of Systems and Software, 85, 10, 2241-

2260.

[20] Fokaefs M., Tsantalis N., Stroulia E., and Chatzigeorgiou A.2007.

JDeodorant: Identification and removal of Feature Envy bad smells,

In: Proceedings of IEEE International Conference on Software

Maintenance, 467-468.

[21] Fowler M. 1999. Refactoring: improving the design of existing code,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

[22] Higo Y., Kamiya T., Kusumoto S., and Inoue K. 2004. Aries:

Refactoring support environment based on code clone analysis, In:

Proceedings of the 8th IASTED International Conference on

Software Engineering and Applications, Article No. 436-084, 222-

229.

[23] Higo Y., Kusumoto S., and Inoue K. 2008. A metric-based approach

to identifying refactoring opportunities for merging code clones in a

Java software system, Journal of Software Maintenance and

Evolution: Research and Practice, 20, 6, 435-461.

[24] Hotta K., Higo Y., and Kusumoto S. 2012. Identifying, Tailoring, and

Suggesting Form Template Method Refactoring Opportunities with

Program Dependence Graph, In: Proceedings of the 16th European

Conference on Software Maintenance and Reengineering, 53-62.

[25] Kanemitsu T., Higo Y., and Kusumoto S. 2011. A visualization

method of program dependency graph for identifying extract method

opportunity, In: Proceedings of the 4th Workshop on Refactoring

Tools, 8-14.

[26] Kataoka Y., Notkin D., Ernst M.D., and Griswold W.G. 2001.

Automated Support for Program Refactoring using Invariants, In:

Proceedings of the IEEE International Conference on Software

Maintenance, 736.

[27] Kimura S., Higo Y., Igaki H., and Kusumoto S. 2012. Move code

refactoring with dynamic analysis, In: Proceedings of the IEEE

International Conference on Software Maintenance (ICSM), 575-

578.

[28] Kitchenham B. and Charters S. 2007. Guidelines for performing

systematic literature reviews in software engineering, Technical

Report EBSE, Keele University, UK.

[29] Lee S., Bae G., Chae S.H., Bae D., and Kwon Y.R. 2011. Automated

scheduling for clone-based refactoring using a competent GA,

Software—Practice & Experience, 41, 5, 521-550.

[30] Liu H., Niu Z., Ma Z., and Shao W. 2013. Identification of

generalization refactoring opportunities, Automated Software

Engineering, 20, 1, 81-110.

[31] Mahouachi R., Kessentini M., and Ghedira K. 2012. A new design

defects classification: marrying detection and correction, In:

Proceedings of the 15th international conference on Fundamental

Approaches to Software Engineering, 455-470.

[32] Melton H. and Tempero E. 2007. The CRSS metric for package

design quality, In: Proceedings of the 30th Australasian conference

on Computer science, 62, 201-210.

[33] Mens T. and Tourwé T. 2004. A survey of software refactoring, IEEE

Transactions on Software Engineering, 30, 2, 126-139.

[34] Mens T., Tourwé T., and Muñoz F. 2003. Beyond the Refactoring

Browser: Advanced Tool Support for Software Refactoring, In:

Proceedings of the 6th International Workshop on Principles of

Software Evolution, 39.

[35] Oliveto R., Gethers M., Bavota G., Poshyvanyk D., and De Lucia A.

2011. Identifying method friendships to remove the feature envy bad

smell (NIER track), In: Proceedings of the 33rd International

Conference on Software Engineering,820-823.

[36] Pan WF., JiangB., and Li B. 2013. Refactoring software packages via

community detection in complex software networks, International

Journal of Automation and Computing, 10, 2, 157-166.

[37] Pan W., Jiang WB., and Xu Y. 2013. Refactoring packages of object-

oriented software using genetic algorithm based community detection

technique, International Journal of Computer Applications in

Technology, 48, 3, 185-194.

[38] PanW., Li B., Ma Y., Liu J., and Qin Y. 2009. Class structure

refactoring of object-oriented softwares using community detection in

96 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

dependency networks, Frontiers of Computer Science in China, 3, 3,

396-404.

[39] Pan WF., Wang J. and Wang MC. 2013. Identifying the move method

refactoring opportunities based on evolutionary algorithm,

International Journal of Modelling, Identification and Control, 18, 2,

182-189.

[40] Piveta E. 2009. Improving the search for refactoring opportunities on

object-oriented and aspect-oriented software, Ph.D. thesis,

Univeridade Federal Do Rio Grande Do Sul, Porto Alegre.

[41] RadjenovićD., Heričko M., Torkar R., and Živkovič A. 2013.

Software fault prediction metrics: a systematic literature review,

Information and Software Technology, 55, 8, 1397-1418.

[42] Rao AA. And Reddy Kn. 2011. Identifying clusters of concepts in a

low cohesive class for extract class refactoring using metrics

supplemented agglomerative clustering technique, International

Journal of Computer Science Issues, 8,5 5-2, 185-194.

[43] Sales V., Terra R., Miranda L.F., and Valente M.T. 2013.

Recommending move method refactorings using dependency sets,

IEEE 20th Working Conference on Reverse Engineering (WCRE),

232-241.

[44] Seng O., Stammel J., and Burkhart D. 2006. Search-based

determination of refactorings for improving the class structure of

object-oriented systems, In: Proceedings of the 8th annual conference

on Genetic and evolutionary computation, 1909-1916.

[45] Serban G. and Czibula I.G. 2007. Restructuring software systems

using clustering, 22nd international symposium on Computer and

information sciences, 1-6.

[46] Tairas R. and Gray J. 2012. Increasing clone maintenance support by

unifying clone detection and refactoring activities, Information and

Software Technology, 54, 12, 1297-1307.

[47] Tourwé T. and Mens T. 2003. Identifying refactoring opportunities

using logic meta programming, In: Proceedings of the 7th European

Conference on Software Maintenance and Reengineering, 91-100.

[48] Tsantalis N. and Chatzigeorgiou A. 2009. Identification of Extract

Method Refactoring Opportunities, In: Proceedings of the 13th

European Conference on Software Maintenance and Reengineering,

119-128.

[49] Tsantalis N. and Chatzigeorgiou A. 2009. Identification of Move

Method Refactoring Opportunities, IEEE Transactions on Software

Engineering, 35, 3, 347-367.

[50] Tsantalis N. and Chatzigeorgiou A. 2010. Identification of refactoring

opportunities introducing polymorphism, Journal of Systems and

Software, 83 ,3, 391-404.

[51] Tsantalis N. and Chatzigeorgiou A. 2011. Identification of extract

method refactoring opportunities for the decomposition of methods,

Journal of Systems and Software, 84, 10, 1757-1782.

[52] Yang L., Liu H., and NiuZ. 2009. Identifying Fragments to be

Extracted from Long Methods, In: Proceedings of the 16th Asia-

Pacific Software Engineering Conference, 43-49.

[53] Zhao L. and Hayes J. 2006. Predicting classes in need of refactoring:

an application of static metrics, In: Proceedings of the 2nd

International PROMISE Workshop, Philadelphia, Pennsylvania USA.

[54] J. Al Dallal, Evaluating quality of primary studies on determining

object-oriented code refactoring candidates, International Conference

on Engineering & MIS 2015, Istanbul , Turkey, 2015.

