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Abstract— This paper presents a genetic algorithm solution for the parallel machine scheduling problems with a real 

factory case. Various genetic components and operators have been examined to design a genetic algorithm for a parallel 

machine scheduling problem with an objective of minimizing the makespan and the number of tardy jobs. A production 

schedule has been optimized by using a genetic algorithm and results have been compared. The experimental results 

demonstrates that a genetic algorithm encoding method is performed successfully to achieve a solution for parallel 

machine problems.  
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1. INTRODUCTION 

Scheduling plays an important role in the performance of 

a manufacturing system and its efficiency. Scheduling is a 

decision-making process that deals with the allocation of 

resources to tasks over given time periods and its goals 

are to optimize one or more objectives [1]. Scheduling is 

the last stage of planning before production occurs [2]. 

Production scheduling can be defined as the allocation of 

available production resources over time to best satisfy 

some set of criteria [3]. Machine scheduling problems are 

grouped into several classes by changing the machine and 

process types and numbers in the system, and parallel 

machine scheduling is one of these classes. 

A parallel machine environment is very common in the 

manufacturing industry. In the classical parallel machine 

scheduling problem, there are a sequence of n jobs with 

processing times {p1, p2,…, pn} to be processed on m 

parallel machines {M1,M2, …,Mm} [4]. The parallel 

machine scheduling (PMS) problem involves two kinds of 

decisions, sequencing and job-machine assignment [5]. 

Any job can run on any machine, each having a different 

processing time. 

In today’s industries, customer satisfaction is imperative 

in manufacturing and meeting due dates are very 

important to sustain competitive strength. As such, 

scheduling jobs on parallel machines against their due 

dates has become a very common setting from a practical 

perspective [6]. It is extremely important to complete jobs 

no later than their due dates thru proper scheduling. 

Minimizing the number of tardy jobs criterion is 

equivalent to maximizing the average number of early 

jobs criterion [7]. As such, the number of tardy jobs has 

become increasingly important in scheduling. 

In real life applications, scheduling problems involves 

solving for an optimal schedule under various objectives, 

different machine environments, and with a consideration 

for unique job characteristics [8]. Scheduling problems 

can have a different level of complexity. This complexity 

makes it challenging to find an optimal solution. Many 

methods are used to solve these difficult scheduling 

problems. One approach is the use of a genetic algorithm 

(GA). GAs became well known due to their efficiency in 

solving combinatorial optimization problems such as 

scheduling [9]. 

GA is a type of global optimization and a stochastic 

search technique that is based on the mechanism of 

natural evolution. GA can rapidly find a solution that is 

close to optimum in difficult and huge search spaces. 

Today’s competitive business environment has led 

companies to look for rapid and acceptable solutions [10].  

GA is also good at solving continuous and discrete 

combinatorial problems. A GA does not focus on sub-

optimization, and instead it evaluates to find the optimum 

value for the objective function. Instead of ensuring an 

optimal solution each time, genetic algorithm solutions 

are very close and slightly less efficient to optimum [11].  

As such, it is more important to select a proper method, 

representative coding and to define the objective for a GA 

in complex problems. GAs deal with a parameter code, 

not the parameters themselves [12]. As such, a GA is 

applicable to problems having discontinuous functions 

[11]. GAs carry the best individual (having the best 

objective function value) to the next generation. It is well 

known that the problem of minimizing makespan and 

total tardiness on parallel machines is NP-hard (non-

deterministic polynomial-time hard) [13][14][15][16]. 
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2. PARALLEL MACHINE SCHEDULING BY 

GENETIC ALGORITHMS 

Scheduling problems form an important class of 

combinatorial optimization problems. They are typically 

combinatorial problems that cannot be formulated as 

linear programs and there are no simple rules or 

algorithms that yield optimal solutions in a limited 

amount of computer time [17]. It is difficult to find a 

solution to combinatorial optimization problems by 

deterministic methods. GA can be used to solve 

combinatorial optimization problems [18].  

GA is a type of global optimization and a stochastic 

search technique that is based on the mechanism of 

natural evolution. GA was first introduced by John 

Holland in 1960. Genetic algorithms are search methods 

based on the genetic processes in the nature. GA is a 

random search technique that aims to find global 

optimization in a complex search space [19]. 

The starting point in constructing the GA is to define an 

appropriate genetic encoding. Defining proper encoding is 

crucial because it significantly affects all the subsequent 

steps of the GA [20]. Thus, it is important to find a fit 

encoding method such as binary encoding, permutation 

encoding, value encoding and tree encoding, before GA is 

applied to a problem. Permutation coding is the best 

method for ordering problems [21]. Thus, permutation 

coding is used for scheduling problems. 

During the evolution of the population, operators of a 

genetic algorithm play a significant role. These operators 

are selection, crossover, and mutation. Solutions are 

encoded in a form called a chromosome. Each 

chromosome shows a complete solution to a problem. 

Each chromosome has an objective function value that is 

used for carry the best individual to the next 

generation.Parallel machine scheduling problems are 

aimed at minimizing makespan. Each machine’s duration 

times are calculated, and maximum duration time is total 

duration time. This is an objective function value for 

parallel machine scheduling that is free from setup times. 

GA is widely used for solving machine scheduling 

problems. Many studies have illustrated that GA performs 

well for solving a parallel machine scheduling problem 

[22][23][24]. A simple example is 3 machines and 5 jobs 

as a given representative process for genetic algorithm 

addressing parallel machine scheduling. Every machine 

has a different completion for each job. The chromosome 

can be represented as follows for a schedule as shown in 

Table 1. 

Table 1.  An example schedule for 3 machines and 5 jobs schedule. 
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There are many types of genetic crossover operators for 

permutation encoding, such as position-based crossover, 

order based crossover, one point crossover, two point 

crossover, cycle crossover, order crossover, linear order 

crossover, and partially mapped crossover. A position-

based crossover operator was used in this study. 

A position-based crossover needs a random selected 

parent string to decide which genes (dominant gene) must 

be selected for offspring. A set of the first offspring’s 

positions from the first parent is selected when a parent 

string value is “1”. Each position of a gene is 

independently marked with a probability of 0.5. After 

that, to fill empty genes, the second parent’s genes are 

taken left from right in order without any repetition. The 

same procedure is applied for the second offspring, but 

the procedure then begins with parent two, while the 

dominant parent string value is “0”. This is shown in 

Figure 1. This is an example of two parents and a random 

parent string that generates two offspring without any 

mutation by using a permutation GA.Production 

schedules for generated offspring 1 and offspring 2 from 

the parent 1 and parent 2 are shown in Table 2.

Parent 1 Job 5 101 102 103 104 Job 4 Job 1 105 106 107 Job 2 Job 3 108 109 110 

Parent 2 Job 4 Job 5 Job 2 101 102 Job 3 103 104 105 106 Job 1 107 108 109 110 

Parent String 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 

Offspring 1 Job 5 101 Job4 Job2 104 102 Job 3 105 103 107 106 Job 1 108 109 110 

Offspring 2 Job 5 102 Job 2 101 104 Job 3 103 Job 4 105 106 Job 1 107 108 109 110 
 

Figure 1. One iteration for two parents and a random parent string generates two offspring by using Position Based 

Crossover (PBX).
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Table 2. Production schedules for generated offspring 1 

and offspring 2 from the parent 1 and parent 2. 

Offspring 1 

Machine 1 Job 5 Job 4 Job 2 

Machine 2 Job 3 
 

 

Machine 3 Job 1 
 

 

     

Offspring 2 

Machine 1 Job 5 Job 2  

Machine 2 Job 3 Job 4  

Machine 3 Job 1 
 

 

3. FINDINGS 

In this study, I developed an algorithm with an encoding 

method written by Kocamaz et al.[25]. I added 

minimizing total tardiness to their algorithm. The code for 

the algorithm was written by using VBA (Visual Basic for 

Application) with a Microsoft Excel interface. This 

developed algorithm was applied to a real case as an 

experimental study. 

I made some general assumptions about the scheduling: 

 All jobs and machines are available at time Zero. 

 Machines never break down and are available 

throughout the scheduling period. 

 Pre-emption is not allowed. 

 Machines may be idle. 

 Splitting of job or job cancellation is not allowed. 

In order to determine of the performance level of the 

algorithm, the number of iterations and optimization times 

were calculated for 216 jobs over 25 times. These jobs 

were completed by three parallel machines. Every 

machine isn’t capable of finishing all jobs and every 

machine has different competition times for the same job. 

Sample production times are given in Table 3. An “X” 

means that a machine isn’t capable of finishing a job.  

I considered setup times that are needed between 

processing of jobs for preparation of the production line 

for an coming job. Jobs are partitioned into families and 

setup time is required between these families. Therefore, 

there are different setup requirements in different jobs for 

it to be ready to start the next job. Additionally, setup 

time doesn’t occur between the same family’s jobs. 

In Figure 2, the number of succeed due date are given for 

a best solution and the average of 25 repetitions with each 

iteration. Series one represents the number of succeed due 

date for an average. A solution was developed from 157 

to 181.43. In series 2, the number of succeed due date for 

best solution was found. The values are 157 for the 1st 

iteration and 185 for the 10,000th iteration. 

 
Figure 2. Number of Succeed Due Date 

Figure 3. Shows makespan time for best makespan 

solution and average repetition. Makespan decreases 

through the last iteration. The value is of the best 

makespan because the algorithm tries to improve upon 

multiple-criteria for scheduling. 

 
Figure 3. Makespan times for average and best makespan 

solution 

 

Table 3. Sample production times for each machine. 

 
Job  

1 

Job 

2 

Job 

3 

Job 

4 

Job 

5 
Job 6 Job 7 Job 8 

Job 

9 

Job 

10 
 

Machine 1 59 15 20 12 23 15 18 12 7 5 … 

Machine 2 94 24 20 12 25 18 20 13 X X … 

Machine 3 X X X X X X X X X X … 
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Iteration number of achieved solutions are represented in 

Figure 4. The series represents respectively the iteration 

level of achieved due date, best solution and makespan. 

 
Figure 4. Solution iteration level 

I started with an initial parent by human decision. This 

resulted in 157 achieved due dates and 406,750 minutes 

for makespan. After 10,000 iterations, the best solution 

was 185 achieved due dates and 605,265 minutes for the 

makespan. The schedule plan for the best solution is given 

in Table 4, Table 5, Table 6. Underlined jobs represent 

jobs completed past their due dates. 

Table 4. Machine I schedule plan 

Seq. Jobs Seq. Jobs Seq. Jobs 

1 1 26 71 51 129 

2 2 27 37 52 149 

3 3 28 76 53 153 

4 4 29 53 54 151 

5 5 30 54 55 117 

6 6 31 84 56 157 

7 7 32 77 57 147 

8 9 33 81 58 158 

9 10 34 75 59 167 

10 11 35 78 60 161 

11 16 36 79 61 214 

12 8 37 101 62 146 

13 29 38 118 63 155 

14 22 39 86 64 154 

15 12 40 87 65 127 

16 30 41 113 66 51 

17 31 42 88 67 152 

18 33 43 121 68 189 

19 34 44 115 69 145 

20 35 45 150 70 196 

21 32 46 123 71 114 

22 46 47 126 72 64 

23 49 48 82 73 48 

24 50 49 120 74 58 

25 124 50 122 75 80 

 

Table 5. Machine II schedule plan 

Seq. Jobs Seq. Jobs Seq. Jobs 

1 59 26 106 51 187 

2 41 27 107 52 173 

3 26 28 72 53 163 

4 170 29 89 54 166 

5 65 30 73 55 204 

6 20 31 111 56 159 

7 96 32 109 57 171 

8 25 33 112 58 61 

9 21 34 135 59 168 

10 94 35 103 60 188 

11 125 36 136 61 172 

12 38 37 165 62 174 

13 70 38 160 63 119 

14 46 39 98 64 110 

15 39 40 164 65 60 

16 68 41 55 66 14 

17 191 42 130 67 99 

18 56 43 203 68 133 

19 40 44 142 69 116 

20 95 45 141 70 85 

21 93 46 162 71 176 

22 57 47 175 72 15 

23 105 48 156 73 74 

24 104 49 199 74 47 

25 91 50 148   

 

Table 6. Machine III schedule plan 

Seq. Jobs Seq. Jobs Seq. Jobs 

1 92 26 184 51 24 

2 13 27 183 52 200 

3 218 28 202 53 144 

4 28 29 182 54 186 

5 215 30 138 55 198 

6 17 31 208 56 213 

7 67 32 137 57 197 

8 100 33 194 58 139 

9 18 34 181 59 128 

10 52 35 185 60 27 

11 178 36 209 61 69 

12 23 37 190 62 143 

13 102 38 97 63 108 

14 132 39 207 64 36 

15 43 40 195 65 66 

16 134 41 212 66 216 

17 62 42 210 67 169 

18 180 43 201 68 44 

19 131 44 179 69 83 

20 19 45 211   

21 42 46 90   

22 63 47 205   

23 217 48 177   

24 192 49 206   

25 140 50 193   
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4. CONCLUSION 

In manufacturing today, it is vital to satisfy customer 

demands in a timely manner. Therefore, minimizing total 

tardiness isa significant issue. Further, makespan is 

important to maintain production efficiency. In this study, 

a parallel machine setup was optimized using a genetic 

algorithm approach. The results minimized makespan and 

the number of tardy jobs in a parallel machine setup. The 

experiment results demonstrated that the genetic 

algorithm performs successfully to achieve an optimal 

solution. Looking ahead, our future research will 

investigate uncertainties in scheduling when minimizing 

makespan, total tardiness, total work-in process and stock 

cost of finished goods in a parallel machine setup. 
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