
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

147

A Genetic Algorithm to Minimize Makespan and Number

of Tardy Jobs in Parallel Machine Scheduling Problems

Ural Gökay ÇİÇEKLİ

Ege Üniversitesi, İİBF, İşletme Bölümü, Türkiye

gokaycicekli@gmail.com
(Geliş/Received: 17.12.2015; Kabul/Accepted: 20.05.2016)

DOI: 10.17671/btd.99806

Abstract— This paper presents a genetic algorithm solution for the parallel machine scheduling problems with a real

factory case. Various genetic components and operators have been examined to design a genetic algorithm for a parallel

machine scheduling problem with an objective of minimizing the makespan and the number of tardy jobs. A production

schedule has been optimized by using a genetic algorithm and results have been compared. The experimental results

demonstrates that a genetic algorithm encoding method is performed successfully to achieve a solution for parallel

machine problems.

Keywords— Genetic algorithm, Parallel machine scheduling, tardy jobs

1. INTRODUCTION

Scheduling plays an important role in the performance of

a manufacturing system and its efficiency. Scheduling is a

decision-making process that deals with the allocation of

resources to tasks over given time periods and its goals

are to optimize one or more objectives [1]. Scheduling is

the last stage of planning before production occurs [2].

Production scheduling can be defined as the allocation of

available production resources over time to best satisfy

some set of criteria [3]. Machine scheduling problems are

grouped into several classes by changing the machine and

process types and numbers in the system, and parallel

machine scheduling is one of these classes.

A parallel machine environment is very common in the

manufacturing industry. In the classical parallel machine

scheduling problem, there are a sequence of n jobs with

processing times {p1, p2,…, pn} to be processed on m

parallel machines {M1,M2, …,Mm} [4]. The parallel

machine scheduling (PMS) problem involves two kinds of

decisions, sequencing and job-machine assignment [5].

Any job can run on any machine, each having a different

processing time.

In today’s industries, customer satisfaction is imperative

in manufacturing and meeting due dates are very

important to sustain competitive strength. As such,

scheduling jobs on parallel machines against their due

dates has become a very common setting from a practical

perspective [6]. It is extremely important to complete jobs

no later than their due dates thru proper scheduling.

Minimizing the number of tardy jobs criterion is

equivalent to maximizing the average number of early

jobs criterion [7]. As such, the number of tardy jobs has

become increasingly important in scheduling.

In real life applications, scheduling problems involves

solving for an optimal schedule under various objectives,

different machine environments, and with a consideration

for unique job characteristics [8]. Scheduling problems

can have a different level of complexity. This complexity

makes it challenging to find an optimal solution. Many

methods are used to solve these difficult scheduling

problems. One approach is the use of a genetic algorithm

(GA). GAs became well known due to their efficiency in

solving combinatorial optimization problems such as

scheduling [9].

GA is a type of global optimization and a stochastic

search technique that is based on the mechanism of

natural evolution. GA can rapidly find a solution that is

close to optimum in difficult and huge search spaces.

Today’s competitive business environment has led

companies to look for rapid and acceptable solutions [10].

GA is also good at solving continuous and discrete

combinatorial problems. A GA does not focus on sub-

optimization, and instead it evaluates to find the optimum

value for the objective function. Instead of ensuring an

optimal solution each time, genetic algorithm solutions

are very close and slightly less efficient to optimum [11].

As such, it is more important to select a proper method,

representative coding and to define the objective for a GA

in complex problems. GAs deal with a parameter code,

not the parameters themselves [12]. As such, a GA is

applicable to problems having discontinuous functions

[11]. GAs carry the best individual (having the best

objective function value) to the next generation. It is well

known that the problem of minimizing makespan and

total tardiness on parallel machines is NP-hard (non-

deterministic polynomial-time hard) [13][14][15][16].

mailto:gokaycicekli@gmail.com

148 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

2. PARALLEL MACHINE SCHEDULING BY

GENETIC ALGORITHMS

Scheduling problems form an important class of

combinatorial optimization problems. They are typically

combinatorial problems that cannot be formulated as

linear programs and there are no simple rules or

algorithms that yield optimal solutions in a limited

amount of computer time [17]. It is difficult to find a

solution to combinatorial optimization problems by

deterministic methods. GA can be used to solve

combinatorial optimization problems [18].

GA is a type of global optimization and a stochastic

search technique that is based on the mechanism of

natural evolution. GA was first introduced by John

Holland in 1960. Genetic algorithms are search methods

based on the genetic processes in the nature. GA is a

random search technique that aims to find global

optimization in a complex search space [19].

The starting point in constructing the GA is to define an

appropriate genetic encoding. Defining proper encoding is

crucial because it significantly affects all the subsequent

steps of the GA [20]. Thus, it is important to find a fit

encoding method such as binary encoding, permutation

encoding, value encoding and tree encoding, before GA is

applied to a problem. Permutation coding is the best

method for ordering problems [21]. Thus, permutation

coding is used for scheduling problems.

During the evolution of the population, operators of a

genetic algorithm play a significant role. These operators

are selection, crossover, and mutation. Solutions are

encoded in a form called a chromosome. Each

chromosome shows a complete solution to a problem.

Each chromosome has an objective function value that is

used for carry the best individual to the next

generation.Parallel machine scheduling problems are

aimed at minimizing makespan. Each machine’s duration

times are calculated, and maximum duration time is total

duration time. This is an objective function value for

parallel machine scheduling that is free from setup times.

GA is widely used for solving machine scheduling

problems. Many studies have illustrated that GA performs

well for solving a parallel machine scheduling problem

[22][23][24]. A simple example is 3 machines and 5 jobs

as a given representative process for genetic algorithm

addressing parallel machine scheduling. Every machine

has a different completion for each job. The chromosome

can be represented as follows for a schedule as shown in

Table 1.

Table 1. An example schedule for 3 machines and 5 jobs schedule.

Machine 1 Job 5

Machine 2 Job 4 Job 1

Machine 3 Job 2 Job 3

Machine 1 Machine 2 Machine 3

J
o

b
 5

n
u

ll

N
u

ll

n
u

ll

n
u

ll

J
o

b
 4

J
o

b
 1

n
u

ll

n
u

ll

n
u

ll

J
o

b
 2

J
o

b
 3

n
u

ll

n
u

ll

n
u

ll

There are many types of genetic crossover operators for

permutation encoding, such as position-based crossover,

order based crossover, one point crossover, two point

crossover, cycle crossover, order crossover, linear order

crossover, and partially mapped crossover. A position-

based crossover operator was used in this study.

A position-based crossover needs a random selected

parent string to decide which genes (dominant gene) must

be selected for offspring. A set of the first offspring’s

positions from the first parent is selected when a parent

string value is “1”. Each position of a gene is

independently marked with a probability of 0.5. After

that, to fill empty genes, the second parent’s genes are

taken left from right in order without any repetition. The

same procedure is applied for the second offspring, but

the procedure then begins with parent two, while the

dominant parent string value is “0”. This is shown in

Figure 1. This is an example of two parents and a random

parent string that generates two offspring without any

mutation by using a permutation GA.Production

schedules for generated offspring 1 and offspring 2 from

the parent 1 and parent 2 are shown in Table 2.

Parent 1 Job 5 101 102 103 104 Job 4 Job 1 105 106 107 Job 2 Job 3 108 109 110

Parent 2 Job 4 Job 5 Job 2 101 102 Job 3 103 104 105 106 Job 1 107 108 109 110

Parent String 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1

Offspring 1 Job 5 101 Job4 Job2 104 102 Job 3 105 103 107 106 Job 1 108 109 110

Offspring 2 Job 5 102 Job 2 101 104 Job 3 103 Job 4 105 106 Job 1 107 108 109 110

Figure 1. One iteration for two parents and a random parent string generates two offspring by using Position Based

Crossover (PBX).

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

149

Table 2. Production schedules for generated offspring 1

and offspring 2 from the parent 1 and parent 2.

Offspring 1

Machine 1 Job 5 Job 4 Job 2

Machine 2 Job 3

Machine 3 Job 1

Offspring 2

Machine 1 Job 5 Job 2

Machine 2 Job 3 Job 4

Machine 3 Job 1

3. FINDINGS

In this study, I developed an algorithm with an encoding

method written by Kocamaz et al.[25]. I added

minimizing total tardiness to their algorithm. The code for

the algorithm was written by using VBA (Visual Basic for

Application) with a Microsoft Excel interface. This

developed algorithm was applied to a real case as an

experimental study.

I made some general assumptions about the scheduling:

 All jobs and machines are available at time Zero.

 Machines never break down and are available

throughout the scheduling period.

 Pre-emption is not allowed.

 Machines may be idle.

 Splitting of job or job cancellation is not allowed.

In order to determine of the performance level of the

algorithm, the number of iterations and optimization times

were calculated for 216 jobs over 25 times. These jobs

were completed by three parallel machines. Every

machine isn’t capable of finishing all jobs and every

machine has different competition times for the same job.

Sample production times are given in Table 3. An “X”

means that a machine isn’t capable of finishing a job.

I considered setup times that are needed between

processing of jobs for preparation of the production line

for an coming job. Jobs are partitioned into families and

setup time is required between these families. Therefore,

there are different setup requirements in different jobs for

it to be ready to start the next job. Additionally, setup

time doesn’t occur between the same family’s jobs.

In Figure 2, the number of succeed due date are given for

a best solution and the average of 25 repetitions with each

iteration. Series one represents the number of succeed due

date for an average. A solution was developed from 157

to 181.43. In series 2, the number of succeed due date for

best solution was found. The values are 157 for the 1st

iteration and 185 for the 10,000th iteration.

Figure 2. Number of Succeed Due Date

Figure 3. Shows makespan time for best makespan

solution and average repetition. Makespan decreases

through the last iteration. The value is of the best

makespan because the algorithm tries to improve upon

multiple-criteria for scheduling.

Figure 3. Makespan times for average and best makespan

solution

Table 3. Sample production times for each machine.

Job

1

Job

2

Job

3

Job

4

Job

5
Job 6 Job 7 Job 8

Job

9

Job

10

Machine 1 59 15 20 12 23 15 18 12 7 5 …

Machine 2 94 24 20 12 25 18 20 13 X X …

Machine 3 X X X X X X X X X X …

150 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

Iteration number of achieved solutions are represented in

Figure 4. The series represents respectively the iteration

level of achieved due date, best solution and makespan.

Figure 4. Solution iteration level

I started with an initial parent by human decision. This

resulted in 157 achieved due dates and 406,750 minutes

for makespan. After 10,000 iterations, the best solution

was 185 achieved due dates and 605,265 minutes for the

makespan. The schedule plan for the best solution is given

in Table 4, Table 5, Table 6. Underlined jobs represent

jobs completed past their due dates.

Table 4. Machine I schedule plan

Seq. Jobs Seq. Jobs Seq. Jobs

1 1 26 71 51 129

2 2 27 37 52 149

3 3 28 76 53 153

4 4 29 53 54 151

5 5 30 54 55 117

6 6 31 84 56 157

7 7 32 77 57 147

8 9 33 81 58 158

9 10 34 75 59 167

10 11 35 78 60 161

11 16 36 79 61 214

12 8 37 101 62 146

13 29 38 118 63 155

14 22 39 86 64 154

15 12 40 87 65 127

16 30 41 113 66 51

17 31 42 88 67 152

18 33 43 121 68 189

19 34 44 115 69 145

20 35 45 150 70 196

21 32 46 123 71 114

22 46 47 126 72 64

23 49 48 82 73 48

24 50 49 120 74 58

25 124 50 122 75 80

Table 5. Machine II schedule plan

Seq. Jobs Seq. Jobs Seq. Jobs

1 59 26 106 51 187

2 41 27 107 52 173

3 26 28 72 53 163

4 170 29 89 54 166

5 65 30 73 55 204

6 20 31 111 56 159

7 96 32 109 57 171

8 25 33 112 58 61

9 21 34 135 59 168

10 94 35 103 60 188

11 125 36 136 61 172

12 38 37 165 62 174

13 70 38 160 63 119

14 46 39 98 64 110

15 39 40 164 65 60

16 68 41 55 66 14

17 191 42 130 67 99

18 56 43 203 68 133

19 40 44 142 69 116

20 95 45 141 70 85

21 93 46 162 71 176

22 57 47 175 72 15

23 105 48 156 73 74

24 104 49 199 74 47

25 91 50 148

Table 6. Machine III schedule plan

Seq. Jobs Seq. Jobs Seq. Jobs

1 92 26 184 51 24

2 13 27 183 52 200

3 218 28 202 53 144

4 28 29 182 54 186

5 215 30 138 55 198

6 17 31 208 56 213

7 67 32 137 57 197

8 100 33 194 58 139

9 18 34 181 59 128

10 52 35 185 60 27

11 178 36 209 61 69

12 23 37 190 62 143

13 102 38 97 63 108

14 132 39 207 64 36

15 43 40 195 65 66

16 134 41 212 66 216

17 62 42 210 67 169

18 180 43 201 68 44

19 131 44 179 69 83

20 19 45 211

21 42 46 90

22 63 47 205

23 217 48 177

24 192 49 206

25 140 50 193

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 9, SAYI: 2, MAYIS 2016

151

4. CONCLUSION

In manufacturing today, it is vital to satisfy customer

demands in a timely manner. Therefore, minimizing total

tardiness isa significant issue. Further, makespan is

important to maintain production efficiency. In this study,

a parallel machine setup was optimized using a genetic

algorithm approach. The results minimized makespan and

the number of tardy jobs in a parallel machine setup. The

experiment results demonstrated that the genetic

algorithm performs successfully to achieve an optimal

solution. Looking ahead, our future research will

investigate uncertainties in scheduling when minimizing

makespan, total tardiness, total work-in process and stock

cost of finished goods in a parallel machine setup.

REFERENCES

[1] M. Pinedo, Scheduling: Theory, Algorithms, and

Systems, Edition: 3, Springer, 2008.

[2] R. S. Russell, B. W.Taylor III, Operation

Management, 4th Edition, Prentice Hall, New

Jersey, 2000.

[3] S. C. Graves, “A Review of Production Scheduling”,

Operations Research, 29(4), 646-675,1981.

[4] W. Zhenbo, X. Wenxun, “Parallel Machine

Scheduling with Special Jobs”, Tsınghua Science

and Technology, 11(1), 107-110, 2006.

[5] E. Mokotoff, “Parallel machine scheduling

problems: A survey”, Asia - Pacific Journal of

Operational Research, 18, 193-242, 2001.

[6] D. Biskup, J. Herrmann, J. N. D. Gupta, “Scheduling

identical parallel machines to minimize total

tardiness”,International Journal of Production

Economics, 115(1), 134-142, 2008.

[7] E. O. Oyetunji, “Some Common Performance

Measures in Scheduling Problems: Review Article”,

Research Journal of Applied Sciences, Engineering

and Technology, 1(2), 6-9, 2009.

[8] P. Pandian, P. Rajendran, “Solving Constrained

Flow-Shop Scheduling Problems with Three

Machines”, International Journal of Contemporary

Mathematical Sciences, 5(19), 921-929, 2010.

[9] H. Boukef, M. Benrejeb, P. Borne, “A Proposed

Genetic Algorithm Coding for Flow-Shop

Scheduling Problems”, International Journal of

Computers, Communications & Control, II(3), 229-

240, 2007.

[10] M. Kocamaz, U. G. Çiçekli, “Paralel Makinaların

Genetik Algoritma İle Çizelgelenmesinde Mutasyon

Oranının Etkinliği”, Ege Academic Review, 10(1),

199-210, 2010.

[11] M. F. Yeo, E. O. Agyei (1998): “Optimising

engineering problems using genetic algorithms”,

Engineering Computations, 15(2), 268-280.

[12] Y. Z. Wang, “Using genetic algorithm methods to

solve course scheduling problems”,Expert Systems

with Applications, 25, 39-50, 2003.

[13] M. R. Garey, D. S. Johnson, “Strong NP-

completeness Results: Motivation, Examples and

Implications”, Journal of the Association for

Computing Machinery, 25, 499-508, 1978.

[14] J. C. Ho, Y. L. Chang, “Heuristics for minimizing

mean tardiness for m parallel machines”, Naval

Research Logistics, 38, 367-381, 1991.

[15] R. M. Karp,“Reducibility among combinatorial

problems: complexity of computer computations”,

New York: Plenum Press, 85–103, 1972.

[16] C. Koulamas, “Decomposition and hybrid simulated

annealing heuristics for the parallelmachine total

tardiness problem”, Naval Research Logistics, 44,

109–125, 1997.

[17] M.J. Tarokh, M. Yazdani, M. Sharif, M. N.

Mokhtarian, “Hybrid Meta-heuristic Algorithm for

Task Assignment Problem”, Journal of Optimization

in Industrial Engineering, 7, 45-55, 2011.

[18] M. Mitchell, An Introduction to Genetic

Algorithms, MIT Press, 1998.

[19] M. Mori, C. C Tseng, “Theory and Methodology: A

genetic algorithm for multi-mode resource

constrained project scheduling problem”,European

Journal of Operational Research,1 00, 134-141,

1997.

[20] Z.X. Guo, W.K.Wong,S.Y.S.Leung, J.T.Fan,

S.F.Chan, “Genetic optimization of order scheduling

with multiple uncertainties”, Expert Systems with

Applications, 35, 1788-1801, 2008.

[21] P. Borovska, “Solving the Travelling Salesman

Problem in Parallel by Genetic Algorithm on

Multicomputer Cluster”, International Conference

on Computer Systems and Technologies -

CompSysTech’06, University of Veliko Tarnovo,

Bulgaria,15-16 June 2006.

[22] A. H.Abdekhodaee, A. Wirth, H.S. Gana,

“Scheduling two parallel machines with a single

server: the general case”, Computers & Operations

Research, 33,994-1009, 2006.

[23] F. S. Serifoglu, G. Ulusoy, “Parallel machine

scheduling with earliness and tardiness penalties”,

Computers & Operations Research, 26, 773-787,

1999.

[24] F. Yalaoui, C. Chu, “Parallel machine scheduling to

minimize total tardiness”, International Journal of

Production Economics, 76(3), 265-279, 2002.

[25] M. Kocamaz, U. G. Çiçekli, H. Soyuer, “A

Developed Encoding Method for Parallel Machine

Scheduling with Permutation Genetic Algorithm”,

European and Mediterranean Conference on

Information Systems EMCIS 2009, Crowne Plaza

Hotel, Izmir, Brunel University and Dokuz Eylül

University, 13 – 14 July 2009.

