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ABSTRACT
This study aimed to propose an optimization model for slot allocation and contractual pricing that considers spot and contractual
shipments and empty container repositioning under a stochastic environment. In that respect, a two-stage stochastic non-linear
programming model was proposed. The model considers contractual pricing that is overlooked by previous studies. Experimentation
results revealed that decreasing market demand and spot market prices could cause serious profit loss while creating a high level of
idle capacity. With the increasing market demand, capacity utilization reaches saturation at 90% requiring a capacity increase in the
service. In the increasing market, slots allocated to empty containers get reduced while taking advantage of other options for empty
container supply. Experimentation of symmetric uncertainty revealed that the range of uncertainty should be minimized since
it creates a serious loss in profits and capacity utilization. Calculations also demonstrated that the applications of the stochastic
modeling solutions would provide higher profit margins than the solutions of their deterministic equivalents. The model can easily
be applied to the real-life situations of container liner services for managing and optimization of their service capacities as well as
determining optimum contractual prices.
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1. Introduction

Container liner companies must plan for optimal slot allocation for the sake of efficiency and profitability of their operations
to survive and prosper in such a competitive market. Optimal slot allocation is not only crucial for the economic sustainability of
container liner companies, but also beneficial for environmental sustainability since it increases container ship capacity utilization
which in turn reduces environmental emissions per ton-kilometer cargo transported.

Customers of container liner companies, namely the shippers of containers, are mainly segmented as contractual shippers and
spot shippers (Wang & Meng, 2021). Contractual shippers can be either freight forwarders or big industry players with a high
volume of export/import cargo and regular shipment needs. They draw contracts with container liners to bargain for lower and fixed
prices and guarantee a regular shipment of their cargo. Drawing contracts with shippers and freight forwarders are also beneficial
for container liners as they guarantee the availability of cargo and stable income. Binding to a contract raises a pricing issue -
how should contractual shipments be priced? They are usually priced by considering the expectations regarding future demand
and future spot market prices. If the expectation regarding the market is upward, prices negotiated for a contract can be too high,
resulting in the loss of the contractual customer. In the future, if the market goes down contrary to past expectations, the container
liner company would face a serious loss in its revenue. On the contrary, if the expectation regarding the market is downward, the
container liner company would settle for a contract price that is too low. This will again result in a serious loss in revenue if the
market goes up contrary to past expectations. Either situation affects the profitability of a container liner company. In addition, in
some legs of the service, containers for contractual shipments might not as many as others, and those empty slots can be used for
spot shipments so that efficiency and profitability can be maximized. Additionally, it is not possible to predict the future demand
and future spot market prices with certainty; therefore, along with the pricing of contractual shipments, stochasticity of demand
and spot price expectations must be considered in the modeling of slot allocation in container shipping.

In this regard, considering different segments i.e., contractual spot, and empty container shipments altogether is necessary
for efficient slot allocation and profitability. The main research question of this study is how container shipping slot allocation

Corresponding Author: Ercan Kurtuluş E-mail: kurtulusercan@gmail.com
Submitted: 30.08.2022 •Revision Requested: 07.03.2023 •Last Revision Received: 08.03.2023 •Accepted: 12.03.2023

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

13

http://orcid.org/0000-0003-0585-9319


Journal of Transportation and Logistics

with those different segments can be modelled and optimized. To answer the question, this study proposes a slot allocation
and contractual pricing model that explicitly considers spot and contractual shipments and empty container repositioning under
a stochastic environment. Empty container repositioning must be considered together with contractual and spot shipments in
modeling container slot allocation since it is inevitable and uses the capacity of container ships because of the nature of the
container shipping industry.

The remainder of this paper is organized as follows. Section 2 reviews the previous studies and reveals the contribution of this
study. Section 3 states the slot allocation and container shipping pricing problem that motivated this study. Section 4 formulated
the model as a non-linear two-stage stochastic programming model. Section 5 describes the application case and the data for the
application instances. Section 6 reveals experimental results. Finally, conclusion was provided in Section 7.

2. Literature Review

The focus of the previous studies has been mostly on spot markets. Feng & Chang (2008) developed a model for slot allocation
that maximizes operational profit. To eliminate capacity misutilization because of no-show ups, Wang et al. (2019) proposed a slot
allocation model that considers two strategies: overbooking and delivery-postponement. From a different perspective from these
two studies, Fu et al. (2016) considered demand uncertainty by putting forward a robust optimization model for slot allocation.
Their model accounted for minimum quantity commitment and two types of uncertainty in the demand: bounded and symmetric
uncertainty. These studies assumed that a fixed capacity was put aside for empty container repositioning.

Capacity for empty containers on container ships can be arranged more efficiently if empty container repositioning took advantage
of the idle capacity resulting from demand fluctuations and demand differences in the different legs of a service route. Considering
this fact, optimal slot allocation models proposed in the previous studies accounted for slots allocated for empty containers.
Including empty container repositioning, Ting & Tzeng (2004) constructed an optimal slot allocation model that maximizes total
freight profit. Feng & Chang (2010) proposed a slot allocation optimization model which considers empty container repositioning
while maximizing operational profit. They improved the model developed by Feng & Chang (2008) to include empty container
relocation decisions. Zurheide & Fischer (2012) developed a slot allocation optimization model that considers transshipment and
prioritization of urgent container shipments. Zurheide & Fischer (2015) modified and improved the model developed by Zurheide
& Fischer (2012). Their slot allocation model considered transshipment and proposed a new booking limit strategy called the
bid-price strategy. Additionally, they conducted a simulation to compare the newly proposed bid-price strategy with previously
presented booking limit strategies. Wong et al. (2015) developed a profit maximization model that incorporates empty and laden
container slot allocation. Wang et al. (2015) proposed a non-convex mixed-integer non-linear optimization model to maximize
the profits for seasonal container shipping. Their model included shipping speed and realistic non-convex bunker consumption
function. Chang et al. (2015) came up with a bi-level optimization model for slot allocation and empty container repositioning.
While the upper level maximizes operational profits with optimal slot allocation, the lower level minimizes empty container
repositioning costs. Lu & Mu (2016) provided a model for slot reallocation caused by adjustments to shipping schedules after
major disruptions. The model put forward by Ting & Tzeng (2016) not only accounted for empty container repositioning, but
also considered uncertainties. They proposed a fuzzy multi-objective slot allocation model with uncertain demand and container
weight. Contrary to previous studies, their model maximizes both total revenue and agents’ degree of satisfaction. In all these
studies, capacity for contractual pricing was not considered at best few of them assumed that a certain percentage of the capacity
was put aside for contractual containers.

In another study, Wang et al. (2020) constructed an optimal slot allocation and dynamic pricing model considering uncertain
demand and port congestion for time-sensitive cargo. Contrary to the other previous studies, their model considers slot allocation
for contractual shipments and spot shipments together with pricing of spot shipments, but their model is not applicable for
contractual pricing.

2.1. Contribution of the Study

Pricing and slot allocation of contractual shipments can significantly impact the profitability of container shipping lines.
Additionally, optimum slot allocation of contractual shipment can increase capacity utilization of container ships thus reduce
emissions for per ton kilometers of containerized freight. To the best of the author’s knowledge, none of the previous studies
related to slot allocation in container shipping considered slot allocation and pricing of contractual shipments. At best some of
the previous studies assumed certain percentage of container ships were set aside for contractual shipments and their pricing were
determined in an ad hoc manner. In this regard, this study aimed to propose an optimal slot allocation and contractual pricing
model that explicitly considers spot and contractual shipments and empty container repositioning under a stochastic environment.
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Therefore, a two-stage stochastic non-linear programming model was proposed. The first stage includes the prices for contractual
cargo while the second stage includes slot allocation for spot and contractual shipments and empty containers.

3. Problem Statement

Figure 1 illustrates the container liner shipping service provision. Two hypothetic services of a container liner are illustrated in
the figure. Service-1 includes four ports, and Service-2 includes five ports, and both of the services are provided in typical cyclic
routes that start from P1 and end at P1. A full shipping sequence of a container ship throughout the route i.e., P1-P2-P3-P4-P1
or P1-P5-P6-P7-P8-P1 is called a voyage. And a single shipping activity of a container ship from one port to another such as P1
to P2 is called a leg. The routes and shipping schedules of a container liner shipping service are predetermined and declared to
shippers so that they can arrange shipping requirements accordingly. Typically, container liner service is provided according to
a weekly schedule, which means that at least once a week a port in a container liner service is called by a container ship. The
transportation capacity of a container liner service, particularly how many container ships are to be assigned to that service is
determined according to demand predictions. The capacity of a container liner service is fixed unless new container ships are
added to the company’s fleet, or the company redesigns its container liner services.

Figure 1. Container Liner Shipping Services

When a port in a container liner service is called by a container ship, certain containers are discharged, certain containers remain
on ships, and certain containers are loaded on ships. The discharged containers at a port are the ones that are destined to that port
from other ports in the service. The containers that remain on ships are the ones that are shipped from the ports in the previous
legs of the ships and destined to upcoming ports in the ships’ voyage. The loaded containers at a port are the ones that are shipped
from that port and destined to upcoming ports in the ships’ voyage. As an example to clarify the container liner service provision,
the reader can look at Figure 1 and consider P3 as focal port and consider P1 as starting and ending port of the voyages performed
in Service-1. Containers discharged at P3 are the ones sent from P2 to P3 and P1 to P3 in the current voyage and the ones sent from
P4 to P3 in the previous voyage. Containers loaded at P3 are the ones sent from P3 to P4 and P3 to P1 and P3 to P2 in the current
voyage. The ones sent from P3 to P2 in the current voyage will be discharged at P2 in the next voyage. Containers that remain on
ships at P3 are the ones sent from P1 to P4, P2 to P4, and P2 to P1 in the current voyage, and all of them will be discharged in the
current voyage. On the other hand, containers that remain on ships at P4 are the ones sent from P2 to P1, P3 to P1, and P3 to P2
in the current voyage, but the ones sent from P3 to P2 will be discharged at P2 in the next voyage.

Considering contractual, spot, and empty container shipments all together is necessary for efficient slot allocation and profitability.
As in some legs of a container liner service, demand in the spot market is not as high as others, and similarly, in some legs of the
service, containers for contractual shipments are not as many as others, the idle slots resulted in one kind of shipment can be used
for the other kinds of shipments so that efficiency and profitability can be maximized.

Pricing of the contractual shipments rises as another issue for slot allocation. The price of the spot shipments is determined
by the market. And in turn, spot market prices are determined by demand. Since a container liner company competes with other
container liners in destinations where they provide services, the divergence of their spot prices from the spot market prices is
usually minuscule. On the other hand, contractual prices are determined by the expectations regarding the future spot market
prices as they are usually signed annually, and the contractual prices are fixed in the term of the contract. If the price negotiated
for a contract is high, it can cause the loss of a contractual customer. On the other hand, if the price settled for a contract is low, it
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can result in too many slots being allocated to contractual shipments with a low price. Either situation affects the number of slots
allocated to contractual shipments, therefore, the profitability of a container liner company.

4. Model Description

The model proposed in this study is a two-stage stochastic non-linear programming model. There are various types of stochastic
programming approaches (Birge & Louveaux, 2011). Two-stage stochastic programming was chosen because it is the most suitable
modelling technique for modelling uncertainty for the problem considered in this study. In a two-stage stochastic programming
model, uncertainty is revealed in the second stage. The first stage decision variables take values that are best for all occurrences of
considered scenarios of the second stage. This is compatible with contractual pricing and slot allocation of contractual shipments.
Contractual pricing and slot allocation of contractual shipments are generally decided annually before knowing what the price
for spot shipments thorough the year will be. In the first stage of the proposed model, contractual price and slot allocation of
contractual container shipments are decided. In the second stage possible occurrence of spot prices are revealed. The solution
values of the first stage variables will be the best ones for all considered scenario occurrences of spot prices.

In this section, notations, the objective function, and constraints of the stochastic programming model were also presented.
Notations used for sets, parameters, and decision variables of the model are demonstrated in Table 1. While P sands for the set of
seaports, V stands for the set of voyages. Ω stands for the set of scenarios. Since it is a stochastic programming model, stochasticity
is included in the model through various scenarios.

Table 1. Notations used in the model
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Table 1. Notations used in the model 

Sets  
𝑃 Set of seaports 
𝑉 Set of voyages 
𝛺 Set of scenarios 

Parameters 
𝑟௜௝௩(𝑤) The spot price for transportation of 1 container between port 𝑖 and port 𝑗 on 

voyage 𝑣 
𝑐௜௝ Cost for transportation of 1 container between port 𝑖 and port 𝑗  

𝐷௜௝௩(𝑤) Demand for transportation of container between port 𝑖 and port 𝑗 on voyage 𝑣 
𝐸𝑆𝐷௜௩ Empty container supply or demand at port 𝑖 on voyage 𝑣 
𝑝𝑠 Share of spot shipments 
𝑐𝑎𝑝 The capacity of the container liner service 
ℎ Inventory holding cost of an empty container per day 
𝑙 Leasing cost of an empty container 

First-stage Decision Variables 
𝑃௜௝  Contractual price for transportation of 1 container between port 𝑖 and port 𝑗 

Second-stage Decision Variables 
𝛽௜௝(𝑤) The coefficient for contractual price and contractual demand  
𝑋𝑆௜௝௩(𝑤) Number of full spot containers transported between port 𝑖 and port 𝑗 on voyage 𝑣 

𝑋𝐶௜௝௩(𝑤) 
Number of full contractual containers transported between port 𝑖 and port 𝑗 on 
voyage 𝑣 

𝑋𝐸௜௝௩(𝑤) 
Number of full empty containers transported between port 𝑖 and port 𝑗 on voyage 
𝑣 

𝑋𝑅𝑆௜௩(𝑤) Number of full spot containers remain on ships at port 𝑖 on voyage 𝑣 
𝑋𝑅𝐶௜௩(𝑤) Number of full contractual containers remain on ships at port 𝑖 on voyage 𝑣 
𝑋𝑅𝐸௜௩(𝑤) Number of full empty containers remain on ships at port 𝑖 on voyage 𝑣 
𝑊௜௝௩(𝑤) Auxiliary variable for linearizing 𝑃௜௝ ∗ 𝑋𝐶௜௝௩(𝑤) 
𝐿௜௩
ା (𝑤) Number of empty containers leased at port 𝑖 on voyage 𝑣 
𝐿௜௩
ି (𝑤) Number of excess empty containers returned to lessors at port 𝑖 on voyage 𝑣 

𝐸𝐼௜௩(𝑤) Number of empty containers stored at port 𝑖 on voyage 𝑣 
 

Parameters, the data to be included in the model instances, are also described in Table 1. 𝐸𝑆𝐷௜௩  

denotes empty container demand or supply at port 𝑖 on the voyage 𝑣. When it takes a positive 

value, it is the supply of empty containers at port 𝑖 on the voyage 𝑣, and when it takes a negative 

value, it is the demand for empty containers at port 𝑖 on the voyage 𝑣. 𝑐௜௝ denotes costs of 

transporting 1 container between port 𝑖 and port 𝑗. 𝑝𝑠 denotes the share of the spot shipments in 

the total demand. While ℎ denotes the storage cost of 1 container at a seaport, 𝑙 denotes the average 

Parameters, the data to be included in the model instances, are also described in Table 1. 𝐸𝑆𝐷𝑖𝑣 denotes empty container
demand or supply at port i on the voyage 𝑣. When it takes a positive value, it is the supply of empty containers at port i on the
voyage v, and when it takes a negative value, it is the demand for empty containers at port i on the voyage 𝑣. 𝑐𝑖 𝑗 denotes costs of
transporting 1 container between port i and port j. ps denotes the share of the spot shipments in the total demand. While h denotes
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the storage cost of 1 container at a seaport, l denotes the average costs of leasing 1 container at a seaport. 𝐷𝑖 𝑗𝑣 (w) and 𝑟𝑖 𝑗𝑣 (w)
are stochastic parameters that take a different value in each scenario. 𝐷𝑖 𝑗𝑣 (w) denotes transportation demand from port i to port j
on voyage v in scenario w.𝑟𝑖 𝑗𝑣 (w) denotes spot market prices for transportation of 1 container from port i to port j on voyage 𝑣 in
scenario w.

Table 1 shows the decision variables of the model. Because the model is a two-stage stochastic programming model, decision
variables are distinguished in terms of two stages. 𝑃𝑖 𝑗 denotes the price for contractual shipments from port i and port j. It is the
first stage variable since the decision regarding the price of contractual shipments is decided before the uncertainty is revealed. 𝑃𝑖 𝑗

is not scenario dependent - the solution of a model instance will provide a value for the variable that is robust for the realization
of all considered scenarios. Other decision variables are the second-stage variables. 𝛽𝑖 𝑗 (w) is the coefficient of the functional
relationship between spot market prices and the demand for contractual shipments. 𝑋𝑆𝑖 𝑗𝑣 (w), 𝑋𝐶𝑖 𝑗𝑣 (w), and 𝑋𝐸𝑖 𝑗𝑣 (w) denote the
number of full spot containers, the number of full contractual containers, and the number of empty containers that are transported
between port i and port j on voyage v, respectively. 𝑋𝑅𝑆𝑖𝑣 (w), 𝑋𝑅𝐶𝑖𝑣 (w), and 𝑋𝑅𝐸𝑖𝑣 (w) denote the number of full spot
containers, the number of full contractual containers, and the number of empty containers that are remained on ships at port i on
voyage v, respectively. 𝑊𝑖 𝑗𝑣 (w) denotes the auxiliary variable used for linearizing the expression 𝑃𝑖 𝑗* 𝑋𝐶𝑖 𝑗𝑣 (w) in the objective
function. 𝐿

𝑖𝑣
+ (w) and 𝐿−

𝑖𝑣
(w) denote the number of empty containers leased and the number of excess empty containers returned

to lessors at port i on voyage v, respectively. At last, 𝐸𝐼𝑖𝑣 (w) denotes the number of empty containers stored at port i on voyage 𝑣.

Model has several assumptions:

1. Containers were segmented under three categories: spot container shipments, contractual container shipments, and empty
container shipments.

2. There is an inverse linear relationship between price and demand.
3. Proportion of contractual shipments to spot shipments needs to be decided before solving model instances.
4. The decision variables regarding number of containers included in the model are continuous variables.

The first assumption is straightforward and in line with industry practices were customers of container shipping lines are
segmented as shippers of contractual and spot containers (Y. Wang & Meng, 2021). The second assumption is also reasonable
because increases in the price of a service or a product reduces its demand. However, the shape of relation might be different
for different services or products and may not be linear. The third assumption can be eliminated by solving model insurances for
different proportions of contractual and spot shipments. Therefore, the best proportion can be found for different model instances.
The fourth assumption also can have a very little impact. Containers are non-dividable entities, but in cases where integer decision
variables took high values, they can be treated as continuous variables and rounded to the closest integers with a very minuscule
difference compared to integer solutions since it is a lot easier to solve linear programming model instances.

4.1. Objective Function

The expressions from 1.1 to 1.5 present the objective function of the model. As can be seen, the objective function of the model
is the profit maximization function. Since the model is a stochastic programming model, the first term in the expression 1.1 is the
weighted sum of all the terms in the objective function in terms of the occurrence probability of each scenario. The sum of the
occurrence probabilities of all scenarios must be equal to 1. The second term in expression 1.1 represents the profit margin of
contractual shipments while expression 1.2 represents the profit margin of spot shipments. The remaining expressions represent
the costs; thus, they are subtracted from the profit margins. Expression 1.3, expression 1.4, and expression 1.5 represent the costs
of empty container transportation, empty container leasing, and empty container storage, respectively.

𝑚𝑎𝑥{
∑︁
𝑤𝜖Ω

𝑝𝑟 (𝑤){
∑︁
𝑖 𝜖 𝑃

∑︁
𝑗 𝜖 𝑃

∑︁
𝑣𝜖∨

(𝑃𝑖 𝑗 − 𝑐𝑖 𝑗 )𝑋𝐶𝑖 𝑗𝑣 (𝑤)+ (1)

∑︁
𝑖 𝜖 𝑃

∑︁
𝑗 𝜖 𝑃

∑︁
𝑣𝜖∨

(𝑟𝑖 𝑗𝑣 (𝑤) − 𝑐𝑖 𝑗 )𝑋𝑆𝑖 𝑗𝑣 (𝑤)− (2)

∑︁
𝑖 𝜖 𝑃

∑︁
𝑗 𝜖 𝑃

∑︁
𝑣𝜖∨

𝑐𝑖 𝑗𝑋𝐸𝑖 𝑗𝑣 (𝑤)− (3)
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𝑙
∑︁
𝑖 𝜖 𝑃

∑︁
𝑣𝜖∨

𝐿+
𝑖𝑣 (𝑤)− (4)

ℎ
∑︁
𝑖 𝜖 𝑃

∑︁
𝑣𝜖∨

𝐸𝑙𝑖𝑣 (𝑤) (5)

4.2. Demand Constraints

Constraints from 2 to 4 represent demand constraints. Constraint 2 is the demand constraint for spot shipments. The number of
spot containers that are transported is less than or equal to the spot container transportation demand which is equal to a certain
percentage of the total transportation demand. The less than or equal sign indicates that the carrier has an option for accepting spot
containers that maximize its profits. Constraints 3.1 and 3.2 represent the demand constraint for contractual shipments. Constraint
3.2 indicates that the contractual price for container transportation from port i to port j equals a ratio of the mean spot rate of all
the voyages. Constraint 3.1 indicates that the demand for contractual shipments is inversely proportional to the price of contractual
shipments. As can be seen in Constraint 3.1, the relationship is equality, indicating that contractual shipments must be provided by
the carrier. Constraint 4 is the flow conservation constraint for empty containers. The terms on the left side of the equation are the
incoming empty container flow, and the term on the right side of the equation is the outgoing flow. The first term on the left side
is the sum of empty containers that come to port i from each port j while the second and third terms are equal to empty containers
stored at port i from the previous voyage and empty containers leased from lessors at port i, respectively. The last term on the left
side of the equation is the demand/supply of empty containers at port i. When the parameter is negative, it equals the demand, and
when the parameter is positive, it equals to supply of empty containers.

𝑋𝑆𝑖 𝑗𝑣 (𝑊) ≤ 𝑝𝑠𝐷𝑖 𝑗𝑣 (𝑤)∀𝑖 ∈ 𝑃,∀ 𝑗 ∈ 𝑃,∀𝑣 ∈ 𝑉,∀𝑊 ∈ Ω (6)

𝑋𝑆𝑖 𝑗𝑣 (𝑊) = (1 − 𝑝𝑠)𝐷𝑖 𝑗𝑣 (𝑊) − (1 − 𝑝𝑠)𝐷𝑖 𝑗𝑣 (𝑊)𝛽𝑖 𝑗 (𝑊)∀𝑖 ∈ 𝑃,∀ 𝑗 ∈ 𝑃,∀𝑣 ∈ 𝑉,∀𝑊 ∈ Ω (7)

𝑃𝑖 𝑗 = 𝑚𝑒𝑎𝑛𝑟𝑖 𝑗𝑣(𝑤) : 𝑣𝜖𝑉𝛽𝑖 𝑗 (𝑤)∀𝑖 ∈ 𝑃,∀ 𝑗 ∈ 𝑃,∀𝑤 ∈ 𝑉,∀𝑊 ∈ Ω (8)

∑︁
𝑖 𝜖 𝑃

𝑋𝐸𝑖 𝑗𝑣 (𝑊) + 𝐸𝐼𝑖𝑣−1 (𝑊) + 𝐿+
𝑖𝑣 (𝑊) + 𝐸𝑆𝐷𝑖𝑣 (𝑊) =

∑︁
𝑖 𝜖 𝑃

𝑋𝐸𝑖 𝑗𝑣 (𝑊) + 𝐸𝐼𝑖𝑣 (𝑊) + 𝐿−
𝑖𝑣 (𝑊) (9)

∀𝑖 ∈ 𝑃,∀𝑣 ∈ 𝑃,∀𝑤 ∈ 𝑉,∀𝑊 ∈ Ω (10)

4.3. Capacity Constraints

Constraints from 5.1 to 5.4 are capacity constraints. Constraints 5.1, 5.2, and 5.3 describe the number of spot containers,
contractual containers, and empty containers that remain on ships at port i on voyage v, respectively. As it can be seen, all three
constraints are identical except for the type of containers so only one of them will be described in detail. In Constraint 5.1, on the
left-hand side of the equation is the decision variable for the number of spot containers that remain on ships at port i on voyage v.
The first term on the right-hand side of the equation is the sum of the number of containers that come from preceding ports and
are destined to be delivered to upcoming ports on the current voyage. The second term on the right-hand side of the equation is the
sum of the number of containers that come from preceding ports and are destined to upcoming ports that precede the origin ports
on the cyclic route. And those containers are to be delivered to destination ports on the next voyage. The third and the last terms
on the right-hand side of the equation are the sum of the number of containers that come from upcoming ports on the previous
voyage and are destined to be delivered on the current voyage to the upcoming ports that precede the origin ports. Constraint 5.4
indicates the ship capacity limitations for the containers that are to be loaded on ships at port i on voyage v. The terms on the
left-hand side of the equation represent the sum of the number of spot containers, contractual containers, and empty containers
transported from port i to each port j. The first term on the right-hand side of the equation is the total capacity of ships operated on
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the service. In practice, on a container liner service route, ships’ calls to ports are arranged in such a way that each port is visited
at least once a week. The slots allocated to the total capacity of ships operated on a container liner service can easily be distributed
to each ship operated on that container liner service. The second, third, and last terms on the right-hand side of the equation are,
respectively, spot containers, contractual containers, and empty containers that remain on ships at port i on voyage v. As it can be
seen in Contraint 5.4, the number of containers to be loaded on ships at port i on voyage v can be at most the remaining empty
capacity on the ships at port i on voyage 𝑣.
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4.4. Linearization of Non-Linear Objective Term

The objective function includes a bilinear term 𝑃𝑖 𝑗 𝑋𝐶𝑖 𝑗𝑣 (w) since it is a non-linear and non-convex expression that is very
difficult to solve, and algorithms that are used for solving linear programming model instances cannot be applied. However, the
bilinear term can be linearized using various modeling approaches. One of the modeling approaches used for linearizing bilinear
terms in a very efficient way is using McCormick’s inequalities (or McCormick’s envelopes) (Costa et al., 2017; McCormick,
1976). P 𝑖 𝑗* 𝑋𝐶𝑖 𝑗𝑣 (w) is the bilinear term, and the lower and the upper bounds for the two variables can be defined as 𝑃𝑖 𝑗 ∈
[𝐿𝑃𝑖 𝑗 ,𝑈(𝑃𝑖 𝑗 ) and 𝑋𝐶𝑖 𝑗𝑣 (w)∈ [𝐿𝑋𝐶𝑖 𝑗𝑣 (𝑤),𝑈𝑋𝐶𝑖 𝑗𝑣 (𝑤)]. According to McCormick’s inequalities (McCormick, 1976), the convex
envelope of the bilinear term is defined by the following inequalities:

𝑊𝑖 𝑗𝑣 (𝑤) ≥ 𝐿𝑋𝐶𝑖 𝑗𝑣 (𝑤)𝑃𝑖 𝑗 + 𝐿𝑝𝑖 𝑗𝑋𝐶𝑖 𝑗𝑣 (𝑤) − 𝐿𝑋𝐶𝑖 𝑗𝑣 (𝑤)𝐿𝑝𝑖 𝑗∀𝑖 ∈ 𝑃,∀ 𝑗 ∈ 𝑃,∀𝑣 ∈ 𝑉,∀𝑤 ∈ Ω (19)

𝑊𝑖 𝑗𝑣 (𝑤) ≥ 𝑈𝑋𝐶𝑖 𝑗𝑣 (𝑤)𝑃𝑖 𝑗 +𝑈𝑝𝑖 𝑗𝑋𝐶𝑖 𝑗𝑣 (𝑤) −𝑈𝑋𝐶𝑖 𝑗𝑣 (𝑤)𝑈𝑝𝑖 𝑗∀𝑖 ∈ 𝑃,∀ 𝑗 ∈ 𝑃,∀𝑣 ∈ 𝑉,∀𝑤 ∈ Ω (20)

𝑊𝑖 𝑗𝑣 (𝑤) ≤ 𝐿𝑋𝐶𝑖 𝑗𝑣 (𝑤)𝑃𝑖 𝑗 +𝑈𝑝𝑖 𝑗𝑋𝐶𝑖 𝑗𝑣 (𝑤) − 𝐿𝑋𝐶𝑖 𝑗𝑣 (𝑤)𝑈𝑝𝑖 𝑗∀𝑖 ∈ 𝑃,∀ 𝑗 ∈ 𝑃,∀𝑣 ∈ 𝑉,∀𝑤 ∈ Ω (21)
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𝑊𝑖 𝑗𝑣 (𝑤) ≤ 𝑈𝑋𝐶𝑖 𝑗𝑣 (𝑤)𝑃𝑖 𝑗 + 𝐿𝑝𝑖 𝑗𝑋𝐶𝑖 𝑗𝑣 (𝑤) −𝑈𝑋𝐶𝑖 𝑗𝑣 (𝑤)𝐿𝑝𝑖 𝑗∀𝑖 ∈ 𝑃,∀ 𝑗 ∈ 𝑃,∀𝑣 ∈ 𝑉,∀𝑤 ∈ Ω (22)

𝑃𝑖 𝑗* 𝑋𝐶𝑖 𝑗𝑣 (w) on the objective function is replaced by 𝑊𝑖 𝑗𝑣 (w).

4.5. Non-Negativity and Integrality Constraints

All of the decision variables included in the model are non-negative real numbers.

5. Model Application

5.1. Application Case

The model was applied to a case that includes a container liner service of a leading local container liner company that mainly
provides services throughout ports of the Mediterranean and the Black Sea. The container liner service is illustrated in Figure 2.
The service includes 9 ports, 4 of which are located in Western Turkey (Istanbul, Izmit, Bursa, and Izmir), 3 of which are located
in Spain (Valencia, Castellon, and Barcelona), 1 of which is located in France (Fos Sur Mer), and 1 of which located in Greece
(Piraeus). The route of the service follows the sequence of ports as Valencia-Castellon-Barcelona-Fos Sur Mer-Piraeus-Istanbul-
Izmit-Bursa-Izmir-Valencia. One voyage through the route takes around 3 weeks.

Figure 2. The Container Liner Service that the Model Applied

5.2. Data Description

The instances from the model are constructed by including parameter data regarding the application case of the container liner
service. Table 2 shows the spot market price for transportation of 1 TEU full container between each port in the service. The spot
market prices shown in the table are gathered from an online shipping platform called Freightos on March 9th, 2021. The prices
are not symmetrical, for example, it is shown in the first line of Table 2 that the spot market price for transportation of 1 TEU from
Valencia to Fos Sur Mer is $550, on the other hand, it is shown in the third line that spot market price for transportation of 1 TEU
from Fos Sur Mer to Valencia is $964.

Table 3 illustrates the distance between each port in the service. Table 3 is created by using the data from an online shipping
platform called Searates. Similar to the spot market prices, the distances shown in the table are also not symmetrical because they
are not direct distances, but distances through the route. For example, it is shown in the first line of Table 3 that the distance from
Valencia to Castellon through the route is 39 miles, but the distance from Castellon to Valencia through the route is 3386 miles
since a ship must complete one voyage to arrive from Castellon to Valencia through the route of the service.

Table 4 shows the container transportation demand between each pair of ports in the service. The demand data is hypothetically
created since it is considered sensitive information and not to be shared by container shipping lines. The main flows of container
transportation through the service are between West Mediterranean (Valencia, Castellon, Barcelona, and Fos Sur Mer) and East
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Table 2. Spot Price for Transportation of 1 TEU 

 
 

Valencia   Castellon   Barcelona   Fos   Piraeus  Istanbul Izmit Bursa Izmir 

Valencia  - $793  $793  $550  $793  $848  $848  $848  $848  

Castellon  $793  - $793  $550  $793  $848  $848  $848  $848  

Barcelona  $793  $793  - $550  $793  $848  $848  $848  $848  

Fos  $964  $964  $964  - $964  $903  $903  $903  $903  

Piraeus  $793  $793  $793  $550  - $848  $848  $848  $848  

Istanbul $400  $400  $400  $500  $400  - $500  $500  $500  

Izmit $400  $400  $400  $400  $400  $500  - $500  $500  

Bursa $400  $400  $400  $400  $400  $500  $500  - $500  

Izmir $400  $400  $400  $400  $400  $500  $500  $500  - 

Source. www.freightos.com 

Table 4 shows the container transportation demand between each pair of ports in the service. The 

demand data is hypothetically created since it is considered sensitive information and not to be 

shared by container shipping lines. The main flows of container transportation through the service 

are between West Mediterranean (Valencia, Castellon, Barcelona, and Fos Sur Mer) and East 

Mediterranean (Piraeus) and Marmara Sea (Istanbul, Izmit, Bursa, and Izmir). The hypothetical 

demand data is created considering this fact to reflect the current sector practice. Table 4 illustrates 

that the container transportation demand between ports of West Mediterranean and East 

Mediterranean and the Marmara Sea is created according to uniform distribution between 200 and 

500 containers. Since there is a minuscule number of containers transported among ports of the 

Mediterranean (Piraeus) and Marmara Sea (Istanbul, Izmit, Bursa, and Izmir). The hypothetical demand data is created considering
this fact to reflect the current sector practice. Table 4 illustrates that the container transportation demand between ports of West
Mediterranean and East Mediterranean and the Marmara Sea is created according to uniform distribution between 200 and 500
containers. Since there is a minuscule number of containers transported among ports of the Marmara Sea and ports of Spain and
France, the container transportation demands between those ports are created according to uniform distribution between 0 and 50
containers. It can be seen in Table 4 that there is a container transportation demand from Valencia to Castellon, but there is not
from Castellon to Valencia. Since the transportation of containers from Castellon to Valencia requires one complete voyage, it is
not economically and practically viable to transport containers from Castellon to Valencia. This is also applicable for other legs
that require one complete voyage to transport containers between them.

Table 3. Distance Between Ports in the Service (Nautical Miles)
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to transport containers between them. 

Table 3. Distance Between Ports in the Service (Nautical Miles) 

 
 

Valencia   Castellon   Barcelona   Fos   Piraeus  Istanbul Izmit Bursa Izmir 

Valencia  - 39 168 345 1407 1738 1773 1816 2052 

Castellon  3386 - 129 306 1368 1699 1734 1777 2013 

Barcelona  3257 3296 - 177 1239 1570 1605 1648 1884 

Fos  3080 1746 3248 - 1062 1393 1428 1471 1707 

Piraeus  2018 2057 2186 2363 - 331 366 409 645 

Istanbul 1687 1726 1855 2032 3094 - 35 78 314 

Izmit 1652 1691 1820 1997 3059 3390 - 43 279 

Bursa 1609 1648 1777 1954 3016 3347 3382 - 236 

Izmir 1373 1412 1541 1718 2780 3111 3146 3189 - 

Source. www.searates.com 

Data related to other parameters are also included in the instances. The time period included in the 

instances is 1 year. Since 1 voyage takes 21 days, the number of voyages equals 17. Inventory 

holding cost of 1 empty TEU (ℎ) for a duration of 1 voyage at a port in the service equals $105 

($5 per day). The average cost of leasing 1 empty TEU (𝑙) is $300. The share of spot container 

transportation demand in the market (𝑝𝑠) equals 0.6 meaning that 60% of the container 

transportation demand in the market is for spot container transportation. The empty container 

demand/supply at each port (𝐸𝑆𝐷௜௩) is hypothetically created according to uniform distribution 

Data related to other parameters are also included in the instances. The time period included in the instances is 1 year. Since 1
voyage takes 21 days, the number of voyages equals 17. Inventory holding cost of 1 empty TEU (h) for a duration of 1 voyage at
a port in the service equals $105 ($5 per day). The average cost of leasing 1 empty TEU (l) is $300. The share of spot container
transportation demand in the market (ps) equals 0.6 meaning that 60% of the container transportation demand in the market is for
spot container transportation. The empty container demand/supply at each port (𝐸𝑆𝐷𝑖𝑣) is hypothetically created according to
uniform distribution between -100 and 100. When it is below zero, it means the number of empty containers demanded at port i on
voyage 𝑣. When it is above zero, it means the number of empty containers supplied at port i on voyage v. Container transportation cost
between each pair of ports is determined according to transportation distance (𝐿𝑖 𝑗 ), which is shown in Table 3. The transportation
cost equals $0.05 per TEU per mile (𝑐𝑖 𝑗 = 0.05 ∗ 𝐿𝑖 𝑗 ). Additionally, upper, and lower bounds for the two decision variables, i.e.,
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𝑋𝐶𝑖 𝑗𝑣(w) and 𝑃𝑖 𝑗 , must be determined as described in equations (6), (7), (8), and (9). Lower bound for contractual price 𝑃𝑖 𝑗 equals
0.1 ∗ 𝐿𝑖 𝑗 , which is higher than the transportation cost of 1 container between port i and port j (𝐿 (𝑃𝑖 𝑗 ) = 0.1 ∗ 𝐿𝑖 𝑗 ) since it is not
reasonable that a container shipping company would provide contractual transportation prices lower than or equal to transportation
cost. At least reasonable profits should be made; thus, it is twice as much higher than the transportation costs. The upper bound of
the contractual price is the average spot market price throughout all 17 periods𝑈(𝑃𝑖 𝑗 ) = 𝑚𝑒𝑎𝑛𝑟𝑖 𝑗𝑣(𝑤) : 𝑣. It is reasonable that the
contractual price should be less than the average spot market price, otherwise there is no reason for customers to sign a contract,
they can get the transportation service from the spot market. The lower bound for 𝑋𝐶𝑖 𝑗𝑣 (w) equals 0 (𝐿𝑋𝐶𝑖 𝑗𝑣

(𝑤) = 0) since the
company can choose not to provide service for contractual shipments. The upper bound for 𝑋𝐶𝑖 𝑗𝑣(w) equals the total demand for
contractual shipments (𝑈𝑋𝐶𝑖 𝑗𝑣 (𝑤) = (1 − 𝑝𝑠) 𝐷𝑖 𝑗𝑣 (𝑤). The transportation capacity of the service (cap) equals 8200 TEUs. The
capacity is determined by turning the capacity parameter (cap) into a decision variable and solving the deterministic equivalent of
the model instance. The solution showed that to maximize the profits, the container liner company should provide at least 8201.89
TEUs of transportation capacity in the service. Assuming that the container liner company determined the service capacity that
maximizes its profits as consistent with industry practice, the capacity parameter (cap) was set to 8200 TEUs.

Table 4. Distance Between Ports in the Service Container Transportation Demand Between Ports in the Service (Number of TEUs)
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determined the service capacity that maximizes its profits as consistent with industry practice, the 

capacity parameter (𝑐𝑎𝑝) was set to 8200 TEUs. 

Table 4. Container Transportation Demand Between Ports in the Service (Number of TEUs) 

 Valencia Castellon Barcelona Fos Piraeus Istanbul Izmit Bursa Izmir 

Valencia - 𝑈[0, 50] 𝑈[0, 50] 𝑈[0, 50] 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]

Castellon 0 - 𝑈[0, 50] 𝑈[0, 50] 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]

Barcelon

a 
0 0 - 𝑈[0, 50] 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]

Fos 0 0 0 - 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]

Piraeus 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500] - 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]

Istanbul 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500] - 𝑈[0, 50] 𝑈[0, 50] 𝑈[0, 50] 

Izmit 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500] 0 - 𝑈[0, 50] 𝑈[0, 50] 

Bursa 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500] 0 0 - 𝑈[0, 50] 

Izmir 𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500]𝑈[200, 500] 0 0 0 - 

 

5.3. Sampling approach 

The uncertain input parameters of the model, namely spot container transportation price 𝑟௜௝௩(𝑤) 

and container transportation demand 𝐷௜௝௩(𝑤), are included in the instances as a finite number of 

scenarios that are constructed from a random sample with equal occurrence probabilities as 

consistent with the usual stochastic modeling practice (Birge & Louveaux, 2011). The random 

samples in the application case are taken from uniform distribution, and the lower and upper 

bounds of the uniform distribution were determined according to probable market expectations 

that were investigated. For example, when the expectation of a down to 10% decrease in the market 

demand is tested in the experiments, it is assumed that the demand will gradually decrease down 

to 10% at the last voyage of 17 voyages.  In that situation, the created scenarios include random 

demand realizations between the current level and 10% lower than the current level at the last 

voyage.  As an example, in one of the scenarios, if the random demand realization is -8.4%, it is 

5.3. Sampling approach

The uncertain input parameters of the model, namely spot container transportation price 𝑟𝑖 𝑗𝑣 (w) and container transportation
demand 𝐷𝑖 𝑗𝑣 (w), are included in the instances as a finite number of scenarios that are constructed from a random sample with
equal occurrence probabilities as consistent with the usual stochastic modeling practice (Birge & Louveaux, 2011). The random
samples in the application case are taken from uniform distribution, and the lower and upper bounds of the uniform distribution
were determined according to probable market expectations that were investigated. For example, when the expectation of a down
to 10% decrease in the market demand is tested in the experiments, it is assumed that the demand will gradually decrease down
to 10% at the last voyage of 17 voyages. In that situation, the created scenarios include random demand realizations between
the current level and 10% lower than the current level at the last voyage. As an example, in one of the scenarios, if the random
demand realization is -8.4%, it is assumed that the demand on the last voyage will be 8.4% lower than on the first voyage with
a gradual decrease of 8.4/17% in each voyage. When drawing random samples for spot price and transportation demand, the
correlation between those two random parameters was also considered according to the 0.8 Pearson correlation. For instance, if a
10% decrease in the market demand is assumed, it is also assumed that it will create down to a 10% decrease in the spot market
price, and random realization of those demands and spot market prices are 0.8 correlated in terms of Pearson correlation.

Because stochastic modeling instances are required to include a finite number of scenarios, the number of scenarios to be
included needs to be decided. If the number of scenarios is too many, the instance would not be solved in a reasonable time.
However, if the number of scenarios is too few, some portion of uncertainty would not be captured in the instances. Table 5 shows
the solution performance with regard to the number of scenarios. Model instances with 80, 90, and 100 scenarios as shown in
Table 5 were solved by Gurobi Solver. The differences in the objective values in each set of scenarios are less than 1%. This
indicates that increasing the number of scenarios to more than 100 would bring very little improvement. Therefore, it is decided
that 100 scenarios can provide adequate representation for uncertainty performing experimentations that will be explained in the
next section.
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Table 5. Solution Performance with Different Number of Scenarios 

 

Number of Scenarios Solution Time (Seconds) Objective Value ($) 

80 184  126,301,214 

90 211 127,162,364 

100 221 128,736,500 
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6. Experimental Results

6.1. Sensitivity Evaluations for Market Expectations

Experimentations have been performed considering various market situations in the application context. Particularly, three market
situations were evaluated concerning the expectation toward the future market. They include downward market expectations down
to 50%, upward market expectations up to 50%, and expectations in a range between down to 50% and up to 50%. In the
experimentation, it is evaluated how these market situations impact various performance criteria i.e., average contractual price,
gross profit (objective value), and capacity utilization.

6.1.1. Downward Market Expectations

The impacts of downward market expectations are evaluated by assuming that the future demand and spot market price will be
lower than the current level. 5 different levels of downward demand are evaluated. Each time, it is considered that the demand and
spot market prices would take values in between the current values and the downward level. For example, in the first level, it is
considered that the demand and spot market prices would take random values in between their current values and 10% downward
of the current market level. Down to 50% decreases in the demands and spot market prices were considered and illustrated in
Figure 3 and Figure 4.

Figure 3. Sensitivity of Capacity Utilization

Figure 3 shows that when a down to 10% decrease is expected in the market, the average capacity utilization would be around
80%. However, if the expected decrease is steeper i.e., 50%, the capacity utilization decreases a little less than 10% and becomes
71%. Increasing the range of downward uncertainty reduced the number of both contractual and spot containers while the number
of empty containers stayed about the same. A similar decrease is also observed for contractual freight as shown in Figure 4. When
the expected market decrease goes down to a range of 50% from a range of 10%, the contractual price decreases from 359𝑡𝑜324.8,
which is around 10%. Objective value, however, is more sensitive as it decreases 23% by going down from $123,060,930 to
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$94,485,490. These results indicate that a possible decrease in demand might cause serious financial difficulties and a high level of
idle capacity. Therefore, the liner company should prepare for the downward market in advance. One solution can be redeploying
its fleet to shift the capacity to the markets where the market outlook is more promising. Forming long-term relations with their
customers can be another option. The experiment instances assumed that 60% of the total demand is spot market demand while
40% of it is contractual demand from the contractual market. By forming long-term relations with customers, this share of the
contractual market can be increased.

Figure 4. Sensitivity Contractual Price and Objective Value

6.1.2. Upward Market Expectations

Upward market expectations were evaluated in the same way as the downward expectations, but the five-level demand changes
were upward as illustrated in Figure 5 and Figure 6. As shown in Figure 5, the capacity utilization resulted from the increasing
number of spot containers. When the range of upward market expectations goes to 50% from 10%, the increase in the average
capacity utilization would be around 5% increasing from 84.5% to 88.6%. Compared to the impact of downward expectations, the
change is almost half of the change resulting from the same amount of change in the downward expectations range. This indicates
that capacity utilization is more sensitive to demand decreases than demand increases. Additionally, at around 90%, the increase
in capacity utilization slows down and reaches saturation point even though there is enough demand for further increase. At this
point, the liner company should take measures to increase the capacity of the service to take advantage of the high demand. Various
options can be considered depending on the situation in the market. The capacity from other services that are less profitable can
be redeployed to the current service or extra container ships can be bought from the second-hand market or chartered or capacity
can be hired from other alliance members’ services.

An interesting result regarding empty containers was observed as illustrated in Figure 5. When the upward range increases, the
number of empty containers decreases. This result partially sheds light on the current empty container shortage in the market.
Among other reasons, when the market is expected to increase, it is more profitable for the liner company to allocate its slots to
spot containers instead of empty containers and looking for other options for empty container supply such as leasing since the
option of empty container leasing is included in the model. Even if the other options are more expensive than relocating empty
containers, the profit generated from increased spot rates and demand would compensate for it.

Figure 6 illustrates the sensitivity of contractual prices and gross profit (objective value). Contrary to capacity utilization, the
contractual price is more sensitive to the upward market expectations because the changes in the average contractual price resulting
from upward market expectations are higher compared to the changes resulting from downward market expectations. When the
upward expectations range goes up to 50% from 10%, the average contractual price increases 12% from $423 to $377.25. And the
objective value increases around 22% from $138,675,370 to $168,865,890.

6.1.3. Expectations towards Both Sides

In addition to downward and upward demand expectations, the symmetrical expectations towards both sides were evaluated
by assuming the market will be in a particular range between a certain percentage lower and upper than the current market.
Experiments were conducted the same way as the previous experiments, by evaluating 5-level range changes as illustrated in
Figure 7 and Figure 8.

Figure 7 illustrates the impacts on average capacity utilization. For example, the first level range in the graph shows the market
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Figure 5. Sensitivity of Capacity Utilization

Figure 6. Sensitivity of Contractual Price and Objective Value

expectations between 10% up and 10% lower than the current market, and the demand and spot market prices take random values
in between this range. The graphs in Figure 5 show that even if the market expectations are symmetrical on both sides (downward
and upward), the increasing uncertainty ranges negatively affect both capacity utilization and objective value while increasing
contractual price. When the uncertainty exceeds the range between -20% and +20%, the number of contractual and spot containers
starts to shrink. While the number of empty containers stays about the same unit the uncertainty range hits -40% and +40% then
the number of empty containers starts to shrink as well. The increase in the uncertainty ranges from between +10% and -10%
to between +50% and -50% decreases average capacity utilization around 5% from 82.4% to 78.5% while decreasing objective
value around 1.5% from 130, 600, 900𝑡𝑜128,736,500. On the other hand, this change in the uncertainty range increases the average
contractual price by around 5% from $369.47 to $390.43.

These results indicate that the increasing range of uncertainty negatively impacts the business of the liner company. Therefore,
the level of uncertainty should be reduced by taking various measures. To minimize uncertainty, a company can increase its
integration and information sharing with its customers. This can be accomplished by long-term relationships as stated earlier as a
measure to deal with downward market expectations. Additionally, taking advantage of state-of-the-art forecasting techniques can
help to reduce the level of uncertainty.

6.2. Value of Stochastic Solution

The value gained from including stochasticity in the modeling is evaluated in this section. The value of the stochastic solution
(VSS) is defined as the benefit gained from including uncertainty in a model (Birge, 1982; Birge & Louveaux, 2011; Maggioni
& Wallace, 2012). Equation 11.1 shows that in a maximization problem, it equals the recourse problem (RP) solution minus
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Figure 7. Sensitivity of Capacity Utilization

Figure 8. Sensitivity of Contractual Price and Objective Value

the expectation of the expected value solution (EEV). Recourse problem solutions equal the solution of the stochastic instance.
Expectations of the expected value solutions equal the mean of deterministic instance solutions of every scenario by fixing the first
stage variable values to the deterministic instance solution of the mean value scenario (Birge (1982), Birge & Louveaux (2011),
and Maggioni & Wallace (2012).

𝑉𝑆𝑆 = 𝑅𝑃 − 𝐸𝐸𝑉 (23)

𝑅𝑃 = min
𝑥

𝐸𝜔𝑧(𝑥, 𝜔) (24)

𝐸𝐸𝑉 = 𝐸𝜔 (min
𝑥

𝑧(𝑥(𝜔), 𝜔)) (25)

Table 6 shows values of stochastic solution calculated for three instances; the first instance includes downward expectations in
a range from the current level to down to 50%, and the second instance includes upward expectations in a range from the current
level to up to 50%, and the third instance includes the expectations in a range between down to 50% and up to 50%. Table 6
shows that when the market is expected to decrease by 50%, applying stochastic modeling would bring up to $1,815,490 more
profit instead of applying a deterministic equivalent. The benefit of stochastic solution would be higher, particularly $4,390,640
when the market is expected to increase up to 50%. On the other hand, when the market is expected to be in a range between
up to 50% and down to 50%, the value of the stochastic solution would be $386,980. Results for all three instances confirm that
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including stochasticity in the modeling brings benefits. Since life is full of uncertainties, it can be assumed that it is certain, but it
is not possible to avoid the impacts of uncertainties. Therefore, accounting for uncertainty in the modeling of slot allocation and
contractual pricing of container liner shipping would be beneficial.

Table 6. Value of Stochastic Solutions ($)
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7. Conclusions

The product of container liner companies is their transportation capacity, and by selling their transportation capacities in
particular routes to their customers, they generate revenue. Therefore, managing their transportation capacity is a topmost priority
for container liner companies. The capacity usage can be segmented into three as the capacity for contractual, spot, and empty
containers. Additionally, the number of slots allocated to contractual and spot containers depends on the prices provided to each
type of customer. The transportation price for spot containers is determined in accordance with the spot market prices; however,
contractual prices are determined according to future expectations regarding demand and spot market prices. Container shipping
lines usually have room for deviating from the contractual prices of their competitors. Therefore, optimum contractual prices and
slot allocation that maximize profitability and capacity utilization of container shipping lines can be determined by taking advantage
of optimization modelling. In this regard, this study aimed to propose an optimization model for slot allocation and contractual
pricing that considers spot and contractual shipments and empty container repositioning under a stochastic environment. The
model was applied in the case of container liner shipping service in between ports of western Mediterranean and ports of Marmara
Sea.

Experimentation for evaluating the downward market expectations showed that a possible decrease in the demand and spot prices
could cause a tremendous loss in revenue and create a high level of idle capacity. The liner company should take measures to soften
the blow by redeploying its ships to services that have promising outlooks or focusing on developing long-term relationships with
its customers to increase the share of contractual shipment demand in terms of total demand. Experiments regarding the upward
demand expectation showed that the capacity utilization reach a saturation point at around 90%. After this point, the company
needs to increase its service capacity to take advantage of the increasing market. Increasing range of upward demand results in a
reduction of empty container transportation since it becomes more profitable to allocate the slots to spot market demand rather
than empty containers and to take advantage of other means of empty container supply. Experimentation of symmetric uncertainty
revealed that the increasing range of uncertainty creates a serious loss in profits and capacity utilization. It can be minimized by
higher integration and information sharing with customers and taking advantage of state-of-the-art demand forecasting techniques.

The results of this study can have various implications. Decreases in demand for container transportation can have a tremendous
impact on profitability of container lines. Container shipping lines can soften the impact by developing long-term relationships to
increase the share of contractual shipments. Increases in the uncertainty can also cause big losses in profits. This shows container
shipping lines the importance of integration with supply chain partners and taking advantage of new technologies such as AI and
big data analytics for state-of-the-art demand forecasting. Besides, calculations of the value of stochastic solutions showed that
the application of the stochastic modeling solutions would provide a higher profit margin than the solution of its deterministic
equivalents. Therefore, container shipping lines should include uncertainty in their optimization modelling to increase their
profitability.

This study has several limitations. First, it is apparent that the experimental results highly depend on the functional relationship
between contractual price and the number of contractual slots. Second, the model includes only two stochastic parameters, namely
sport prices and demand for container transportation. Third, the container transportation costs do not explicitly include speed and
bunker consumption function. The application instances include container transportation cost that was determined according to
transportation distance multiplied with a constant that equals to $0.05.

Future studies can overcome those limitations. First, the application of the model can be improved by providing a data-driven
approach to determine the functional dependence between contractual price and the number of slots allocated to contractual
shipments. Second, the model can include other stochastic parameters such as inventory costs, container leasing costs and
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transportation costs. Third, the model can be improved by including bunker consumption function and speed of container ships as
decision variables. However, inclusion of more stochastic parameters and additional decision variables might increase the difficulty
of model solution. Therefore, future studies can also develop specialized solution algorithms for their models.
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