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Abstract: This study aims at the simultaneous solution of several quaternion
linear systems with the same Hermitian and positive definite coefficient matrix
by employing the conjugate gradient method. We consider the setting when the
quaternion Hermitian positive definite coefficient matrix at hand is very large so
that direct methods are not applicable. In the study, we first transform linear
quaternion systems into real linear systems. The transformed real linear systems
have special structure due to the fact that they are real representations of
quaternion systems. Benefitting from the special structure, we further reduce the
size of these linear systems. Then a block conjugate gradient method is applied
to the resulting reduced real linear systems. The solution obtained after applying
the conjugate gradient method is a real representation of the solution of the
original quaternion problem. Thus, a conversion of this real solution to the
quaternion setting is performed in the end.
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Oz: Bu ¢alismada katsayilar matrisi ayn1 ve Hermitian, pozitif tanimli olan bir
takim lineer kuaterniyon sistemlerinin eslenik gradyan metodu kullanilarak es
zamanli ¢6ziimii amaglanmistir. Kuaterniyon Hermitian pozitif tanimli katsayilar
matrisinin boyutunun ¢ok biiyiik olmast durumunda, lineer sistemlerin ¢oziimii
icin direk metotlar kullanima uygun degildir. Calismada, Oncelikle lineer
kuaterniyon sistemlerini reel lineer sistemlere doniistiirdiik. Dontistiiriilen reel
lineer sistemler, kuaterniyon sistemlerin reel temsilleri olmalarindan 6tiirii 6zel
yapiya sahiplerdir. Bu 6zel yapiy1 kullanarak reel lineer sistemlerin boyutlarini
indirgedik. Daha sonra elde edilen indirgenmis reel sistemlere yinelemeli bir
yontem olan blok eslenik gradyan metodunu uyguladik. Blok eslenik gradyan
metodu uygulandiktan sonra elde edilen ¢oziimler, orijinal kuaterniyon lineer
sistemlerinin ¢6ziimlerinin bir reel temsilidir. Son olarak bu reel ¢6ziimleri
original sistemin kuaterniyon ¢dziimlerine doniistiirdiik.

1. Introduction

Quaternions have

important applications in quantum mechanics, image processing, and

kinematics (Rodman, 2014; Wei et al., 2018). More specifically, they are useful in the theory of quantum
mechanics for unifying fundamental forces concerning elementary particles (Adler, 1995). Additionally,
quaternions are used to represent color video signals so as to retain correlation between the three
channels of red, green, blue. Therefore, they have been widely employed in color imaging and color
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videos in the literature (Sangwine, 1996; He et al., 2023). They are also suitable for describing
translations, rotations of a rigid body (Arena et al., 1998; Caccavale et al., 1999). Use of quaternions in
such applications stimulated interest into quaternions. On the other side, linear systems over complex
numbers or quaternions are among the most common problems encountered in scientific computing.
They usually arise from discretization of models for solving physical problems, linearization of
nonlinear equations or problems that involve obtaining the least-squares estimates of the parameters in
linear statistical models (Wendland, 2018). In this work, we focus on the solution of Hermitian positive
definite linear systems over quaternions in the large-scale setting when there are many unknowns and
equations. In particular, for such quaternion systems, we describe a block conjugate gradient method,
an iterative subspace approach based on projections to Krylov subspaces exploiting Hermitian positive
definiteness of the systems.

The skew-field H of quaternions is a four-dimensional algebra over the real algebra R generated
by the basis {1,i,, k} with the multiplication rules i? = j2 = k? = —1, ij = —ji = k. A quaternion
number a can be expressed as

a=ay+ai+a,j+ask, (1)

where ag, a;, a, and a5 are real numbers, and the modulus of a is defined as |a| = f 3 ,a? . Clearly,

the multiplication of two quaternion scalars is non-commutative. Denoting by H,,, ., the setofallm X n
matrices with quaternion entries, a system of quaternion linear equations can be represented as

Ax = b, 2

where A € H,,,»,, is @ known matrix, b € H,,»; is a known vector, and x € H,, . is the unknown
vector. Iterative methods are often preferred for solving large-scale sparse linear systems. One family
of iterative methods that include most widely used techniques to solve linear systems today is Krylov
subspace methods, all of which seek the solution of the original problem in a lower-dimensional
(Krylov) subspace. The solution of the linear system in Equation (2) over the field of real and complex
fields (when A is a real and complex matrix, b and the unknown x are real and complex vectors) by
Krylov subspace methods has been studied extensively. However, very few studies can be found in the
literature on the quaternion linear system in Equation (2). The notable studies on the quaternion linear
systems based on Krylov subspaces are as follows. Jia and Ng have developed the quaternion
generalized minimum residual method (QGMRES) for solving the quaternion linear system in Equation
(2) (Jia & Ng, 2021). Opfer has investigated the conjugate gradient algorithm based on Krylov subspaces
for the quaternion linear systems when the coefficient matrix is a Hermitian positive definite matrix
(Opfer, 2005).
Let us consider the linear systems

Ax; = b, i =12,..,s, 3)
for a given Hermitian positive definite matrix A € H,,,,, given vectors b; € H,,»;, and unknown
vectors x; € M, ;. We can solve these linear systems simultaneously instead of solving them separately
(O’Leary, 1980). By arranging the right-hand sides and the corresponding solutions in the matrices

B := [b1|b2| bs] € Hyxs and X = [xllle "'xs] € Hpxs 4)
the linear systems in Equation (3) can be combined into

AX = B. Q)

More formally, in this work, we describe a block conjugate gradient method to solve the quaternion
matrix equation in Equation (5). A block conjugate gradient method for AX = B has advantages over
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applying the conjugate gradient method separately to the s quaternion linear systems in Equation (3).
Most notably, the solutions for all right-hand sides are estimated simultaneously. This may reduce the
dimension of the Krylov subspace, and, as a result, the number of matrix-vector multiplications as well
as orthogonalization costs to compute the solutions to a prescribed accuracy. Consequently, a block
conjugate gradient method often results in not only computational efficiency but also a decrease in
memory storage requirements (Feng et al., 1995; Ji & Li, 2017).

This paper is organized as follows. In Section 2, we first recall the preliminaries for quaternion
matrices and properties of the real counterparts of quaternion matrices. The proposed approach for the
solution of the matrix equation in Equation (5) is described in Section 2.2. In the proposed approach, we
transform the original quaternion matrix equation into a real matrix equation by using the real
representation of a quaternion matrix. Then, by exploiting the special structures of the real
representations of quaternion matrices, we further reduce the sizes of the matrices involved in the real
matrix equation. Subsequently, a block conjugate gradient method is applied to the resulting real matrix
equation. The solution of the original quaternion matrix equation can be formed from the solution of the
real matrix equation by a simple transformation. Thus in the end we apply this transformation to the
solution of the real matrix equation retrieved from the block conjugate gradient method to obtain the
solution of the original quaternion matrix equation. In Section 3, we confirm that the proposed approach
converges to the solution as expected from a conjugate gradient method on two numerical examples. In
particular, we illustrate on these examples how quickly the residuals decay depends on the number of
clusters of the eigenvalues of the coefficient matrix. We conclude in Section 4 with a summary of our
findings and point out future research directions.

2. Material and Methods

In this section, we first briefly give the necessary background on quaternion matrices, their real
representations, spectral properties, and spell out the real counterpart of the quaternion matrix equation
in Equation (5) in Section 2.1. Then, the proposed approach for the iterative solution of the quaternion
matrix equation in Equation (5) based on a block conjugate gradient method is described in Section 2.2.

2.1. Background

A quaternion matrix A € H,,,«,, can be written as a sum of four real matrices in the form
A=A0 +A1’.+A2]+A3k, (6)

where Ay, A1,4,,A3 € R,,«,,- The conjugate and conjugate transpose of a quaternion matrix A is
defined as A = Ay — A;i — Ayj — Azk and A* = A} — ATi — ATj — ALk, respectively. Moreover, a
matrix A € H,,x, is called invertible, if there exist a matrix A~! € H,,»,, satisfying AA™1 = A"1A =1,
For a matrix A € H,,y,, if A = A", then A is called a Hermitian matrix. A Hermitian quaternion matrix
A is called positive definite if and only if x*Ax > 0 for Vx € H,,»;\{0}. The 2-norm of x € H,,», and

the Frobenius norm of A=[al~j]€IHIan are defined by |[|lx|l, =/Xi=;Ix;|? and [|Allr =

f ﬁ12?=1|aij|2, respectively. We refer the reader to (Rodman, 2014; Wei et al., 2018) for this

background information and further details on quaternions.

One way of dealing with a matrix A over the quaternion skew-field is to exploit its real matrix
representation Y(A4) (Wei et al., 2018), which is defined for A = Ay + A,i + Ayj + Azk € Hypy iy, With
Ag, A1, Az, Az € Ry by

A -4, —A, —A,
o= |t A A A -
A, A, A -4,
A, -4, A4, A

s
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This real representation of a quaternion matrix is motivated by the fact that a quaternion matrix X
satisfying the quaternion linear system in Equation (5) also satisfies the real linear system below:

YAWEX) = v(B). ®)

We remark that there are alternative real representations of a quaternion matrix employed in the
literature to convert a quaternion linear system as in Equation (5) into a real one as in Equation (8), but
there is not a notable advantage of one over the others (Jia & Ng, 2021). The following properties can
be verified for the real matrix representation of a quaternion matrix above we depend on here.

Theorem 1 (Wei et al., 2018): Let A, B € H,;,«, C € H, x5 and k € R. The following assertions hold:

i. A=B o y(4) = w(B).
ii. WA+ B) =)+ u(B).
iii. Y(kA) = kP(A).
iv. Y(AC) = Y(AyY(0).
v. YA = gA)".
vi. A € M,y is an invertible matrix if and only if y(A) is an invertible matrix, and, if A € H,,
is invertible, then Yy(A~H)=y(4) 1.
vii. A € H,,«, is a unitary matrix, i.e., AA* = A*A =1, if and only if Y(A4) is an orthogonal
matrix.
viii. [ lr = 2llAll¢.

Next we formally define a right eigenvalue, and eigenvector of a square quaternion matrix.

Definition 1 (Farenick & Pidkowich, 2003): For A € H,x,, if the pair (4, x) € H X (H,,x;\{0}) is
such that Ax = xA, then X is called a right eigenvalue, x is called a right eigenvector corresponding to
A, and (4, x) is called a right eigenpair of A.

If A is a non-real right eigenvalue such that Ax = xA , then Axs = xs(s~1As) for every nonzero s € H.
Hence, in case A has a non-real right eigenvalue, then it turns out that A has infinitely many non-real
right eigenvalues. But if 4 is a Hermitian quaternion matrix, then all eigenvalues of A are real as stated
next formally.

Theorem 2 (Farenick & Pidkowich, 2003): If A € H,,,, is Hermitian, then every right eigenvalue of A
is real and the number of right eigenvalues of A is n.

Now, we state the spectral theorem of a Hermitian quaternion matrix.
Theorem 3 (Farenick & Pidkowich, 2003): If A € H,,«,, is Hermitian, then there is a unitary matrix
U € H,,«y, such that U*AU is a diagonal matrix, whose diagonal entries are real and correspond to the

eigenvalues of A.

Hermitian positive definite quaternion matrices play an important role in this work. The next
result states that their real representations are also positive definite.

Theorem 4 (Wei et al., 2018): A matrix A € H,,«,, is Hermitian positive definite if and only if Y(4) is
a symmetric positive definite matrix.

The real representations of quaternion matrices possess special structure. To state the special
structure possessed formally, we next introduce the notion of a JRS-symmetric matrix, and related

structures.

Definition 2 (Wei et al., 2018): Let J,,, R, and S, be the following orthogonal matrices:
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0 0 -1, O o -7, 0 0 0 0 0 -I,
0O 0 0 -I 1 0 0 0 0 0 1 0
Jn= "L Rn=|" and S, = ! . ©)
I, 0 O 0 0 0 0 1, 0 -7, 0 0
0 I, 0 0o o0 -, O I, 0 0 O

We define a JRS-symmetric, JRS-symplectic, and orthogonal JRS-symplectic matrix as follows:

i. A matrix M € Rypyan is called JRS-symmetric if J,,MJL = M, R,,MRY = M and

SmMST =M.

ii. A matrix O € Ryyyxan is called JRS-symplectic if 0,07 =J,,, OR,0T = R, and
0S,0T = S,,,.

iii. A matrix W € Rypx4n is called orthogonal JRS-symplectic if it is orthogonal and JRS-
symplectic.

The first one of the following two result relates JRS-symmetric matrices with quaternion
matrices, while the second one spells out what distinguishes two different JRS-symmetric matrices.

Theorem 5 (Wei et al., 2018): A matrix M € Ryx4n 1S JRS-symmetric if and only if M is a real matrix
representation of a quaternion matrix.

Theorem 6 (Wei et al., 2018): A JRS-symmetric matrix is uniquely determined by its four submatrices
on the first column block (or first row block).

In the next theorem, Y(A), and, Y(A), denote the first column block and the first row block of
a quaternion matrix A, respectively.

Theorem 7 (Wei et al., 2018): Letting A, B € Hy;,xn, C € H, x5, ¢ € H,,»; and k € R, we have

i YA+ B).=y(A)+Y(B)e, Y(4+ B)r = Y(A), + ¥(B),,
ii. Y(kA)e = kQ(A)c, Y(kA), = kp(A),,
iii. Y(AC)c = W(AW(C)c, YAC), = Y(A),Y(C),
iv. YA = WA)e, WA, = WA,
vo W(@cllz = llgllz, (g 1l2 = liqll2,
vi. [[W(Acllr = [1Allr, 1WA llF = llAllE.

2.2. The quaternion block conjugate gradient method

Let us consider the quaternion matrix equation AX = B. As the coefficient matrix is a Hermitian
positive definite matrix, especially if the matrix A is sparse and large, a block conjugate gradient method
is a good candidate to solve this quaternion matrix equation. As indicated in the previous section, AX =
B holds if and only if y(A)W(X) = Y(B) holds. Hence, instead of the quaternion matrix equation AX =
B, we can solve the real matrix equation Y(A)P(X) = Y(B). The sizes of the matrices Y(A4), P(X) and
Y(B) in this real matrix equation are 4n X 4n, 4n X 4s, and 4n X 4s, respectively. However, it follows
from Theorem 7 (iii) that the sizes of the latter two can be reduced. In particular, we can indeed solve
Y(AW(X), = Y(B), instead of Y(A)P(X) = P(B); the upside of doing so is that the unknown J(X),,
and the right-hand side Y(B), are both of size 4n X s, that is we now solve s linear systems
simultaneously instead of 4s simultaneous linear systems needed for Y(A)W(X) = Y(B). Moreover,
the quaternion solution X € H,,«; of AX = B can be formed immediately from the real solution y(X),
of YA Y(X) = Y(B)..

By Theorem 4, the real matrix YP(A) is symmetric and positive definite, so we can apply the
block conjugate gradient method to solve the real matrix equation Y(A)Y(X),. = Y(B). using the real
floating point arithmetic. For the sake of simplifying the notation, let us denote y(4), Y(X)., Y(B),
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with A, X, and B, respectively. Letting &}y be an initial guess matrix for the solution X, and R be the
corresponding residual matrix, i.e., Ry = B — AX,, the block Krylov subspace is defined as

K (A, Ro) = span{Rq, ARy, ..., A 'R,}. (10)

Observe that, denoting the ith columns of B and & with £; and x;, respectively, the solution X' =
[#1]%2] ... £5] of AX = B is the unique global minimizer of

1
O(X) = Xi; () = iy 52 Ax; — 2 6. (1)

Indeed, since A is a symmetric positive definite matrix, the objective function ®(X") has only one global
minimizer, that is the unique solution of V®(X') = AX — B = 0. The block conjugate gradient method
seeks the global minimizer X} of ®(X") over the affine space Xy + K (A, Ry). Equivalently, letting
X, be the solution of AX =B, the matrix X} is also the global minimizer ||X— X, ||12:,A =
trace((X —X)TAX - X*)) over the space Xy + K, (A, Ry). Hence, the block conjugate gradient
method at iteration k finds the matrix in the affine space Xy + K; (A, R) that is closest to the actual
solution X, of AX = B with respect to the weighted Frobenius norm || - ||,2,~, - The between the iterates
X 4+1 and X}, of the conjugate method at two consecutive iterations can be represented as

Xer1 = X + PryrDgsas (12)

where Ppiq € R,y with columns in I (A, Ry) corresponds to the s search directions for the
solutions of the s linear systems, and Ay, 1 € R,y is a diagonal matrix with entries on the diagonal
representing the step lengths that determine how big steps should be taken in search directions. As X}, 4
is the minimizer over X, + Ky (A, Ry), the diagonal step-length matrix A, ; € Rgy must satisfy

0P (X +Pr+10k+1)
OAg+1

= Pr 1 (A(Xy + Pryrhsr) — B) = 0. (13)

The new search directions Py 41 € Ry« can be expressed in terms of the previous search directions Py,
as

Pr+1 = Ri + PeQysq, (14)

where R, = B — AX), and the parameter matrix Q. is given by Q1 = —(PgAPk)_l(PﬁARk).
This expression is also obtained by exploiting the optimality of A}, more specifically the fact that it
is the minimizer of ®(X) over Xy + Kp41(A, Ry). As it turns out, the optimality of X}, implies the

orthogonality of X}, — X} to every vector in K, (A, Ry), i.e., trace (ZTA(Xk+1 — XO)) = 0 for all
Z € Kr(A,Ry). This in turn gives rise to the equality in Equation (14). It is straightforward to deduce
Ki(ARy) = span{Ro,.ARo, ...,Ak_lRO} = span{Ry, R4, ..., Rk—1} and RjTRk =0 for j=
1,2, ...,k — 1. From this fact and Py € K, (A, Ry), it can also be deduced that Py R, = 0 as well as
Pr.1 AP, = 0. To summarize, the following properties hold among the residuals and search directions:

i. RjRy=0forj+k,
ii. PLRy =0,
iii. P 1 AP, = 0.

By employing the orthogonality properties above, the expressions for A4 and (1 can be rewritten
as

-1 -1
Ags1 = (Pks1APis1) RiRi and Qyiq = (RiciRpe—1)  RiR (15)
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A description of the overall block conjugate algorithm for the real matrix equation AX = B is
given in Algorithm 1 below.

Algorithm 1. The block conjugate gradient algorithm

Input: A € Rypxan, B € Rypxs, maximum number of iterations k, termination tolerance €
Output: An approximate solution X for AX = B
Chose an initial guess matrix Xy, Rog = B— AXy, k=0
while k < kand || Ryl|lp > €
If k = 0, then
Po =TRyg

else
T -1,
Qg = (Rk—1Rk—1) RiRy and Pryq = Ry + PrQyqq
end
Nerr = (Phi1APrsr) RER,
Xey1 = X + P11
Ri+1 = Rk — APrs1is1

k=k+1
end
‘? - Xk
3. Results

In this section, we demonstrate the accuracy and convergence of the proposed method on a
quaternion matrix equation AX = B with a rectangular tall and skinny coefficient matrix A. The best
solution to this matrix equation in the least-squares sense is found by solving the normal equation
associated with the original matrix equation. The normal equation is always consistent, that is it always
has a solution. More specifically, we consider a quaternion matrix equation AX = B, where
A € Hypoxgo, B € Hygox1o, and X € Hggy10. The normal equation associated with this quaternion
matrix equation is A*AX = A*B. The coefficient matrix of the normal equation A*4 is always Hermitian
positive definite, so we can apply the block conjugate gradient method described in Section 2.2 to solve
the normal equation A*AX = A*B. By exploiting the real matrix representations of A*A, X and B, we
transform the quaternion normal equation A*AX = A*B into the real matrix equation

YA AY(X) = Y(A"B). (16)

This transformation yields the real matrices Y(A*A), P(X) and Y(A*B), whose dimensions are
320x320, 320x 40 and 320x 40, respectively. As suggested in the previous section, we can further
reduce the dimensions of the matrices in Equation (16) by instead solving

YA AYX) e = Y(A"B).. (17

The solution X of the normal equation A*AX = A*B, hence the least-squares solution of AX = B, can
then be retrieved from y(X),.

Hence, using now the short-hands A, X' and B for Y(4*A), U(X)., W(A*B),, respectively, we
apply Algorithm 1 to AX = B by setting the maximum number of iterations equal to 40. The
convergence of the algorithm is illustrated in Figure 1 and Figure 2. To be precise, the plot in Figure 1
depicts the residual norm |[Y(B), — Y(A)(W(X))kllp for the real matrix equation Y(A)P(X), =
Y (B), as a function of number of iterations k. On the other hand, the plot in Figure 2 shows the residual
norm ||Ryllr = [|B — AXy||p for the normal equations AX = B as a function of k. When the
coefficient matrix is unitarily diagonalizable (normal), the convergence behavior of the conjugate
gradient method is determined by the eigenvalue distribution of the coefficient matrix. In the example
we consider here, the matrix A € Hypoxgo 1S formed so that A*A has 10 distinct eigenvalues. Not
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surprisingly, the residual norms in Figure 1 and 2 decay initially up until the 10th iteration, but do not
change much starting from 10th iteration and afterwards. In Figure 1, the residual norm becomes 114 at
the 10th iteration, and remains more or less 114 after the 10th iteration. This is expected as the linear
system Y(A)Y(X), = Y(B)., equivalently the linear system AX = B, has no solution, but the
conjugate gradient method (Algorithm 1) converges nearly to the least-squares solution minimizing
lW(B), — WA (WX))kllp over all X by the 10th iteration, as the solution to the associated normal
equation is nearly converged by then. Meanwhile, in Figure 2 it can be observed that the residual norm
associated with the normal equation decays to zero by the 10th iteration, and remains so afterwards,
which is expected as the conjugate gradient method is applied to solve the normal equation that has a
solution.

We have also perturbed the coefficient matrix so that for the resulting A € Hyggxge the matrix
A*A has no more repeated eigenvalues, rather it has eigenvalues clustered around 10 real points. The
plots of the residual norms |[|Y(B), — W(A)(WX) Dkl and || R llr = I|1B — AX; || for this slightly
perturbed matrix equation are given in Figure 3 and Figure 4, respectively. Notice that, as before, the
residual norms decay rapidly in the first 10 iterations. Though the decay in the residual norms slows
down gradually after the 10th iteration, the decays in the residuals continue even after the 10th iteration,
in particular the residuals do not remain constant after the 10th iteration anymore. This behavior in the
residuals is expected, as the matrix A*A has now all distinct eigenvalues.
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Figure 1. The decay of the residual norm |[y/(B), — Y(A)(W(X))kllr as a function of k for the
quaternion matrix equation AX = B in Section 3.
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Figure 2. The decay of the residual norm ||B — AX) || associated with the normal equation AX = B
with A = P(4A*A4), X = Y(X),. and B = Y(A*B). as a function of k for the quaternion
matrix equation AX = B in Section 3.
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Figure 3. This is a plot of the residual norms as in Figure 1, but only now the coefficient matrix 4 is
perturbed so that it has distinct eigenvalues clustered around 10 points on the real axis.
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Figure 4. Plot of residual norms as in Figure 2, but the coefficient matrix A is perturbed so that it has
distinct eigenvalues clustered around 10 points.

4. Discussion and Conclusion

Problems involving quaternion objects, defined over the skew-field of quaternions, arise from a
wide variety of applications. Especially, solving quaternion linear systems has attracted substantial
attention, recently. The analytical tools such as the Moore-Penrose Inverse, Kronecker product are very
expensive computationally, and not useful if the linear system has a large and sparse quaternion
coefficient matrix. Iterative methods, on the other hand, may be applicable to such large-scale sparse
quaternion linear systems.

In this study, we have considered several quaternion linear systems with the same Hermitian
quaternion coefficient matrix. One way of dealing with quaternion linear systems is to use the real
representations of quaternion matrices. We have first applied the transformation that converts the
quaternion coefficient matrix, the right-hand sides and the solution to their real representations. The
resulting linear systems are real, all with a common symmetric positive definite coefficient matrix. We
have taken into account the special structure of the real representation of a quaternion matrix to reduce
the number of resulting real linear systems to be solved. Subsequently, a block conjugate gradient
method is applied to solve the real linear systems simultaneously in real arithmetic; solving systems
simultaneously by a block method potentially reduces the number of iterations, hence improves the
efficiency and storage requirements. The conversion of the real representation of the solution of the
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original quaternion system returned by the block conjugate gradient method to the actual quaternion
solution is performed in the end without any computational burden. The proposed method is
implemented in Matlab, and its convergence to the actual solution is verified on two numerical
examples. These numerical experiments illustrate that, as expected, how quickly the block conjugate
gradient method converges depends on the number of clusters of the eigenvalues of the Hermitian
quaternion coefficient matrix; the smaller is the number of clusters, the faster is the convergence.

As future work, we intend to focus on the solutions of quaternion matrix equations such as
Sylvester, Lyapunov, and Stein matrix equations by block conjugate gradient methods. Computing
special type of solutions (e.g., symmetric, centrosymmetric) of these quaternion matrix equations may
be of interest. Moreover, the solutions of these matrix equations can be tried to be retrieved with
applications of alternative iterative methods such as a block GMRES method in case Hermiticity and/or
positive-definiteness features do not exist.
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