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Abstract: This study aims at the simultaneous solution of several quaternion 

linear systems with the same Hermitian and positive definite coefficient matrix 

by employing the conjugate gradient method. We consider the setting when the 

quaternion Hermitian positive definite coefficient matrix at hand is very large so 

that direct methods are not applicable. In the study, we first transform linear 

quaternion systems into real linear systems. The transformed real linear systems 

have special structure due to the fact that they are real representations of 

quaternion systems. Benefitting from the special structure, we further reduce the 

size of these linear systems. Then a block conjugate gradient method is applied 

to the resulting reduced real linear systems. The solution obtained after applying 

the conjugate gradient method is a real representation of the solution of the 

original quaternion problem. Thus, a conversion of this real solution to the 

quaternion setting is performed in the end. 
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Anahtar Kelimeler 

Blok eşlenik gradyan metot, 

Krylov altuzay, 

Lineer kuaterniyon sistemler 

Öz: Bu çalışmada katsayılar matrisi aynı ve Hermitian, pozitif tanımlı olan bir 

takım lineer kuaterniyon sistemlerinin eşlenik gradyan metodu kullanılarak eş 

zamanlı çözümü amaçlanmıştır. Kuaterniyon Hermitian pozitif tanımlı katsayılar 

matrisinin boyutunun çok büyük olması durumunda, lineer sistemlerin çözümü 

için direk metotlar kullanıma uygun değildir. Çalışmada, öncelikle lineer 

kuaterniyon sistemlerini reel lineer sistemlere dönüştürdük. Dönüştürülen reel 

lineer sistemler, kuaterniyon sistemlerin reel temsilleri olmalarından ötürü özel 

yapıya sahiplerdir. Bu özel yapıyı kullanarak reel lineer sistemlerin boyutlarını 

indirgedik. Daha sonra elde edilen indirgenmiş reel sistemlere yinelemeli bir 

yöntem olan blok eşlenik gradyan metodunu uyguladık. Blok eşlenik gradyan 

metodu uygulandıktan sonra elde edilen çözümler, orijinal kuaterniyon lineer 

sistemlerinin çözümlerinin bir reel temsilidir. Son olarak bu reel çözümleri 

original sistemin kuaterniyon çözümlerine dönüştürdük. 
  

 

1. Introduction  

 

Quaternions have important applications in quantum mechanics, image processing, and 

kinematics (Rodman, 2014; Wei et al., 2018). More specifically, they are useful in the theory of quantum 

mechanics for unifying fundamental forces concerning elementary particles (Adler, 1995). Additionally, 

quaternions are used to represent color video signals so as to retain correlation between the three 

channels of red, green, blue. Therefore, they have been widely employed in color imaging and color 
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videos in the literature (Sangwine, 1996; He et al., 2023). They are also suitable for describing 

translations, rotations of a rigid body (Arena et al., 1998; Caccavale et al., 1999). Use of quaternions in 

such applications stimulated interest into quaternions. On the other side, linear systems over complex 

numbers or quaternions are among the most common problems encountered in scientific computing. 

They usually arise from discretization of models for solving physical problems, linearization of 

nonlinear equations or problems that involve obtaining the least-squares estimates of the parameters in 

linear statistical models (Wendland, 2018). In this work, we focus on the solution of Hermitian positive 

definite linear systems over quaternions in the large-scale setting when there are many unknowns and 

equations. In particular, for such quaternion systems, we describe a block conjugate gradient method, 

an iterative subspace approach based on projections to Krylov subspaces exploiting Hermitian positive 

definiteness of the systems.  

The skew-field ℍ of quaternions is a four-dimensional algebra over the real algebra ℝ generated 

by the basis {1, 𝑖, 𝑗, 𝑘} with the multiplication rules 𝑖2 = 𝑗2 = 𝑘2 = −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘. A quaternion 

number 𝑎 can be expressed as  

 

𝑎 = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘, (1) 

 

where 𝑎0, 𝑎1, 𝑎2 and 𝑎3 are real numbers, and the modulus of 𝑎 is defined as |𝑎| = √∑ 𝑎𝑙
23

𝑙=0  . Clearly, 

the multiplication of two quaternion scalars is non-commutative. Denoting by ℍ𝑚×𝑛 the set of all 𝑚 × 𝑛 

matrices with quaternion entries, a system of quaternion linear equations can be represented as  

 

 𝐴𝑥 = 𝑏, (2) 

 

where 𝐴 ∈ ℍ𝑚×𝑛  is a known matrix, 𝑏 ∈ ℍ𝑛×1  is a known vector, and 𝑥 ∈ ℍ𝑛×1  is the unknown 

vector. Iterative methods are often preferred for solving large-scale sparse linear systems. One family 

of iterative methods that include most widely used techniques to solve linear systems today is Krylov 

subspace methods, all of which seek the solution of the original problem in a lower-dimensional 

(Krylov) subspace. The solution of the linear system in Equation (2) over the field of real and complex 

fields (when 𝐴 is a real and complex matrix, 𝑏 and the unknown 𝑥 are real and complex vectors) by 

Krylov subspace methods has been studied extensively. However, very few studies can be found in the 

literature on the quaternion linear system in Equation (2). The notable studies on the quaternion linear 

systems based on Krylov subspaces are as follows. Jia and Ng have developed the quaternion 

generalized minimum residual method (QGMRES) for solving the quaternion linear system in Equation 

(2) (Jia & Ng, 2021). Opfer has investigated the conjugate gradient algorithm based on Krylov subspaces 

for the quaternion linear systems when the coefficient matrix is a Hermitian positive definite matrix 

(Opfer, 2005).  

 Let us consider the linear systems 

 

𝐴𝑥𝑖 = 𝑏𝑖, 𝑖 = 1,2,… , 𝑠, (3) 

 

for a given Hermitian positive definite matrix 𝐴 ∈ ℍ𝑛×𝑛 , given vectors 𝑏𝑖 ∈ ℍ𝑛×1 , and unknown 

vectors  𝑥𝑖 ∈ ℍ𝑛×1. We can solve these linear systems simultaneously instead of solving them separately 

(O’Leary, 1980). By arranging the right-hand sides and the corresponding solutions in the matrices  

 

𝐵 ≔ [𝑏1|𝑏2|… 𝑏𝑠]  ∈ ℍ𝑛×𝑠 and 𝑋 ≔ [𝑥1|𝑥2|… 𝑥𝑠] ∈ ℍ𝑛×𝑠  (4) 

 

the linear systems in Equation (3) can be combined into 

 

𝐴𝑋 = 𝐵. (5) 

 

More formally, in this work, we describe a block conjugate gradient method to solve the quaternion 

matrix equation in Equation (5). A block conjugate gradient method for 𝐴𝑋 = 𝐵 has advantages over 
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applying the conjugate gradient method separately to the 𝑠 quaternion linear systems in Equation (3). 

Most notably, the solutions for all right-hand sides are estimated simultaneously. This may reduce the 

dimension of the Krylov subspace, and, as a result, the number of matrix-vector multiplications as well 

as orthogonalization costs to compute the solutions to a prescribed accuracy. Consequently, a block 

conjugate gradient method often results in not only computational efficiency but also a decrease in 

memory storage requirements (Feng et al., 1995; Ji & Li, 2017).  

 This paper is organized as follows. In Section 2, we first recall the preliminaries for quaternion 

matrices and properties of the real counterparts of quaternion matrices. The proposed approach for the 

solution of the matrix equation in Equation (5) is described in Section 2.2. In the proposed approach, we 

transform the original quaternion matrix equation into a real matrix equation by using the real 

representation of a quaternion matrix. Then, by exploiting the special structures of the real 

representations of quaternion matrices, we further reduce the sizes of the matrices involved in the real 

matrix equation. Subsequently, a block conjugate gradient method is applied to the resulting real matrix 

equation. The solution of the original quaternion matrix equation can be formed from the solution of the 

real matrix equation by a simple transformation. Thus in the end we apply this transformation to the 

solution of the real matrix equation retrieved from the block conjugate gradient method to obtain the 

solution of the original quaternion matrix equation. In Section 3, we confirm that the proposed approach 

converges to the solution as expected from a conjugate gradient method on two numerical examples. In 

particular, we illustrate on these examples how quickly the residuals decay depends on the number of 

clusters of the eigenvalues of the coefficient matrix. We conclude in Section 4 with a summary of our 

findings and point out future research directions. 

 

2. Material and Methods 

 

 In this section, we first briefly give the necessary background on quaternion matrices, their real 

representations, spectral properties, and spell out the real counterpart of the quaternion matrix equation 

in Equation (5) in Section 2.1. Then, the proposed approach for the iterative solution of the quaternion 

matrix equation in Equation (5) based on a block conjugate gradient method is described in Section 2.2.  

 

2.1. Background 

 

A quaternion matrix 𝐴 ∈ ℍ𝑚×𝑛 can be written as a sum of four real matrices in the form  

 

𝐴 = 𝐴0 + 𝐴1𝑖 + 𝐴2𝑗 + 𝐴3𝑘, (6) 

 

where 𝐴0, 𝐴1, 𝐴2, 𝐴3 ∈ ℝ𝑚×𝑛 . The conjugate and conjugate transpose of a quaternion matrix 𝐴  is 

defined as �̅� = 𝐴0 − 𝐴1𝑖 − 𝐴2𝑗 − 𝐴3𝑘 and 𝐴∗ = 𝐴0
𝑇 − 𝐴1

𝑇𝑖 − 𝐴2
𝑇𝑗 − 𝐴3

𝑇𝑘 ,  respectively. Moreover, a 

matrix 𝐴 ∈ ℍ𝑛×𝑛 is called invertible, if there exist a matrix 𝐴−1 ∈ ℍ𝑛×𝑛  satisfying 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼. 
For a matrix 𝐴 ∈ ℍ𝑛×𝑛, if 𝐴 = 𝐴∗, then 𝐴 is called a Hermitian matrix. A Hermitian quaternion matrix 

𝐴 is called positive definite if and only if 𝑥∗𝐴𝑥 > 0 for ∀𝑥 ∈ ℍ𝑛×1\{0}. The 2-norm of 𝑥 ∈ ℍ𝑛×1 and 

the Frobenius norm of 𝐴 = [𝑎𝑖𝑗] ∈ ℍ𝑚×𝑛  are defined by ‖𝑥‖2 = √∑ |𝑥𝑖|
2𝑛

𝑖=1  and ‖𝐴‖𝐹 =

√∑ ∑ |𝑎𝑖𝑗|
2𝑛

𝑖=1
𝑚
𝑖=1 , respectively. We refer the reader to (Rodman, 2014; Wei et al., 2018) for this 

background information and further details on quaternions.  

One way of dealing with a matrix 𝐴 over the quaternion skew-field is to exploit its real matrix 

representation ψ(𝐴) (Wei et al., 2018), which is defined for 𝐴 = 𝐴0 + 𝐴1𝑖 + 𝐴2𝑗 + 𝐴3𝑘 ∈ ℍ𝑚×𝑛 with 

𝐴0, 𝐴1, 𝐴2, 𝐴3 ∈ ℝ𝑚×𝑛 by 

 

ψ(𝐴) =

[
 
 
 
 1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

A A A A

A A A A

A A A A

A A A A

− − −

−

−

− ]
 
 
 
 

. (7) 
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This real representation of a quaternion matrix is motivated by the fact that a quaternion matrix 𝑋  

satisfying the quaternion linear system in Equation (5) also satisfies the real linear system below: 

 

ψ(𝐴)ψ(𝑋) = ψ(𝐵). (8) 

 

We remark that there are alternative real representations of a quaternion matrix employed in the 

literature to convert a quaternion linear system as in Equation (5) into a real one as in Equation (8), but 

there is not a notable advantage of one over the others (Jia & Ng, 2021).  The following properties can 

be verified for the real matrix representation of a quaternion matrix above we depend on here. 

 

Theorem 1 (Wei et al., 2018): Let 𝐴, 𝐵 ∈ ℍ𝑚×𝑛, 𝐶 ∈ ℍ𝑛×𝑠 and 𝑘 ∈ ℝ. The following assertions hold:  

 

i. 𝐴 = 𝐵 ⇔ ψ(𝐴) = ψ(𝐵). 

ii. ψ(𝐴 + 𝐵) = ψ(𝐴) + ψ(𝐵). 

iii. ψ(𝑘𝐴) = 𝑘ψ(𝐴). 

iv. ψ(𝐴𝐶) = ψ(𝐴)ψ(𝐶). 

v. ψ(𝐴∗) = ψ(𝐴)𝑇. 

vi. 𝐴 ∈ ℍ𝑛×𝑛 is an invertible matrix if and only if  ψ(𝐴) is an invertible matrix, and, if  𝐴 ∈ ℍ𝑛×𝑛 

is invertible, then ψ(𝐴−1)=ψ(𝐴)−1. 

vii. 𝐴 ∈ ℍ𝑛×𝑛  is a unitary matrix, i.e., 𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼 , if and only if ψ(𝐴) is an orthogonal 

matrix. 

viii. ‖ψ(𝐴)‖𝐹 = 2‖𝐴‖𝐹. 

 

Next we formally define a right eigenvalue, and eigenvector of a square quaternion matrix. 

 

Definition 1 (Farenick & Pidkowich, 2003): For 𝐴 ∈ ℍ𝑛×𝑛 , if the pair (𝜆, 𝑥) ∈ ℍ × (ℍ𝑛×1\{0}) is 

such that 𝐴𝑥 = 𝑥𝜆, then λ is called a right eigenvalue, 𝑥 is called a right eigenvector corresponding to 

λ, and (𝜆, 𝑥) is called a right eigenpair of 𝐴.  

 

If λ is a non-real right eigenvalue such that 𝐴𝑥 = 𝑥𝜆 , then 𝐴𝑥𝑠 = 𝑥𝑠(𝑠−1𝜆𝑠) for every nonzero 𝑠 ∈ ℍ. 

Hence, in case 𝐴 has a non-real right eigenvalue, then it turns out that 𝐴 has infinitely many non-real 

right eigenvalues. But if 𝐴 is a Hermitian quaternion matrix, then all eigenvalues of 𝐴 are real as stated 

next formally.  

 

Theorem 2 (Farenick & Pidkowich, 2003): If 𝐴 ∈ ℍ𝑛×𝑛 is Hermitian, then every right eigenvalue of 𝐴  

is real and the number of right eigenvalues of 𝐴 is 𝑛. 

 

 Now, we state the spectral theorem of a Hermitian quaternion matrix. 

 

Theorem 3 (Farenick & Pidkowich, 2003): If 𝐴 ∈ ℍ𝑛×𝑛 is Hermitian, then there is a unitary matrix 

𝑈 ∈ ℍ𝑛×𝑛 such that 𝑈∗𝐴𝑈 is a diagonal matrix, whose diagonal entries are real and correspond to the 

eigenvalues of 𝐴. 

 

 Hermitian positive definite quaternion matrices play an important role in this work. The next 

result states that their real representations are also positive definite. 

 

Theorem 4 (Wei et al., 2018): A matrix 𝐴 ∈ ℍ𝑛×𝑛 is Hermitian positive definite if and only if ψ(𝐴) is 

a symmetric positive definite matrix. 

 

 The real representations of quaternion matrices possess special structure. To state the special 

structure possessed formally, we next introduce the notion of a JRS-symmetric matrix, and related 

structures. 

 

Definition 2 (Wei et al., 2018): Let 𝐽𝑛, 𝑅𝑛 and 𝑆𝑛 be the following orthogonal matrices: 
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𝐽𝑛 =

[
 
 
 
 0 0 0

0 0 0

0 0 0

0 0 0

n

n

n

n

I

I

I

I

−

−

]
 
 
 
 

, 𝑅𝑛 =

[
 
 
 
 0 0 0

0 0 0

0 0 0

0 0 0

n

n

n

n

I

I

I

I

−

− ]
 
 
 
 

  and 𝑆𝑛 =

[
 
 
 
 0 0 0

0 0 0

0 0 0

0 0 0

n

n

n

n

I

I

I

I

−

−

]
 
 
 
 

. (9) 

 

We define a JRS-symmetric, JRS-symplectic, and orthogonal JRS-symplectic matrix as follows: 

 

i. A matrix 𝑀 ∈ ℝ4𝑚×4𝑛  is called JRS-symmetric if 𝐽𝑚𝑀𝐽𝑛
𝑇 = 𝑀 , 𝑅𝑚𝑀𝑅𝑛

𝑇 = 𝑀  and 

𝑆𝑚𝑀𝑆𝑛
𝑇 = 𝑀. 

ii. A matrix 𝑂 ∈ ℝ4𝑚×4𝑛  is called JRS-symplectic if 𝑂𝐽𝑛𝑂𝑇 = 𝐽𝑚 , 𝑂𝑅𝑛𝑂𝑇 = 𝑅𝑚  and 

𝑂𝑆𝑛𝑂𝑇 = 𝑆𝑚. 

iii. A matrix 𝑊 ∈ ℝ4𝑛×4𝑛  is called orthogonal JRS-symplectic if it is orthogonal and JRS-

symplectic. 

 

The first one of the following two result relates JRS-symmetric matrices with quaternion 

matrices, while the second one spells out what distinguishes two different JRS-symmetric matrices.  

 

Theorem 5 (Wei et al., 2018): A matrix 𝑀 ∈ ℝ4𝑚×4𝑛 is JRS-symmetric if and only if 𝑀 is a real matrix 

representation of a quaternion matrix. 

 

Theorem 6 (Wei et al., 2018): A JRS-symmetric matrix is uniquely determined by its four submatrices 

on the first column block (or first row block).  

 

 In the next theorem, ψ(𝐴)𝑐 and, ψ(𝐴)𝑟 denote the first column block and the first row block of 

a quaternion matrix 𝐴, respectively. 

 

Theorem 7 (Wei et al., 2018): Letting 𝐴, 𝐵 ∈ ℍ𝑚×𝑛, 𝐶 ∈ ℍ𝑛×𝑠, 𝑞 ∈ ℍ𝑛×1 and 𝑘 ∈ ℝ, we have 

 

i. ψ(𝐴 + 𝐵)𝑐 = ψ(𝐴)𝑐 + ψ(𝐵)𝑐, ψ(𝐴 + 𝐵)𝑟 = ψ(𝐴)𝑟 + ψ(𝐵)𝑟, 

ii. ψ(𝑘𝐴)𝑐 = 𝑘ψ(𝐴)𝑐, ψ(𝑘𝐴)𝑟 = 𝑘ψ(𝐴)𝑟, 

iii. ψ(𝐴𝐶)𝑐 = ψ(𝐴)ψ(𝐶)𝑐, ψ(𝐴𝐶)𝑟 = ψ(𝐴)𝑟ψ(𝐶), 

iv. ψ(𝐴∗)𝑐 = (ψ(𝐴)𝑇)𝑐, ψ(𝐴∗)𝑟 = (ψ(𝐴)𝑇)𝑟, 

v. ‖ψ(𝑞)𝑐‖2 = ‖𝑞‖2, ‖ψ(𝑞)𝑟‖2 = ‖𝑞‖2, 

vi. ‖ψ(𝐴)𝑐‖𝐹 = ‖𝐴‖𝐹, ‖ψ(𝐴)𝑟‖𝐹 = ‖𝐴‖𝐹. 

 

2.2. The quaternion block conjugate gradient method  

 

Let us consider the quaternion matrix equation 𝐴𝑋 = 𝐵. As the coefficient matrix is a Hermitian 

positive definite matrix, especially if the matrix 𝐴 is sparse and large, a block conjugate gradient method 

is a good candidate to solve this quaternion matrix equation. As indicated in the previous section, 𝐴𝑋 =
𝐵 holds if and only if ψ(𝐴)ψ(𝑋) = ψ(𝐵) holds. Hence, instead of the quaternion matrix equation 𝐴𝑋 =
𝐵, we can solve the real matrix equation ψ(𝐴)ψ(𝑋) = ψ(𝐵). The sizes of the matrices ψ(𝐴), ψ(𝑋) and 

ψ(𝐵) in this real matrix equation are 4𝑛 × 4𝑛, 4𝑛 × 4𝑠, and 4𝑛 × 4𝑠, respectively. However, it follows 

from Theorem 7 (iii) that the sizes of the latter two can be reduced. In particular, we can indeed solve 

ψ(𝐴)ψ(𝑋)𝑐 = ψ(𝐵)𝑐 instead of ψ(𝐴)ψ(𝑋) = ψ(𝐵); the upside of doing so is that the unknown ψ(𝑋)𝑐  

and the right-hand side ψ(𝐵)𝑐  are both of size 4𝑛 × 𝑠 , that is we now solve 𝑠  linear systems 

simultaneously instead of 4𝑠 simultaneous linear systems needed for  ψ(𝐴)ψ(𝑋) = ψ(𝐵). Moreover, 

the quaternion solution 𝑋 ∈ ℍ𝑛×𝑠 of 𝐴𝑋 = 𝐵 can be formed immediately from the real solution ψ(𝑋)𝑐  

of ψ(𝐴)ψ(𝑋)𝑐 = ψ(𝐵)𝑐. 

 By Theorem 4, the real matrix ψ(𝐴) is symmetric and positive definite, so we can apply the 

block conjugate gradient method to solve the real matrix equation ψ(𝐴)ψ(𝑋)𝑐 = ψ(𝐵)𝑐  using the real 

floating point arithmetic. For the sake of simplifying the notation, let us denote ψ(𝐴), ψ(𝑋)𝑐, ψ(𝐵)𝑐 
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with , , and , respectively. Letting 0 be an initial guess matrix for the solution , and 0 be the 

corresponding residual matrix, i.e., 0 ≔ −0, the block Krylov subspace is defined as  
 

𝑘(,0) = 𝑠𝑝𝑎𝑛{0,0, … ,𝑘−10}. (10) 

 

Observe that, denoting the 𝑖th columns of  and  with 𝒷𝑖  and 𝓍𝑖 , respectively, the solution  =

[𝓍1|𝓍2|…𝓍𝑠] of  =  is the unique global minimizer of  
 

Φ( ) ≔ ∑ φ𝑖(𝓍𝑖) ≔ ∑
1

2
𝓍𝑖

 𝑇𝓍𝑖 − 𝓍𝑖
 𝑇𝒷𝑖

𝑠
𝑖=1

𝑠
𝑖=1 . (11) 

 

Indeed, since  is a symmetric positive definite matrix, the objective function Φ( ) has only one global 

minimizer, that is the unique solution of  Φ( ) = −  = 0. The block conjugate gradient method 

seeks the global minimizer 𝑘 of Φ( ) over the affine space 0 +𝑘(,0). Equivalently, letting 

∗  be the solution of  =  , the matrix 𝑘  is also the global minimizer ‖− ∗‖𝐹,
2 ≔

𝑡𝑟𝑎𝑐𝑒((− ∗)
𝑇(− ∗)) over the space 0 +𝑘(,0). Hence, the block conjugate gradient 

method at iteration 𝑘 finds the matrix in the affine space 0 +𝑘(,0) that is closest to the actual 

solution ∗ of  =  with respect to the weighted Frobenius norm ‖ ∙ ‖𝐹,
2 . The between the iterates 

𝑘+1 and 𝑘 of the conjugate method at two consecutive iterations can be represented as 
 

𝑘+1 = 𝑘 + 𝑘+1Λ𝑘+1, (12) 

 

where 𝑘+1 ∈ ℝ𝑛×𝑠  with columns in 𝑘(,0)  corresponds to the 𝑠  search directions for the 

solutions of the 𝑠 linear systems, and Λ𝑘+1 ∈ ℝ𝑠×𝑠 is a diagonal matrix with entries on the diagonal 

representing the step lengths that determine how big steps should be taken in search directions. As 𝑘+1 

is the minimizer over 0 +𝑘(,0), the diagonal step-length matrix Λ𝑘+1 ∈ ℝ𝑠×𝑠 must satisfy 
 

𝜕Φ(𝑘+𝑘+1Λ𝑘+1)

𝜕Λ𝑘+1
= 𝑘+1

𝑇 ((𝑘 + 𝑘+1Λ𝑘+1) − ) = 0. (13) 

 

The new search directions 𝑘+1 ∈ ℝ𝑛×𝑠 can be expressed in terms of the previous search directions 𝑘 

as  

 

𝑘+1 = 𝑘 + 𝑘Ω𝑘+1, (14) 

 

where 𝑘 = −𝑘 and the parameter matrix Ω𝑘+1 is given by Ω𝑘+1 = −(𝑘
𝑇𝑘)

−1
(𝑘

𝑇𝑘). 

This expression is also obtained by exploiting the optimality of 𝑘+1, more specifically the fact that it 

is the minimizer of Φ( ) over 0 +𝑘+1(,0). As it turns out, the optimality of 𝑘+1 implies the 

orthogonality of 𝑘+1 − 0 to every vector in 𝑘(,0), i.e., 𝑡𝑟𝑎𝑐𝑒 (𝑇(𝑘+1 − 0)) = 0 for all 

 ∈ 𝑘(,0). This in turn gives rise to the equality in Equation (14). It is straightforward to deduce 

𝑘(,0) = 𝑠𝑝𝑎𝑛{0,0, … ,𝑘−10} = 𝑠𝑝𝑎𝑛{0,1, … ,𝑘−1}  and 𝑗
𝑇𝑘 = 0  for 𝑗 =

1,2,… , 𝑘 − 1. From this fact and 𝑘 ∈ 𝑘(,0), it can also be deduced that 𝑘
𝑇𝑘 = 0 as well as 

𝑘+1
𝑇 𝑘 = 0. To summarize, the following properties hold among the residuals and search directions: 

 

i. 𝑗
𝑇𝑘 = 0 for 𝑗 ≠ 𝑘, 

ii. 𝑘
𝑇𝑘 = 0, 

iii. 𝑘+1
𝑇 𝑘 = 0. 

 

By employing the orthogonality properties above, the expressions for Λ𝑘+1 and Ω𝑘+1 can be rewritten 

as  

 

Λ𝑘+1 = (𝑘+1
𝑇 𝑘+1)

−1
𝑘

𝑇𝑘 and Ω𝑘+1 = (𝑘−1
𝑇 𝑘−1)

−1
𝑘

𝑇𝑘. (15) 
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A description of the overall block conjugate algorithm for the real matrix equation  =  is 

given in Algorithm 1 below. 

 

Algorithm 1. The block conjugate gradient algorithm 

 Input:  ∈ ℝ4𝑛×4𝑛,  ∈ ℝ4𝑛×𝑠, maximum number of iterations κ, termination tolerance ε 

Output: An approximate solution ̂ for  =  

 Chose an initial guess matrix 0, 0 = −0, 𝑘 = 0 

while 𝑘 ≤ κ and ‖𝑘‖𝐹 > 𝜀                          

If 𝑘 = 0, then  

0 ≔ 0 

else 

Ω𝑘+1 = (𝑘−1
𝑇 𝑘−1)

−1
𝑘

𝑇𝑘 and 𝑘+1 = 𝑘 + 𝑘Ω𝑘+1 

end 

Λ𝑘+1 = (𝑘+1
𝑇 𝑘+1)

−1
𝑘

𝑇𝑘 

𝑘+1 = 𝑘 + 𝑘+1Λ𝑘+1 

𝑘+1 = 𝑘 −𝑘+1Λ𝑘+1 

𝑘 = 𝑘 + 1 

end 

̂  = 𝑘 

 

3. Results 

 

 In this section, we demonstrate the accuracy and convergence of the proposed method on a 

quaternion matrix equation 𝐴𝑋 = 𝐵 with a rectangular tall and skinny coefficient matrix 𝐴. The best 

solution to this matrix equation in the least-squares sense is found by solving the normal equation 

associated with the original matrix equation. The normal equation is always consistent, that is it always 

has a solution. More specifically, we consider a quaternion matrix equation 𝐴𝑋 = 𝐵 , where 

𝐴 ∈ ℍ400×80 , 𝐵 ∈ ℍ400×10 , and 𝑋 ∈ ℍ80×10 . The normal equation associated with this quaternion 

matrix equation is 𝐴∗𝐴𝑋 = 𝐴∗𝐵. The coefficient matrix of the normal equation 𝐴∗𝐴 is always Hermitian 

positive definite, so we can apply the block conjugate gradient method described in Section 2.2 to solve 

the normal equation 𝐴∗𝐴𝑋 = 𝐴∗𝐵. By exploiting the real matrix representations of  𝐴∗𝐴, 𝑋 and 𝐵, we 

transform the quaternion normal equation 𝐴∗𝐴𝑋 = 𝐴∗𝐵 into the real matrix equation  

 

ψ(𝐴∗𝐴)ψ(𝑋) = ψ(𝐴∗𝐵). (16) 

 

This transformation yields the real matrices ψ(𝐴∗𝐴) , ψ(𝑋)  and ψ(𝐴∗𝐵) , whose dimensions are 

320 320 , 320 40  and 320 40 , respectively. As suggested in the previous section, we can further 

reduce the dimensions of the matrices in Equation (16) by instead solving  

 

ψ(𝐴∗𝐴)ψ(𝑋)𝑐 = ψ(𝐴∗𝐵)𝑐. (17) 

 

The solution 𝑋 of the normal equation 𝐴∗𝐴𝑋 = 𝐴∗𝐵, hence the least-squares solution of 𝐴𝑋 = 𝐵, can 

then be retrieved from ψ(𝑋)𝑐. 

Hence, using now the short-hands ,  and  for ψ(𝐴∗𝐴), ψ(𝑋)𝑐, ψ(𝐴∗𝐵)𝑐, respectively, we 

apply Algorithm 1 to  =   by setting the maximum number of iterations equal to 40. The 

convergence of the algorithm is illustrated in Figure 1 and Figure 2. To be precise, the plot in Figure 1 

depicts the residual norm ‖ψ(𝐵)𝑐 − ψ(𝐴)(ψ(𝑋)𝑐)𝑘‖𝐹  for the real matrix equation ψ(𝐴)ψ(𝑋)𝑐 =
ψ(𝐵)𝑐 as a function of number of iterations 𝑘. On the other hand, the plot in Figure 2 shows the residual 

norm ‖𝑘‖𝐹 = ‖−𝑘‖𝐹  for the normal equations  =   as a function of 𝑘 . When the 

coefficient matrix is unitarily diagonalizable (normal), the convergence behavior of the conjugate 

gradient method is determined by the eigenvalue distribution of the coefficient matrix. In the example 

we consider here, the matrix 𝐴 ∈ ℍ400×80  is formed so that 𝐴∗𝐴  has 10 distinct eigenvalues. Not 
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surprisingly, the residual norms in Figure 1 and 2 decay initially up until the 10th iteration, but do not 

change much starting from 10th iteration and afterwards. In Figure 1, the residual norm becomes 114 at 

the 10th iteration, and remains more or less 114 after the 10th iteration. This is expected as the linear 

system  ψ(𝐴)ψ(𝑋)𝑐 = ψ(𝐵)𝑐 , equivalently the linear system  𝐴𝑋 = 𝐵 , has no solution, but the 

conjugate gradient method (Algorithm 1) converges nearly to the least-squares solution minimizing 
‖ψ(𝐵)𝑐 − ψ(𝐴)(ψ(𝑋)𝑐)𝑘‖𝐹  over all 𝑋 by the 10th iteration, as the solution to the associated normal 

equation is nearly converged by then. Meanwhile, in Figure 2 it can be observed that the residual norm 

associated with the normal equation decays to zero by the 10th iteration, and remains so afterwards, 

which is expected as the conjugate gradient method is applied to solve the normal equation that has a 

solution.  

We have also perturbed the coefficient matrix so that for the resulting 𝐴 ∈ ℍ400×80  the matrix 

𝐴∗𝐴 has no more repeated eigenvalues, rather it has eigenvalues clustered around 10 real points. The 

plots of the residual norms ‖ψ(𝐵)𝑐 − ψ(𝐴)(ψ(𝑋)𝑐)𝑘‖𝐹 and ‖𝑘‖𝐹 = ‖−𝑘‖𝐹 for this slightly 

perturbed matrix equation are given in Figure 3 and Figure 4, respectively. Notice that, as before, the 

residual norms decay rapidly in the first 10 iterations. Though the decay in the residual norms slows 

down gradually after the 10th iteration, the decays in the residuals continue even after the 10th iteration, 

in particular the residuals do not remain constant after the 10th iteration anymore. This behavior in the 

residuals is expected, as the matrix 𝐴∗𝐴 has now all distinct eigenvalues. 

 

Figure 1. The decay of the residual norm ‖ψ(𝐵)𝑐 − ψ(𝐴)(ψ(𝑋)𝑐)𝑘‖𝐹  as a function of 𝑘  for the 

quaternion matrix equation 𝐴𝑋 = 𝐵 in Section 3. 
 

Figure 2. The decay of the residual norm ‖−𝑘‖𝐹 associated with the normal equation  =  

with  = ψ(𝐴∗𝐴) ,  = ψ(𝑋)𝑐  and  = ψ(𝐴∗𝐵)𝑐  as a function of 𝑘  for the quaternion 

matrix equation 𝐴𝑋 = 𝐵 in Section 3. 
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Figure 3. This is a plot of the residual norms as in Figure 1, but only now the coefficient matrix 𝐴 is 

perturbed so that it has distinct eigenvalues clustered around 10 points on the real axis. 

 

Figure 4. Plot of residual norms as in Figure 2, but the coefficient matrix 𝐴 is perturbed so that it has 

distinct eigenvalues clustered around 10 points. 

 

4. Discussion and Conclusion 

 

Problems involving quaternion objects, defined over the skew-field of quaternions, arise from a 

wide variety of applications. Especially, solving quaternion linear systems has attracted substantial 

attention, recently. The analytical tools such as the Moore-Penrose Inverse, Kronecker product are very 

expensive computationally, and not useful if the linear system has a large and sparse quaternion 

coefficient matrix. Iterative methods, on the other hand, may be applicable to such large-scale sparse 

quaternion linear systems.  

In this study, we have considered several quaternion linear systems with the same Hermitian 

quaternion coefficient matrix. One way of dealing with quaternion linear systems is to use the real 

representations of quaternion matrices. We have first applied the transformation that converts the 

quaternion coefficient matrix, the right-hand sides and the solution to their real representations. The 

resulting linear systems are real, all with a common symmetric positive definite coefficient matrix. We 

have taken into account the special structure of the real representation of a quaternion matrix to reduce 

the number of resulting real linear systems to be solved. Subsequently, a block conjugate gradient 

method is applied to solve the real linear systems simultaneously in real arithmetic; solving systems 

simultaneously by a block method potentially reduces the number of iterations, hence improves the 

efficiency and storage requirements. The conversion of the real representation of the solution of the 
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original quaternion system returned by the block conjugate gradient method to the actual quaternion 

solution is performed in the end without any computational burden. The proposed method is 

implemented in Matlab, and its convergence to the actual solution is verified on two numerical 

examples. These numerical experiments illustrate that, as expected, how quickly the block conjugate 

gradient method converges depends on the number of clusters of the eigenvalues of the Hermitian 

quaternion coefficient matrix; the smaller is the number of clusters, the faster is the convergence. 

As future work, we intend to focus on the solutions of quaternion matrix equations such as 

Sylvester, Lyapunov, and Stein matrix equations by block conjugate gradient methods. Computing 

special type of solutions (e.g., symmetric, centrosymmetric) of these quaternion matrix equations may 

be of interest. Moreover, the solutions of these matrix equations can be tried to be retrieved with 

applications of alternative iterative methods such as a block GMRES method in case Hermiticity and/or 

positive-definiteness features do not exist. 
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