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Abstract 

In this study, we focus on the Aminov surface with regard to its Gauss map in . 

Firstly, we write the covariant derivatives according to linear combinations of 

orthonormal vectors and separate the equalities using the Gauss and Weingarten 

formulas. Then, we get the Laplacian of the Gauss map. After giving some 

conditions, we yield the following results: Aminov surfaces can not have a harmonic 

Gauss map and can not have a pointwise one-type Gauss map of the first kind in 

. Further, we give an example of a helical cylinder which is also congruent to an 

Aminov surface. Lastly, we obtain the conditions of having a pointwise one-type 

Gauss map of the second kind. 

 

 
1. Introduction 

 

Surfaces given with Monge patch which are also 

called digital graph surfaces have many advantages 

by means of visualization. These types of surfaces can 

be covered by just a few atlas that are produced with 

Monge patches. The presentation of −3 dimensional 

form is ( ) ( ))v,u(g,v,u=v,u  where g  is a 

differentiable function [7]. 
Digital graph surfaces (Monge surfaces) in 

−4 dimensional spaces have also attracted attention 

as −3 dimensional spaces. These surfaces are given 

by ( ),v,ug=z ( )v,uh=w  where w,z,v,u  
are the 

cartezian coordinates [1,3]. Some of them are 

translation surfaces, factorable (homothetical) 

surfaces, −TF type surfaces etc.[13, 14]. In 

particular, translation surface has many applications 

in architecture. They have a quadrilateral form and 

thanks to this property, they are used for free form 

glass structures [8]. 

The idea of finite (limited) type 

submanifolds was announced by Chen in the 1970s 

and has grown into a widely used concept in studies 

of Euclidean and semi-Euclidean spaces. This 

concept has been extended to differentiable 

transformations, especially to the Gauss map of 
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submanifolds.The condition for a surface (or a 

submanifold) to have a pointwise one-type Gauss map 

is 

                         








+

→

CG=G 

                      

(1) 

where   is a differentiable function and 
→

C  is a 

constant vector in the −n dimensional Euclidean (or 

semi-Euclidean) space. If 0C =
→

, the surface is said 

to have a pointwise one-type Gauss map of the first 

kind, otherwise the second kind [6]. 

One of the popular surfaces, Aminov surface, can be 

represented by a Monge patch 

       ( ) ,vsin)u(r=)v,u(w,vcos)u(r=v,uz    (2) 

where )u(r  is a differentiable function [1, 3]. In [3, 

4], the authors handled Aminov surfaces according to 

their curvatures in −4 dimensional Euclidean and 

Minkowski spaces. The other studies about some 

surfacesin can be found in [9, 10, 11, 12]. 

In this study, we evaluate Aminov 

surfaces with regards to their Gauss maps in . In 

section 3, we obtain the covariant derivatives of 
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orthonormal vectors on the surface and arrange them 

in accordance with the Gauss and Weingarten 

formulas. We write the shape operator matrices of the 

surface. In Section 4, we compute the Laplacian of the 

Gauss map of these surfaces. Then, we prove that 

Aminov surfaces can not have a harmonic Gauss map 

and can not have a pointwise one-type Gauss map of 

the first kind in . In an example, we get the Laplace 

transform of the Gauss map of a helical cylinder. 

Further, we present the conditions for Aminov 

surfaces to have a pointwise one-type Gauss map of 

the second kind. 

 

2. Basic Concepts 

 

Let ( )v,u:M   
denote a surface patch in Euclidean 

−4 space .  vu ,
 
spans the tangent space of M. 

The first fundamental form coefficients are calculated 

by ,,=E,,=F uuvu  .,=G vv 
 

Hence, 

M  is known as regular in case of 

0.FEG=W 22 −  

Euclidean −4 space can be considered as a 

decomposition of tangential and normal component 

of M  for each point p : 

.MTMT= pp
4 ⊥E  

Let the orthonormal tangent vectors and normal 

vector field of the surface be represented by ,1 2  

and ,  respectively. 
~

 and   denotes the Levi-

Civita connections, then the Weingarten and Gauss 

formulas are known as  

               
,DA=

~

1
1

1
  +−

              
(3) 

),,(h=
~

212
1

2
1

  +  

where A  is the shape operator, D  is the normal 

connection and h  is the second fundamental tensor 

[2, 5]. 

Assuming that 
u

=u



 ( )v,u  and 

v
=v



 ( )v,u  

are orthogonal, the orthonormal tangent vectors are 

 
G

=,
E

= v
2

u
1





  (4) 

The normal frame field  21 ,  is chosen as 

1,=,1,=, 2211  0,=, 21   and the 

quadruple  2121 ,,,   is positively oriented in 

. Thus, according to orthogonal tangent vectors 1  

and ,2  the second fundamental form is written as 

follows 

( ) ,hh=,h 2
2
111

1
1111  +  

              ( ) ,hh=,h 2
2
121

1
1221  +           

(5) 

( ) ,hh=,h 2
2
221

1
2222  +  

where k
ijh 1,2)=k,j,i(  are the coefficients of the 

second fundamental form. 

With the help of Gauss and Weingarten formulas,

( ) ( )
21

AdetAdet=K  + gives the Gauss curvature of 

M and 
2

trh
=H gives the mean curvature. Therefore, 

the surface M  is known as minimal (flat), if mean 

curvature (Gauss curvature) vanishes[5]. 

In −n dimensional Euclidean space, let 

 21 e,e  be tanget vector fields of a surface, and the 

normal vectors denoted by  3 , , ne e , for the 

orthonormal frame  n21 e,.,..e,e . Then, Gauss map 

of the surface is given by 

                        ( ) ( )( ),pee=pG 21                         
(6) 

and the Laplace of any differentiable function   on 

M  is known as 

        

.
~~~

=
i

i
ii









−−  



      

(7) 

(see, [5]). 

 

3. Aminov Surfaces in −4 dimensional Euclidean   

    Space 

 

Definition 1:  Let ( )v,u:M   be a regular surface in

. If M  is parametrized by the Monge patch 

  ( ) ( ),vsin)u(r,vcos)u(r,v,u=v,u      (8) 

where ( )ur  is a differentiable function, then this 

surface is called as Aminov surface in [1, 3]. 

Assume that M  is an Aminov surface in 

four-dimensional Euclidean space. Then, the vector 

fields 

( ),vsin)u(r,vcos)u(r0,1,=
u

  

( ),vcos)u(r,vsin)u(r1,0,=
v

−  
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are tangent to .M  Thus, the coefficients of first 

fundamental form are 

                            ( ) 1,r=E
2
+

                 
(9) 

0,=F  

1.r=G 2 +  

We set ( )( )( ) 01r1r=EG=FEG=W
2222 ++− , 

i.e., it is regular. 

Since these vectors are orthogonal, the orthonormal 

tangent vectors are written as 

( )
( ),.vsin)u(r,vcos)u(r0,1,

1r

1
=

E

1
=

2
u1 

+

  

(10) 

( ).vcos)u(r,vsin)u(r1,0,

1r

1
=

G

1
=

2
v2 −

+

  

and the vectors 

            

( ),01,,vsinr,vcosr
E
~

1
=1

−

            

(11) 

            

( )E
~

,F
~

,vcosrE,vsinGr
EGE

~
1

=2 −−−  

are obtained as unit normal vector fields, where 

,vsinrvcosr1=E
~ 2222 ++  

     
( ).rrvsinvcos=F

~ 22' −  

Furthermore, with the help of Weingarten and Gauss 

formulas, we get 

,kk=
~

22111
1

 +  

,kk=
~

27162
1

 +−  

,kkk=
~

2716231
2

 +−  

           ,kkk=
~

2514132
2

 −−−
   

(12) 

,kkk=
~

2816111
1

 ++−  

,kkk=
~

2924161
2

 −+  

,kkk=
~

1827122
1

 −−−  

,kkk=
~

1925172
2

 ++−  

where the differentiable functions 
i

k ( ),9.1,..=i  

satisfy 

,
EG

rr
=k,

EGE
~

E

vsinGr
=k,

E
~

E

vcosr
=k 321


 

 

    

,
EGE

~
vsinr

=k,
EGE

~
vsinr

=k,
E
~

G

vcosr
=k 654



   

(13) 

 

        

( )

.
EGE

~
E
~

EG
=k

,
GEE

~
rEGrvsinvcosr

=k,
E
~

G

vcosr
=k

9

87

−

−

 

Thus, these relations can be decompose into    tangent 

and normal components as

    

,kk=A,k=

,kk=A0,=

,kk=A,k=

,kk=A0,=

25172
2

231
2

27121
2

2
1

24162
1

132
2

26111
1

1
1

















−

+

−−−

−

 

(14) 

and 

   

( )

( )

( )

.k=D

,k=D,kk=,h

,k=D,kk=,h

,k=D,kk=,h

192
2

291
2

251422

182
1

271621

281
1

221111

















−−−

−+−

+

  

(15) 

Moreover, with the help of (5) and (15), we obtain the 

coefficients 
k

ijh : 

,
EGE

~
E

vsinGr
=h,

E
~

E

vcosr
=h 2

11
1
11


 

                      ,
E
~

G

vcosr
=h,

EGE
~

vsinr
=h 2

12
1
12

−

    

(16) 

.
EGE

~
vsinr

=h,
E
~

G

vcosr
=h 2

22
1
22

−−
 

 

Lemma 2:Let the equality (8) respresent an Aminov   

                 surface in . Then, the shape operator  

                 matrices are given by 
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,

E
~

G

vcosr

EGE
~

vsinr

EGE
~

vsinr

E
~

E

vcosr

=A
'

'''

1





















−−

−



     

(17) 

 

.

EGE
~

vsinr

E
~

G

vcosr

E
~

G

vcosr

EGE
~

E

vsinGr

=A
'

'''

2





















−
  

 

Theorem 3:[3]Let M  be an Aminov surface in

given by the Monge patch (8). Then, the Gaussian 

curvature and the mean curvature vectors are 

                      

( )
4

2

W

ErrGr
K

−−
=                   (18) 

and 

( ) ( )
21

2 WE
~

E2

rEGrvsin

WE
~

2

rEGrvcos
H 

−
+

−
= (19) 

respectively.  

  

 

Proof. With the help of Lemma 2, and the 

Gaussian curvature of a surface in

( ) ( )( )
21

AdetAdet=K  + ; we yield 

































 −−
+













 −−

EGE
~

vcosErvsinrGr

E
~

vsinrvcosrr

EG

1
=K

222'22''

22'2''

 

( )( )
22

2222'2'''

GEE
~

vsinrvcosr1ErrGr
=

++−−
 

( )
.

W

ErrGr
=

4

2''' −−
 

In addition, with the help of the mean curvature vector 

of a surface ,
2

trh
=H 








 we compute 

2

''

1

''

EGE
~

E2

vsinrEvsinGr

E
~

EG2

vcosrEvcosGr
=H 

−
+

−
 

                                                                                                                    

( ) ( )
.

WE
~

E2

rEGrvsin

WE
~

2

rEGrvcos
= 2

''

1
2

''


−

+
−

 

It completes the proof.    

 

Corollary 4:Let the equality (8) represent an  

                    Aminov surface in . Then, it is  

                     minimal if and only if 

( )

( )

( )

( )

,e1cec
c2

1
=)u(r 1

c

2
cu

2

1
1

c

2
cu2

2

1

1

+


+


















−+

  

(20) 

where ,ic ( )1,2=i  are real constants.  

 

Proof. The surface is minimal, i.e., 0=H  in (19) if  

            and only if  

0.=GrrE ''+−  

Substituting the first fundamental form coefficients 

into (9), we get the differential equation 

( )( ) ( ) 0=r1rr1r 2''2
+++−  

which has the solution (20). It completes the proof.    

Example 5:The surface 

( ) ( )vsine,vcose,v,u=v,u:M uu  

is congruent to minimal Aminov surface with 
ue=)u(r  with the constants 1=c

i
 in (20). One can 

plot by Maple:  

 

Figure 1: Minimal Aminov surface 
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4. A characterization of Aminov Surface with 

regards to its Gauss map in 
4

E  

 

Let 2121 ,,,  denote the orthonormal frame of a 

regular surface ( )v,u:M   in . Then, the Gauss 

map of the surface is 

.=G 21    

By the use of the relation (7), the Laplacian operator 

of this Gauss map in  can be written as 

.G
~

G
~

G
~~

G
~~

=G
2

2
1

1
2211







 −−+−
 
(21) 

Theorem 6:  Let M  be an Aminov surface in

given by the Monge patch (8). Then, the Laplace of

G of M is given by 

( ) ( ) ( ) ( ) ( ) ( )( )
21

2

7

2

6

2

5

2

4

2

2

2

1 k2k2kkkk=G







−−−−−−−

   ( ) 116395874261 kk2kkkkkk  −−−−−+  

 

   ( )
217394865271

kk2kkkkkk  ++−−+
 
(22) 

 

   ( ) 12974331826211 kkkkkkkkkk  −−−++−+

   ( ) 22965332817221 kkkkkkkkkk  −−−−−−+

( ) ( )( ) 21526417 kkkkkk2  ++++  

where ]k[ ji are correspond to directional 

derivatives with respect to i  and the functions jk

( ),9.1,..=j  are given by (13).  

 

Proof. With the help of Gauss and Weingarten 

formulas and their components, the derivatives 

G
~~

ii
   and G

~

i
i


 ( )1,2=i  are yielded as 

( ) ( ) ( ) ( )( ) 21

2

7

2

6

2

2

2

1
11

kkkk=G
~~

 −−−−  

 

 ( )  ( ) 218671118761 kkkkkk  −+−−+  

 

 ( )  ( ) 228121128211 kkkkkk  −−++−+  

 ( ) ,kkkk2 216271  ++  

( ) ( ) ( ) ( )( ) 21

2

7

2

6

2

5

2

4
22

kkkk=G
~~

 −−−−  

  ( ) 11956342 kkkkk  −−−+  

  ( ) 21947352 kkkkk  ++−+  

  ( ) 12974362 kkkkk  −−+  

             
 ( ) 22965372 kkkkk  −−−+  

 ( ) ,kkkk2 216574  ++  

0,=G
~

1
F

1
F

  

( ) ( )

( ) ( ) .kkkk

kkkk=G
~

22321231

21731163
2

F
2

F





++

−
 

Then, substitute these derivatives into (21), we obtain 

the desired result.    

 

Example 7:The helical cylinder 

     ( ) ( ) ( )00,0,,uvsin,vcos,v0,=v,u:M +    (23) 

also corresponds to Aminov surface with 1=)u(r  

and the Laplace ofG of M is calculated as 

( )
11

2

3
2

2

21

vsin1

vcos221

22

vsin

4

1
=G  

















+

−
−








 

          
( )

.

vsin1

vcos221

4

vcos
21

2

3
2

2

 














+

−
+  

 

 

Figure  2: Aminov surface with r(u)=1 
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Theorem 8: Aminov surfaces can not have harmonic 

Gauss map in . 

Proof. Let M  be an Aminov surface in given by 

the Monge patch (8). The Laplacian of Gauss map can 

be written as 

( ) ( ) ( )

( ) ( ) ( ),

=G

216225124

213112211





+++

++
 

where 
i

  (i=1,…,6) are indicated in (22). If M  has 

a harmonic Gauss map, then 0,=G  i.e., 0.=
i

  

Then, we get  

( ) ( ) ( ) ( ) ( ) ( ) 0,=k2k2kkkk=
2

7
2

6
2

5
2

4
2

2
2

11 +++++  

It means that 0=)u(r  in the surface parametrization 

(8). Hence, this contradicts with the regularity of the 

surface which completes the proof.    

Theorem 9: Let M  be an Aminov surface in

given by the representation (8). Then, M  has 

pointwise one-type Gauss map of first kind if and 

only if 

( ) ( ) ( ) ( ) ( ) ( )
0,=1

k2k2kkkk
2

7

2

6

2

5

2

4

2

2

2

1 −
+++++


 

 

   
0,=

kk2kkkkkk
6395874261



 ++++
 

 

   
0,=

kk2kkkkkk
7394865271



 −−++−

      
(24) 

   
0,=

kkkkkkkkkk
974331826211



 +++−−
 

   
0,=

kkkkkkkkkk
965332817221



 +++++
 

( ) ( ) 0,=kk
k2

kk
k2

52

6

41

7 +
−

++
−


 

where   is a non-zero smooth function.  

 

Proof.  Let M  be an Aminov surface in given by  

             Monge patch (8). With the help of (1) and  

             (22), we can write 

( ) ( ) ( )

( ) ( ) ( ) ,k2k2k

kkk=,C

2

7

2

6

2

5

2

4

2

2

2

121

+++

+++ 


 

    ,kk2kkkkkk=,C
639587426111

++++ 


 

    ,kk2kkkkkk=,C
739486527121

−−++− 


 

   

,kkkkkk

kkkk=,C

974331

82621112

+++

−− 


 

   

,kkkkkk

kkkk=,C

965332

81722122

+++

++ 


 

( ) ( ),kkk2kkk2=,C
52641721

+−+−


 

where   is non-zero differentiable function. By using 

the equality (1), the constant vector C  can be 

considered as 

213112211
CCC=C  ++


 

                      

216225124
CCC  +++                  

(25) 

where 

( )
( ) ( ) ( ) ( ) ( ) ( )

1,
k2k2kkkk

=v,uC
2

7
2

6
2

5
2

4
2

2
2

1
1 −

+++++


 

( )
   

,
kk2kkkkkk

=v,uC 6395874261

2


 ++++
 

 

( )
   

,
kk2kkkkkk

=v,uC 7394865271
3



 −−++−

   
(26) 

 

( )
   

,
kkkkkkkkkk

=v,uC 974331826211

4


 +++−−
 

 

( )
   

,
kkkkkkkkkk

=v,uC 965332817221

5


 +++++
 

 

( ) ( ) ( )
52

6

41

7

6
kk

k2
kk

k2
=v,uC +

−
++

−


 

are differentiable functions. If M  has a pointwise 

one-type Gauss map of the first kind, then 0=C  in 

the equation (1). By the use of (25) and (26), we get 

the desired result.     
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Corollary 10:Aminov surfaces can not have a 

pointwise one-type Gauss map of the first kind in 

.  

Proof. Assume that an Aminov surface M  has a 

pointwise one-type Gauss map of the first kind in . 

Then, the equation system (24) is hold. By using the 

last equation in (24), we get 

( )
0.=

GE

rEGrr2
22

'



+
 

Hence, there are two cases: 0=)u(r '
 or 

0.=E)u(rG)u(r '' +  Using the first one ( .const=r ) 

in the second equation of (24), we yield 

( ) ( )
0.=

r1

vcosr
1

vsinr1

vsinr

2

3
2

22

2

3
22 
















+

−

+

−
 

Using the second one, i.e., substituting 
G

rE
=r −  into 

the second equation in (24), we obtain 

( ) ( )( )
0.=

GE

Err2Gr
22

22222
++

−  

These relations are satisfied if and only if 0,=)u(r  

but it contradicts with the regularity of the surface. 

Thus, we get the desired result.    

 

Theorem 11 Let M  be Aminov surface in  given 

by the Monge patch (8). Then, M  has a pointwise 

one-type Gauss map of the second kind if and only if 

 
  0,=kCkCkCkCC 2514736211 ++−+  

 
  0,=kCkCkCC 26836121 +−−  

 
  0,=kCkCkCC 16827131 −++

                      
(27) 

 
  0,=kCkCkCC 76851141 +−−  

 
  0,=kCkCkCC 66842151 ++−  

 
  0=kCkCkCkCC 6574132261 −−+−  

and 

  0,=kCkCkCkCC 7564534212 +−++  

  0,=kCkCkCkCC 7634934122 +−+−

  0,=kCkCkCkCC 6635925132 +−−−
          

(28) 

  0,=kCkCkCkCC 5695326142 −+++  

  0,=kCkCkCkCC 4694337152 +−+−  

  0=kCkCkCkCC 4554637262 −+−−  

are satisfied, where ]C[
ji

 are correspond to 

directional derivatives with respect to .i  

Proof.Let M  be an Aminov surface in which has 

a pointwise one-type Gauss map of second kind. It 

means that C


 is a constant in (1). With the help of the 

equation (25) and (12), the directional derivatives of 

the vector C


 are obtained as 

 ( )
212514736211

1
kCkCkCkCC=C

~
 ++−+  

 ( )
1126836121

kCkCkCC  +−−+  

 ( )
2116827131

kCkCkCC  −+++  

 ( )
1276851141

kCkCkCC  +−−+  

 ( )
2266842151

kCkCkCC  ++−+  

 ( )
216574132261

kCkCkCkCC  −−+−+  

          and 

     
 ( ) 217564534212

2
kCkCkCkCC=C

~
 +−++  

 ( )
117634934122

kCkCkCkCC  +−+−+  

 ( )
216635925132

kCkCkCkCC  +−−−+  

 ( )
125695326142

kCkCkCkCC  −++++  

 ( )
224694337152

kCkCkCkCC  +−+−+  

 ( )
214554637262

kCkCkCkCC  −+−−+  

Due to fact that the vector C


 is constant, these  

derivatives vanish and the equalities (27) and (28) 

are obtained. This completes the proof. 

Now, we will also visualize the Aminov surface with 

the following example: 

 

Example 12: Suppose that an Aminov surface is  

given by the parameterization  (8).  By taking   
uln=)u(r  , one can plot the projection of this  

surface with the help of Maple command: 
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)pi*2..pi*2v

,pi*2..pi*2u],vsinuln,vcosuln,vu([d3plot

−=

−=+
 

 

Figure  3: Aminov surface with r(u)=lnu 

 

Conclusion 

 

Aminov surfaces are the first described by Yu. A. 

Aminov in four-dimensional Euclidean space. In  

this paper, we calculate the Laplace of the Gauss  

map of these types of surfaces and examine them 

with respect to having pointwise one-type Gauss 

map.In future studies, this examination can be  

done for all surfaces given with Monge patch 

 

. 
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