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In this study, we focus on the Aminov surface with regard to its Gauss map in E*.

Firstly, we write the covariant derivatives according to linear combinations of
orthonormal vectors and separate the equalities using the Gauss and Weingarten
formulas. Then, we get the Laplacian of the Gauss map. After giving some
conditions, we yield the following results: Aminov surfaces can not have a harmonic
Gauss map and can not have a pointwise one-type Gauss map of the first kind in E*
. Further, we give an example of a helical cylinder which is also congruent to an
Aminov surface. Lastly, we obtain the conditions of having a pointwise one-type
Gauss map of the second kind.

1. Introduction

Surfaces given with Monge patch which are also
called digital graph surfaces have many advantages
by means of visualization. These types of surfaces can
be covered by just a few atlas that are produced with
Monge patches. The presentation of 3 — dimensional
form is  ¢(u,v)=(u,v,g(u,v)) where g is a
differentiable function [7].

Digital graph surfaces (Monge surfaces) in
4 —dimensional spaces have also attracted attention
as 3—dimensional spaces. These surfaces are given
by z=g(u,v), w=h(u,v) where uyv,z,w are the
cartezian coordinates [1,3]. Some of them are
translation surfaces, factorable (homothetical)
surfaces, TF —type surfaces etc.[13, 14]. In
particular, translation surface has many applications
in architecture. They have a quadrilateral form and
thanks to this property, they are used for free form
glass structures [8].

The idea of finite (limited) type
submanifolds was announced by Chen in the 1970s
and has grown into a widely used concept in studies
of Euclidean and semi-Euclidean spaces. This
concept has been extended to differentiable
transformations, especially to the Gauss map of
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submanifolds.The condition for a surface (or a
submanifold) to have a pointwise one-type Gauss map
is

AG= /I(G + 6) )

where A is a differentiable function and C is a
constant vector in the n — dimensional Euclidean (or

semi-Euclidean) space. If C =0, the surface is said
to have a pointwise one-type Gauss map of the first
kind, otherwise the second kind [6].

One of the popular surfaces, Aminov surface, can be
represented by a Monge patch

z(u,v)=r(u)cosv, w(u,v)=r(u)sinv, (2)

where r(u) is a differentiable function [1, 3]. In [3,
4], the authors handled Aminov surfaces according to
their curvatures in 4 —dimensional Euclidean and
Minkowski spaces. The other studies about some
surfacesin E*can be found in [9, 10, 11, 12].

In this study, we evaluate Aminov
surfaces with regards to their Gauss maps inE*. In
section 3, we obtain the covariant derivatives of
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orthonormal vectors on the surface and arrange them
in accordance with the Gauss and Weingarten
formulas. We write the shape operator matrices of the
surface. In Section 4, we compute the Laplacian of the
Gauss map of these surfaces. Then, we prove that
Aminov surfaces can not have a harmonic Gauss map
and can not have a pointwise one-type Gauss map of
the first kind in E*. Inan example, we get the Laplace
transform of the Gauss map of a helical cylinder.
Further, we present the conditions for Aminov
surfaces to have a pointwise one-type Gauss map of
the second kind.

2. Basic Concepts

Let M : g(u,v) denote a surface patch in Euclidean
4 —space E*. {p,,p, | spans the tangent space of M.
The first fundamental form coefficients are calculated
by F=(p,.,0,),E=(p.0,), G=(0,.0,). Hence,
M is known as regular in case of
W?=EG-F? #0.

Euclidean 4 —space can be considered as a

decomposition of tangential and normal component
of M for each point p:

E'=T,M®T M.
Let the orthonormal tangent vectors and normal

vector field of the surface be represented by ¢, , ¢,

and 77, respectively. V and V denotes the Levi-

Civita connections, then the Weingarten and Gauss
formulas are known as

V¢177=_A77¢1+D<p1777 (3)

V¢1(ﬂ2 = V¢l¢2 +h(e.,9,),

where A, is the shape operator,D is the normal

connection and h is the second fundamental tensor
[2, 5].

. 0 0
Assuming that =— ¢lu,v) and =— oplu,v
g that ¢, = p(uv) and ¢, == (u.v)
are orthogonal, the orthonormal tangent vectors are

0, %
(%] Ea(/’z G

(4)

The normal frame field {,,7,} is chosen as

(mm)=1(m,.m,)=1,(m.m,)=0, and  the
quadruple {p,,@,,77,,7,} is positively oriented in
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E*. Thus, according to orthogonal tangent vectors ¢,
and ¢,, the second fundamental form is written as
follows

h((/’l 1z ): h111771 + h121772 ,

h((Pl 10 ): h112771 + h122772 , (5)

h(% 19y ): h§2771 + h222772 )

where h (i, j,k=12) are the coefficients of the
second fundamental form.

With the help of Gauss and Weingarten formulas,
K =det(A, |+det(A, )gives the Gauss curvature of

M and H = %gives the mean curvature. Therefore,

the surface M is known as minimal (flat), if mean
curvature (Gauss curvature) vanishes[5].

In n—dimensional Euclidean space, let
le,.e,} be tanget vector fields of a surface, and the

}, for the

orthonormal frame {e, e, ,...€, }. Then, Gauss map
of the surface is given by

G(p)=(e; ne, Xp), (6)

and the Laplace of any differentiable function ¥ on

normal vectors denoted by {e3,.. e

1S

~ ~ ~ '

(see, [5]).

3. Aminov Surfaces in 4 — dimensional Euclidean
Space

Definition 1: Let M : p(u,v) be a regular surface in
E*. If M is parametrized by the Monge patch
o(u,v)=(u, v, r(u)cosv, r(u)sinv),

(8)

where r(u) is a differentiable function, then this
surface is called as Aminov surface in E*[1, 3].

Assume that M is an Aminov surface in
four-dimensional Euclidean space. Then, the vector
fields

¢, = (1,0, r'(u)cosv, r'(u)sinv),

@, =(0,1,—r(u)sinv, r(u)cosv),
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are tangent to M. Thus, the coefficients of first
fundamental form are

E=(r'y +1, (9)
F=0,
G=r’+1.

We set W2 =EG - F2=EG=(r? +1X(r')2 +1)¢0,
i.e., itisregular.

Since these vectors are orthogonal, the orthonormal
tangent vectors are written as

1, 0, r'(u)cosv, r'(u)sin v),

S
P \/E(Pu \/m(
(10)

_ 1 1

P2 \/a(pv 2
r

and the vectors

(0, 1, —r(u)sin v, r(u)cosv).

+1

n,=—(=r"cosv, rsinv, 1, 0), (11)

H
il

(— r'Gsinv, —recosv, - F, E)

7,

JEEG
are obtained as unit normal vector fields, where
E=1+r"2cos?v+r?sin?y,
Izzcosvsinv(r'2 - rz).

Furthermore, with the help of Weingarten and Gauss
formulas, we get

V(pl(/’l =k +Kamz,

V;ol(Pz =—Kemy +Ky775,

V(pz 01 =K, —Kemy + K715,

v(/)z @y = K30, —Kymy —Ks1,, (12)
v(1;1771 =—kyp1 +Ke11 +Kg17,,
Vo, M= Ker + Kq, =Ko,

V(p1772 = -k, —k; 0, —Kgp1,

V4472772 =—k; 01 + ks, +Kg1y,
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where the differentiable functions Kk, (i=1,...,9)
satisfy

K _r"cosv K _r'Gsinv = 1T
1= — 2T T = 3 y
EVE EVEEG GVE
rcosv rsinv r'sinv
k,= —, ks =—= , kg =— , (13)
GVE JEEG JEEG
= roosv r'cosvsinv(r'G - rE)
T FeV6
EG-E
Ky= oo —
EGVE
Thus, these relations can be decompose into  tangent
and normal components as
V(pl%:ov Aql(plzkl(Pl —Ks0,,
V. 0, =K, A, P, =—Ksy =Ky,
V,plf/’z:O’ A772¢’1=k2¢71+k7(/’21
v(p2¢1:k3¢2’ A,72¢’2 =k;0; K595,
and
h(pr.@1 )=k + Ko Dy, 1=Kz,
h((Pl 195 ): —Kem1 + K71, D¢l772 =—Kg1y, (15)
h((ﬂz 10> )= —Kqmy —Ks17,, Dq)Z 1 =—Ken;,
D¢2772 =Koy .

Moreover, with the help of (5) and (15), we obtain the
coefficients h;:

hi = r’cosv h2 = r'Gsinv

1~ = ! 11~ =1
EVE EVEEG
—r'sinv r'cosv

h, =——=——, hi=—7—, (16)

JEEG GVE

h —rcosv h2 _—rsinv

2= = 22 = .
GVE EEG

Lemma 2:Let the equality (8) respresent an Aminov
surface inE*. Then, the shape operator
matrices are given by
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r'cosv. —r sinv

| EJE JEeG _ cosv(r';G - rE)77 . sin v(r”(i— rE)n
A = rsinv. —rcosv | (7 2JEw?2 ' 2EVEW ’
EEG GVE It completes the proof.

Corollary 4:Let the equality (8) represent an

- : Aminov surface in E* Then, it i
r Gsinv r cosv ovsurface In E*. Then, itis

= = minimal if and only if
A77 - E EEG G\/E ) +2(u+02) +(u+02)
2 rcoiv —r~smv r(u)=i (cl)ze o +(cl)2—1e o (20)
GVE EEG 2¢,

. ) where C., (i =1,2) are real constants.
Theorem 3:[3]Let M be an Aminov surface in E* ! ( )

given by the Monge patch (8). Then, the Gaussian
curvature and the mean curvature vectors are

e (pr)2 Proof. The surface is minimal, i.e., H=0 in (19) if
K= L}r)E (18) and only if
w
and —rE+r G=0.
" . " Substituting the first fundamental form coefficients
H= cosv(r'G — rE) sin v(r G- rE)nZ (19)  into (9), we get the differential equation

_ n + >
WEW? 2EJEW

—rlL+ (P )+ (L r?)=0
respectively.

which has the solution (20). It completes the proof.

Example 5:The surface

- —_ u u H
Proof. With the help of Lemma 2, and the M .(p(u,v)— (u, vV, € cosv, € smv)

Gaussian ~ curvature of a surface inE is congruent to minimal Aminov surface with

k= det(Anl )+ det(Anz )): we yield r(u)=e" with the constants ¢, =1 in (20). One can
) ‘ plot by Maple:
— 1 rcos?v—r7sin?v
1 E

K=—
EG +(— r'rG? sin’v — r2g? COSZVJ

EEG
_ (— rrG— I"ZEX].—F r? cos?v+r? sinzv)

EE2G?

_—r"rG—!r' !ZE

= W

. ) Figure 1: Minimal Aminov surface
In addition, with the help of the mean curvature vector

h
of a surface (H = tr?j we compute

_ r ' Geosv—rEcosv r'Gsinv—rEsinv

=+ _ 7
2EGVE ' 2eJEEG

28

H
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4. A characterization of Aminov Surface with
regards to its Gauss map in E*

Let{p,,®, 7,77, jdenote the orthonormal frame of a
regular surface M : g(u,v) inE*. Then, the Gauss
map of the surface is

G=¢, ~np,.

By the use of the relation (7), the Laplacian operator
of this Gauss map in E* can be written as

—AG =V, V,G+V,, V, G- vv q,G Vy 2gDG (21)

Theorem 6: Let M be an Aminov surface in E*

given by the Monge patch (8). Then, the Laplace of
G of M is given by

=46 = (= (ky )~ (ky ) — (k)2 — (ks )~ 20k 20k, )
DD,
+ (= @[k | = 0, [y |- k7Kg —Ksko —2K5Ke Joy A7y

+(¢1[k7]_¢2[k5]_k6k8 +k4k9 +2k3k7 )¢1 A1, (22)

+ (= @[k, ]+ @5 ke |+ Kokg — KoKs — Kok, kk)(pz/\nlAG (1}0 2 sinv| 1—2v2 cos?v
1

+(_¢1[k2]_¢2[k7]_k1k8 —kyks —ksks _kekg)@z AT,
+2(k7 (kl + k4)+ Ke (kz +Ks ))771 A1,

where ¢, [k;]are correspond to directional

derivatives with respect to ¢; and the functions k;
(j=1,..,9) are given by (13).

Proof. With the help of Gauss and Weingarten
formulas and their components, the derivatives

v, V,G and 5%%6 (i=1,2) are yielded as

<

rplafﬂlG:( ( ) (k )2 (k )(ﬂ NP,
+ (= @[k |- k7Kg Joy Ampy + (1 [k, ]— ke kg Joy A7,

+(_ (01[k1]+ koKg )(Pz ATy +(_ ¢1[k2]_k1k8 )(Pz AT,

+ 2(k1k7 +KoKg )771 A1,

= (- (ke )? = (ke )? = (ke > = ()2 Jp, A 0,

<
Ny

29

+ (= @2k ] kaks —Ksko Joy A7y
+(—¢2[k5]+ kK, +k4k9)¢1 AT,
+ (@, [ks |~ ksk, —ksKg ), AT
+ (=@, [ky |- ksks —keko Jp, A7,
+2(k K, + Kk )7y AT,

G=0,

Ve F
Fl

VVFZFZGz (k3k6 )¢1 AT _(k3k7 )(ﬂl AT,
+(k1k3)(02 ATy +(kzks )(Pz AT,

Then, substitute these derivatives into (21), we obtain
the desired result.

Example 7:The helical cylinder

M : p(u,v)=(0, v, cosv, sinv)+(u,0,0,0) (23)
also corresponds to Aminov surface with r(u)=1
and the Laplace of G of M is calculated as

- 3 (01 N 771
242 (1+ sinZV)E
cosV| 1—2v2 cos?v
+ 4 3 ¢1 N 772 "
(1+sin?v)z

Figure 2: Aminov surface with r(u)=1
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Theorem 8: Aminov surfaces can not have harmonic
Gauss map in E*

Proof. Let M be an Aminov surface in E*given by
the Monge patch (8). The Laplacian of Gauss map can
be written as

AG=ay (@) A @y)+ ay (g Ay )+ gy Apy)
+0‘4(¢’2 /\771)+a5(¢>2 /\’72)"'056(771 /\772)’

where ¢, (i=1,...,6) are indicated in (22). If M has
a harmonic Gauss map, then AG=0, i.e, ¢, =0.
Then, we get

oy = (kg )? + (ko )? +(kg)? + (ks )* +2(ke ) +2(ks ) =0,

It means that r(u)=0 in the surface parametrization

(8). Hence, this contradicts with the regularity of the
surface which completes the proof.

Theorem 9: Let M be an Aminov surface in E*

given by the representation (8). Then, M has
pointwise one-type Gauss map of first kind if and
only if

(ko) )" (k)" (ke )+ 20K )"+ 20k )" _

A
¢1[k6]+¢)2[k4]+k7k8 + KK, + 2K K, =0
l 1
_¢1[k7]+¢’2 [ks]"':eks -k, Kk, — 2k kK, =0, (24)
§01[k1]_(p2[k6]_k2k8 +K, Ky + Kk, +k K, =0
ﬂ 1
¢1[kz]+¢z[k7]+k1ks +K, Ky + KKy +K K -0
ﬂ/ 1

— 2k,

&H«J+_T%m+&)o,

where A is a non-zero smooth function.
Proof. Let M be an Aminov surface in E*given by

Monge patch (8). With the help of (1) and
(22), we can write

/’i+ﬂ,<é,¢l A§92>:(k1)2 +(k2)2 +(k4)2
+ (ks )" +2(k )* +2(k, )°

2’<6’¢l Anl>:¢l[k6]+¢2[k4]+k7k8 +k5k9 +2k3k6’

30

2’<61¢1 /\772>:—(p1[k7]+(p2 [k5]+ keks - k4k9 _2k3k71

ﬂ,<é,(p2 /\771>=(p1[k1]—(p2[k6]—k2k8
+ Kk, k, + K.k, +K, Ky,

ﬂ,<é,(p2 /\772>=(p1[k2]+(p2 [k7]+ k,Kg
+ Kk, + K Ky + KoKy,

2’<61771 /\772> = _2k7 (kl + k4)_ 2k6 (kz + k5 )’

where 1 is non-zero differentiable function. By using

—

the equality (1), the constant vector C can be
considered as

C=C,p, A, +Co0, At +Copp, AT,

+C,p, A +Cip, A, +Compy AT, (25)

where

o= boF ool wlaF s PrdieF o200P

C,(uv)= AN ‘/’2[k4]+k/71k8 ks +2kks

Cs(uv)= — ke ]+ ¢2[k5]+26k8 —kakg —2ks3ky . (26)

C4(U,V)= §01[k1]—(/)2[k6]—k2k;+ k. Ky +K K, +K K

CS(U,V)z ¢1[k2]+¢2[k7]+k1k1+ kzks + k3k5 + kskg )

-2k
Coluw)= "2 (ko)

-2k
(kl + k4)+ A, °
are differentiable functions. If M has a pointwise
one-type Gauss map of the first kind, then C =0 in
the equation (1). By the use of (25) and (26), we get
the desired result.
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Corollary 10:Aminov surfaces can not have a
pointwise one-type Gauss map of the first kind in E*

Proof. Assume that an Aminov surface M has a
pointwise one-type Gauss map of the first kind in[E*.
Then, the equation system (24) is hold. By using the
last equation in (24), we get
2r (r'G +rE) _
JEG?

Hence, there two cases: r(u)=0
r' (u)G + r(u)E=0. Using the first one (r = const.)

in the second equation of (24), we yield

are or

—_ i 2 2
rsinv . 1_[’ cos\g/ -0
(1+ rzsinzv)5 (1+ rz)E
. . . " rE .
Using the second one, i.e., substituting r" = "G into
the second equation in (24), we obtain
N2 2 1\2 2 2
_(r)ye +(2(r) +r )E o

E’G?
These relations are satisfied if and only if r(u)=0,

but it contradicts with the regularity of the surface.
Thus, we get the desired result.

Theorem 11 Let M be Aminov surface in E* given

by the Monge patch (8). Then, M has a pointwise
one-type Gauss map of the second kind if and only if

¢,[C, ]+ Cyks —Csk, +C k, +Cik, =0,
¢,[C,]-C.ks —Csks +Cek, =0,
¢,[Cs]+C.k, +C, ks —Cek, =0, (27)
@ [C,]-Ck, —Ccks + Cok, =0,
¢,[Cs]-C .k, +C, ks +Cykg =0,
9,[Cs]-Cok, +Cyk, —C,k, —Cgkg =0
and
»,[C, ]+ C,k, +Csks —C, ks +Cik, =0,
»,|C,]-Ck, +Cskg —C ks + Cik, =0,
?,[C5]-Ciks —Cyky —Cyky +Coks =0, (28)

31

?,[C,]+Cyks +C,ky +Coky —Cyks =0,

9,[C5]-Cik; +Csky —Cyky +Csk, =0,

(Dz[ce]_czk? —Csks +Cyks —Cgk, =0

are satisfied, where ¢ [C,]Jare correspond to

directional derivatives with respect to ¢..

Proof.Let M be an Aminov surface in E*which has
a pointwise one-type Gauss map of second kind. It

means that C is a constant in (1). With the help of the
equation (25) and (12), the directional derivatives of

the vector C are obtained as

v(plC = (¢1[C1]+C2k6 -Gk, +C .k, +C5k2)¢1 NP,
+(p,[C,]-C,ks —C;ky +Cik, o, AT,

C6k1)¢1 /\772

—C.kg +Cek; )¢2 Ay

+(p,[C,]+Ck, +Ck,

(p:[C.]-Ck,
+(p,[C.]-Ck, + C,k, +C.k Jp, A7,

—C.k, )’71 AT,

+
+(¢’1[C6]_C2k2 +C3k1 _C4k7
and
=(p,[C1 ]+ Coky +C3ks

—Cyke +Csky Jpy A 0,

+(¢’2 [Cz]_C1k4 +C.k, —C,k; +Cgk, )¢1 AT

+(¢2[ ] Czkg_Csks"'Ceke)@l/\ﬂz
+(p,[C, ]+Ck +C,k, +C.ky, —Cks ), A,
+(¢2[ ] Ck +Ck C4k9+06k4)¢2/\772
+(9,[C,]-C.k, —C ks +C.ks —Ck, Jn, A,

Due to fact that the vector C is constant, these
derivatives vanish and the equalities (27) and (28)
are obtained. This completes the proof.

Now, we will also visualize the Aminov surface with
the following example:

Example 12: Suppose that an Aminov surface is
given by the parameterization (8). By taking
r(u)=Inu , one can plot the projection of this

surface with the help of Maple command:
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plot3d([u +v,Inucosv,Inusinv],u=-2* pi..2* pi,

V=-2%pi.2* pi) Conclusion

Aminov surfaces are the first described by Yu. A.
Aminov in four-dimensional Euclidean space. In
this paper, we calculate the Laplace of the Gauss
map of these types of surfaces and examine them
with respect to having pointwise one-type Gauss
map.In future studies, this examination can be
done for all surfaces given with Monge patch

Figure 3: Aminov surface with r(u)=Inu
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