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Introduction
Clinically, cancer is defined as a large number (up to a hundred) 
of complex diseases that behave differently depending on 
the cell types from which they originate. Cancers vary in 
age of onset, growth rate, invasiveness, prognosis, and 
responsiveness to treatment [1]. The most common cancer 
treatments are limited to chemotherapy, radiation, and surgery. 
Frequent challenges encountered by current cancer therapies 
include the nonspecific systemic distribution of antitumor 
agents, inadequate drug concentrations reaching the tumor, 
and the limited ability to monitor therapeutic responses. 
Poor drug delivery to the target site leads to significant 
complications, such as multidrug resistance [2]. Nowadays 
to overcome all these limitations in the treatment of cancer, 
researchers have started working on nanotechnological 
applications in the field of clinical oncology.

Nanotechnology can be defined simply as the technology 
at the scale of one-billionth of a metre. It is the design, 
characterization, synthesis and application of materials, 
structures, devices and systems by controlling shape and size 
at the nanometre scale [3]. Nanomedicine is defined as the 
application of nanobiotechnology to medicine and is based 
on the use of nanoscale materials and devices for diagnosis 
and drug delivery as well as for the development of advanced 
pharmaceuticals referred to as nanopharmaceuticals [4].

In this review, some nanodrugs, which can both increase 
the effectiveness and reduce side effects of cancer treatment, 
increasing the effectiveness of radiation therapy with gold 
nanoparticles and the application of hyperthermia through 
the nanomaterials are discussed.

Chemotherapy based on nanotechnology 

Most current anticancer agents do not differentiate 
between cancerous and normal cells, leading to systemic 
toxicity and adverse effects. This greatly limits the maximum 
allowable dose of the drug. In addition, rapid elimination 
and widespread distribution into targeted organs and tissues 
requires the administration of a drug in large quantities, which 
is not economical and often results in undesirable toxicity [5].
Techniques for controlled drug delivery represents one of the 
frontier areas of science, which involves multidisciplinary 
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ÖZET
Cerrahi, radyoterapi ve kemoterapi kanser tedavisinde kullanılan 
geleneksel yöntemlerdir. Bu yöntemlerin bazı sınırlamaları olduğu 
için hastalığı tamamen tedavi etmek güçtür. Son yıllarda bu 
sınırlamaların üstesinden gelmek ve aynı zamanda tedavi etkinliğini 
arttırmak için yeni yöntemler geliştirilmektedir. Bu bağlamda 
nanoteknoloji umut verici bir yaklaşımdır. Bu nedenle kanser 
nanoteknolojisi dikkat çekici bir alan haline gelmiştir. Geleneksel 
kanser ilaçlarının yan etkilerini azaltan ve tedavi etkinliğini arttıran 
yeni nano ilaçlar, radyoterapiye duyarlılığı arttıran altın nano 
partiküller ve termal ablasyon tedavisinde kullanılan nano partiküller 
kanser nanoteknolojisi alanında kullanılan uygulamalardan sadece 
bazılarıdır.
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scientific approaches that can contribute to human health 
care. These delivery systems offer numerous advantages 
compared to conventional dosage forms, including improved 
efficacy, reduced toxicity, and improved patient compliance 
and convenience [6]. 

The new generation of nanotechnology-based drug 
formulations is challenging the accepted ways of cancer 
treatment. Multi-functional nanomaterial constructs have 
the capability to be delivered directly to the tumor site and 
eradicate cancer cells selectively, while sparing healthy cells. 
Tailoring of the nano-construct design can result in enhanced 
drug efficacy at lower doses that can free drug treatment, can 
produce a wider therapeutic window, and lower side effects. 
Nanoparticle carriers can also address several drug delivery 
problems that could not be effectively solved in the past, 
including reduction of multi-drug resistance effects, delivery 
of small interfering RNA (siRNA), and penetration of the 
blood-brain-barrier. Although challenges in understanding 
toxicity, biodistribution, and in paving an effective path for 
regulating the actions of the  nanoscale devices carry a vast  
promise to change ways cancer is diagnosed and treated [7]. 
The design of a universal nanotechnology formulation with 
chemotherapeutic agents is crucial. A successful formulation, 
one that acts as a good therapeutic carrier for cancer therapies, 
would exhibit the following features: (i) it would be stable in 
the physiological environment, (ii) have a longer circulation 
life time than currently available treatments,   (iii) avoid 
opsonization and processing by the reticuloendothelial system 
(RES),  (iv) promote endocytosis, and (v) enhance tumor uptake. 
The specificity of these formulations can be further enhanced 
by the conjugation of antibodies to the nanoformulations 
and these immunoconjugated formulations will have a better 
therapeutic efficacy than other drug formulations [8]. 

Albumin Bound Paclitaxel 

Taxanes are a class of chemotherapy agents that 
promote the polymerization of tubulin into highly stable, 
intracellular microtubules. These microtubules cause cell 
death by interfering with normal cell division. The first 
taxane developed and tested in the field of oncology was 
paclitaxel [9]. Paclitaxel is a naturally occurring complex 
product extracted from the bark of the Western yew (Taxus 
brevifolia) and is widely used for the treatment of breast, 
lung, and advanced ovarian cancer [10-12]. Advances in the 
use of taxanes clinically have been limited by their chemical 
formulation: they are highly hydrophobic molecules. To 
overcome this poor water solubility, lipid-based solvents 
are used as a vehicle. Solubility of paclitaxel is enhanced 
with a mixture of 50:50 Cremophor EL® (CrEL, a non-ionic 
surfactant polyoxyethylated castor oil; BASF, Florham Park, 
NJ, USA) and ethanol (Taxol® and generic equivalents) [13]. 
The solvent Cremophor-EL used in formulations of paclitaxel 
causes acute hypersensitive reactions. To reduce the risk of 
allergic reactions when receiving paclitaxel, patients must 

undergo pre-medication using steroids and anti-histamines 
and be given the drug using slow infusions lasting a few  
hours [14]. In order to overcome insolubility problems, 
albumin bound paclitaxel was developed.  This drug is the only 
example of a regulatory approved (FDA, USA) nanoparticle 
formulation for intravenous drug delivery in cancer patients. 
It is paclitaxel bound to albumin nanoparticles, with a mean 
diameter of 130 nm, for use in individuals with metastatic 
breast cancer who have failed a combination chemotherapy or 
relapsed within 6 months of adjuvant chemotherapy [15, 16]. 
This formulation overcomes poor solubility of paclitaxel in 
the blood and allows patients to receive 50% more paclitaxel 
per dose over a 30-min period [17]. Because it is solvent-free 
solvent related toxicities are also eliminated [14].

Liposomal Doxorubicin 

Anthracyclines are an important class of antitumor agents 
with significant biological activities. Anthracyclines are 
DNA intercalating agents, which can bind to DNA. These 
agents bind to specific DNA sequences, form topoisomerase-
DNA complexes, and cause double strand DNA breaks. 
Anthracycline is a Doxorubicin that is  an essential component 
of treatment of breast cancer, childhood solid tumors, and soft 
tissue sarcomas [18, 19) . Although anthracyclines are used 
in many types of cancer, they have cardiotoxic effects. Acute 
cardiotoxicity may manifest as nonspecific ST-segment 
and T-wave abnormalities. In contrast to early effects, late 
anthracycline cardiotoxicity is cumulative, dose related, and, 
at sufficiently high dosages, can result in congestive heart 
failure (CHF) and left ventricular (LV) dysfunction [20]. 
Doxorubicin is recognized as one of the most active drugs 
for breast cancer, but its clinical utility is limited because of 
a cumulative dose-dependent cardiac myopathy that can lead 
to potentially fatal congestive heart failure [21-24]. 

The mechanism of doxorubicin-induced cardiotoxicity 
involves the formation of a stable complex of drug with 
ferric iron, and this reacts with oxygen, forming superoxide 
anions, hydrogen peroxide, and hydroxyl radicals. These 
free radicals cause lipid peroxidation. The injury is initially 
subclinical, but continued treatment results in progressive 
myocyt damage leading to cumulative dose-dependent 
cardiac dysfunction that can manifest during therapy, months 
after the last anthracycline dose or even years later [25]. In 
an effort to minimize anthracycline-induced cardiotoxicity, 
a liposome-encapsulated doxorubicin (Myocet™, St. Mary’s 
Pharmaceutical Unit, Quadrant Centre, Cardiff Business 
Park, Llaninishan, Cardiff Wales; Trade Company, Cephalon 
Europe, Maison Alfort, France) has been developed [26]. 
Liposomal doxorubicin is approximately 190 nm in size and 
was approved by the European Agency for the Evaluation 
of Medicinal Products (EMEA) in 2000 for the treatment 
of metastatic breast cancer [17]. The formulation consists 
of encapsulation of the water-soluble doxorubicin within 
a phospholipid membrane to prevent doxorubicin from 



3Marmara Medical Journal (2013) 26:1-4
Topçul et al.

Nanotechnology in the field of clinical oncology

exiting the circulation through  capillary junctions in healthy 
tissues. However, liposome-encapsulated drug appears to 
pass easily through the damaged capillaries of tumor tissues 
[26]. Therefore, liposomal encapsulation of doxorubicin is 
designed to increase safety and tolerability by decreasing 
cardiac and gastrointestinal toxicity through decreased 
exposure of these tissues to doxorubicin, while effectively 
delivering the drug to the tumor [27].

Nanotechnology-based radiotherapy

Radiotherapy involves the use of high-energy rays to kill 
cancer cells [28]. Treatment depends upon the sensitivity 
of dividing cells being destroyed by X-rays or gamma rays 
emitted from a radioactive source [29]. Here, the ionizing 
radiation presents the advantage of penetrating tissues, which 
allows the treatment of deeply sited tumors [30]. However, 
radiotherapy has the disadvantage of causing some damage to 
normal tissues and cells covering and surrounding the cancer 
in the irradiated treatment area [29]. One major difficulty 
is the lack of selectivity between the tumor and the healthy 
surrounding tissue. The implementation of such techniques 
is therefore limited by the tolerance of normal tissues. The 
challenge of future radiation therapies is to develop methods 
for targeting the dose deposition to tumors and to enhance the 
biological effects [30]. 

Chemical radiosensitizers have been developed to 
increase the sensitivity of tumor cells’ to radiation by targeting 
numerous different biochemical pathways, including 
targeting of hypoxic cells, suppression of radioprotective 
thiols, and inhibition of DNA repair [31-34]. Although these 
applications have shown promise in one or more areas, 
they are generally toxic to normal tissues, have uncertain 
radiosensitizing mechanisms, and sometimes rely on a sub-
cellular target that is subject to change. It has been concluded 
that the synergistic gain from these chemical radiosensitizers 
has been marginal [35]. 

Enhancement of the radiation dose by high atomic 
number (Z) materials has long been of interest [36]. It has 
been reported that loading high Z materials into the tumor 
could result in greater photoelectric absorption within the 
tumor than in surrounding tissues, and thereby enhance the 
dose delivered to a tumor during radiation therapy [36, 37]. 
Among other nanoparticle systems, gold nanoparticles have 
been explored as radiosensitizers [38]. While most of the 
research in this area has focused on either gold nanoparticles 
with diameters of less than 2 nm or particles with micrometer 
dimensions, it has been shown that nanoparticles 50 nm 
in diameter have the highest cellular uptake [39]. Gold 
nanoparticles have properties that make them attractive for use 
in cancer therapy including their small size, biocompatibility, 
and passive accumulation in tumors because of the enhanced 
permeability and retention effect [40]. In addition to these 
properties gold nanoparticles are capable of forming reactive 
oxygen species when irradiated [41].

The results suggest that the enhancement of radio 
sensitivity is due to the production of additional low-energy 
secondary electrons caused by the increased absorption of 
ionizing radiation energy by the metal of gold nanoparticles 
or of a thick gold substrate. Since short-range low-energy 
secondary electrons are produced in large amounts by any 
type of ionizing radiation, and since on average only one 
gold nanoparticle per DNA molecule is needed to increase 
damage considerably, targeting the DNA of cancer cells 
with gold nanoparticles may offer a novel approach that is 
generally applicable to radiotherapy treatments [42]. 

Nanotechnology-based thermal ablation therapy

Thermal ablation therapy (hyperthermia) is defined as a 
therapy in which tumor temperature is raised to values between 
41oC and 45oC by external means. It can be applied locally/ 
regionally or to the whole body depending from the stage of the 
cancer in patients  For decades hyperthermia has been an area 
of laboratory investigation [43]. Hyperthermia therapy is the 
most promising of these methods but is limited by incomplete 
tumor destruction and damage to adjacent normal tissues. 
The radiofrequency ablation technique currently used, is a 
type of interstitial hypothermia that requires invasive needle 
placement and is  limited by the accuracy of the targeting. 
Use of nanoparticles has refined noninvasive thermal ablation 
of tumors, and several nanomaterials have been used for this 
purpose. These include gold nanomaterials, iron nanoparticles, 
magnetic nanoparticles, carbon nanotubes and affisomes. 
Heating of the particles can be induced by magnets, lasers, 
ultrasound, photodynamic therapy or  low-power X-rays [4]. 
Perhaps the most researched property of carbon nanotubes 
for cancer therapy in recent years has been their strong 
absorbance in the near-infrared light range (700–1400 nm). 
This property makes carbon nanotubes an enticing vehicle 
for selective cell killing because many biological tissues are 
transparent in the near-infrared range. It is well documented 
that carbon nanotubes themselves are not toxic to cells but, 
when combined with near-infrared light therapy, they have 
been shown to cause cell death by hyperthermia [44].

Conclusions
Currently cancer is a disease that cannot be cured completely. 
Conventional therapies cannot target cancer cells exclusively. 
In addition to cancer cells, normal healthy cells are affected 
by these therapies. For this reason these therapies have some 
limitations. To overcome these limitations, new methods are 
being developed. Adaptation of nanotechnology in the field 
of oncology includes these new methods.

Nowadays, nanotechnology based methods are 
applied in many fields of clinical oncology. Limitations 
in the treatment of cancer will be eliminated with the 
development and application of these methods. For this 
reason nanotechnological approaches are seen as promising 
developments in clinical oncology.
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