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Abstract 

The effectiveness of optimal semi-active dampers for reaching the optimum gains of the response of 

the adjacent buildings connected by magneto-rheological (MR) dampers subjected to seismic motion 

is examined in this study. One of the challenges is to improve an effective optimal control strategy, 

utilizing the capabilities of the MR dampers. Hence, a SIMULINK block in MATLAB program was 

developed to compute the desired control forces at each floor level and to the obtain number of 

dampers. Linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controllers are used 

for achieving the desired control forces, whilst the desired voltage is synthesized based on clipped 

voltage law (CVL). The control objective is to diminish both the displacement and acceleration 

responses. As a result, MR dampers can deliver noteworthy displacement response control that is 

possible with less voltage for the shorter building. 

Keywords —Adjacent buildings, clipped optimal algorithm, Magneto-Rheological (MR) damper, 

seismic effects, Semi-active control 

 

1 Introduction 

Various control devices have been widely 

utilized as supplemental damping strategies in 

order to mitigate the effects of earthquakes and 

high wind load on civil engineering structures. 

Dampers have been used onto structures as 

paramount interest over the past two decades. 

These dampers include fluid visco-elastic 

dampers [1-4], friction dampers [1-4], active 

devices [5-8] and semi-active magnetorheological 

(MR) dampers [9-12]. Westermo [13] was the first 

to propose the concept of linking the podium 

structure to the main buildings for avoiding the 

pounding effects. Westermo [13] found that this 

concept can be applied to mitigate the problem of 

pounding between the podium structure and the 

main building. Ni et al. [14] and Yoshida and 

Dyke [15] have researched about how the 

magnetorheological (MR) dampers can work on 

structures. Although semi-active control is still 

new as a recent development, some authors are 

still continuing to work on passive and active 

structural control [15]. 

Optimizing the use of dampers to mitigate 

seismic damage has hitherto not been 

investigated in spite of enhancing structural 

control concepts in the structural vibration 

control through the application of optimization. 

Luco and De Barros [16] found the optimal 

damping parameters for the distribution of 

passive dampers.  In general, analytical and 

experimental studies have investigated the 

seismic responses of the structures before and 

after installing a damping device to understand 

their effectiveness. However, very few studies 

have been undertaken regarding the effect of 

non-uniform distribution of the dampers [1,5,17-

18]. None of these studies show a clear 

comparison in order to indicate the quality of 

their own proposed arrangement/solution. For 

example, Bhaskararao and Jangid [5] proposed a 

parametric study to examine the optimum slip 

force of the dampers in the responses of two 

adjacent structures. The authors also found that 

the optimum placement of damper helps the 

response reduction. 

In order to improve other recent strategies, the 

existed control algorithms on passive, semi-

active and active control can be used. Linear 
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Quadratic Regulator (LQR), 𝐻2/𝐿𝑄𝐺  (Linear 

Quadratic Gaussian), 𝐻2, 𝐻∞ and fuzzy control 

can be selected as the existed optimal control 

algorithms. Ahlawat and Ramaswamy [19] used 

a multi-objective of the GA in order to provide an 

optimum solution in damper design. Despite of 

the simplicity of a passive control, semi-active 

and active control systems are currently getting 

more attention. Arfiadi and Hadi [20] developed 

a simple optimization technique using genetic 

algorithms (GA) to measure the force for the 

control. A inactive output was used with the help 

of the measurement output in their study for 

feedback controller. Two optimization controls 

were used by the authors to compare their 

controllers’ performance. The aim is to obtain the 

optimum controller for MR dampers by using 

LQR and 𝐻2/𝐿𝑄𝐺 strategies. The uncontrolled 

individual buildings responses are compared 

with the corresponding numerical results of 

adjacent buildings controlled with MR dampers 

using nonlinear control algorithms. 

2 System Model 

Consider semi-active dampers placed throughout 

two n and m storey structures with as shown in 

Figure 1.  

 

Figure 1: MR dampers located between buildings 

Equations of motion of the adjacent buildings are 

shown in Eqs. (2.1) and (2.2). Equations of motion 

for the adjacent buildings having flexible 

columns and mass concentrated at the rigid slabs 

can be obtained by writing the equilibrium 

equations from the free body diagram of each of 

the lumped mass of the building. Eqs. (2.1) and 

(2.2) can be solved at the same time. For 

considering semi-active control, first combining 

these equations can be collected into a convenient 

matrix form.  

 

 Building A: 

1 1 1 1 1 1 1 1 g
M X C X K X M E X   

 (2.1) 

 Building B: 

2 2 2 2 2 2 2 2 g
M X C X K X M E X   

 (2.2) 

Eq. (2.3) can be converted to first order state 

equations.  𝑐𝑑(𝑚,𝑚) and 𝑘𝑑(𝑚,𝑚) are the additional 

damping and stiffness diagonal matrices because 

of the placement of the MR dampers.  
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(2.3) 

By defining the state vector 𝑋 = {𝑋1𝑋2𝑋1̇𝑋2̇}
𝑇
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(2.4) 

where 𝑛 × 1 and 𝑚 × 1 unity matrices are given 

as  𝐸1 and 𝐸2, respectively. 𝑃1 and 𝑃2    are 

dimensional matrices regarding to the number of 

actuators for the additional dampers. m denotes 

the lower building’s storey levels. Here, an 

identity matrix is given as I and 0 in matrix Λ  is a 

(𝑠 × 𝑛𝑎) matrix containing zero. 𝐹𝑚𝑟 =

[𝑓𝑚𝑟
1 … 𝑓𝑚𝑟

𝑖      … 𝑓𝑚𝑟
𝑚 ]𝑇   is control input 

vector. 

   ;

; v

mr g

w w mr m m m mr

X AX BF t EX t

x C X D F y C X D F

  

    
 

(2.5) 

In which 𝑦𝑚 is the vector of measured outputs,  𝑋 

is the regulated output vector. The equations of 

motion without MR dampers can be noted under 

only earthquake excitation as 

 g
X AX EX t 

 (2.6) 

Eq. (2.6) defines the uncontrolled adjacent 

buildings system to compare the behavior of MR 

dampers installed between both buildings in 

case. 
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3 MR damper forces 

The modified Bouc-Wen model as shown in 

Figure 2 is used to simulate the dynamic 

behaviour of the MR damper as [22] 

 

Figure 2: Modified Bouc- Wen model for MR 

damper [22] 

 1 1 0f i
mr i i n ic y k x x x   

 
(3.1) 

where the internal pseudo-displacement, 𝑦̇𝑖 and 

the evolutionary variable, 𝑧̇𝑑𝑖 are given by 
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(3.2) 

where  xn+i and  xi are the displacements of the 

𝑖𝑡ℎ floor of Building B and Building A, 

respectively. The displacement of the MR 

damper ∆𝑥𝑖  is calculated as the relative 

displacement amongst two inline adjacent floors 

(i).  x0  is the initial displacement of spring of the 

accumulator stiffness k1.  k0 is the stiffness at 

large velocities.  c0 and c1  are viscous damping 

coefficients at large velocities and for force roll-

off at low velocities, respectively. ∝ is the 

evolutionary coefficient. Other shape parameters 

for the hysteresis loop are given as 𝛾, 𝐴𝑐 , 𝑛𝑑 and 𝛽 

in Eq. (3.2). The following three model 

parameters are based on the command voltage u 

to the current driver are expressed as follows. 

1 1 1 0 0 0u ; u ; ua b i a b i a b ic c c c c c         (3.3) 

Eq. (3.4) simulates the dynamics involved in both 

reaching rheological equilibrium and driving the 

electromagnet in the MR damper. The dynamics 

are accounted for through the first order filter. 

 u u vi i  
 (3.4) 

where 𝑢𝑖 is given as the output of a first-order 

filter which models delay dynamics of the 

current driver and of the fluid to reach 

rheological equilibrium. 𝑣𝑖 is a command input 

voltage supplied to the damper at the ith floor.  

𝑓𝑚𝑟
𝑖  is the damper force at the ith floor level. 

Parameters of the MR dampers used in this study 

were obtained by Spencer et al. [21] and are 

shown in Table 1. 

Error! Reference source not found.: Parameters of 

Bouc-Wen phenomenological model parameters 

for 1000 kN MR dampers [18,22] 

Parameter Value Parameter Value 

𝑐0𝑎  50.30 kN 

sec/m 

𝛼𝑎 8.70 

kN/m 

𝑐0𝑏 48.70 

kN 

sec/m/V 

𝛼𝑏 6.40 

kN/m/V 

𝑘0 0.0054 

kN/m 

𝛾 496.0 m-2 

𝑐1𝑎 8106.2 kN 

sec/m 

𝛽 496.0 m-2 

𝑐1𝑏 7807.9  

kN 

sec/m/V 

𝐴𝑐 810.50 

𝑘1 0.0087 

kN/m 

𝑛𝑑 2 

𝑥0 0.18 m 𝜂 195 sec-1 

4 Optimal controller design 

For the minimization of semi-active control 

problems, some optimization methods according 

to the decided objective function have been 

applied.  𝐻∞ and LQR norms [22] are used to 

obtain the optimum damper parameters. 

4.1 H∞  Optimization  

The 𝐻∞ norm is achieved to the iterative manner 

[20]. Hamiltonian matrix in this case can be 

provided as 

   

1 1

1 1

R R
H=

R R

T T
w

T
T T T
w w w

A E D C E E

C I D D C A E D C

 

 

 
 
    
   

(4.1) 

where 𝑅 = 𝛾2𝐼 − 𝐷𝑇𝐷. Eigenvalues of the matrix 

given in Eq. (4.1) are symmetric about the real 

and imaginary axes with D=0. The following 

bisection algorithm computes the 𝐻∞ norm  

(1) Select  𝛾𝑢, 𝛾𝑙 make sure that  𝛾𝑙 ≤ ‖𝐺̂∞‖ ≤ 𝛾𝑢 

(2) If  (𝛾𝑢 − 𝛾𝑙) /𝛾𝑙 ≤  specified level (Tol.)  

Yes Stop (‖𝐺̂∞‖ ≈
1

2
(𝛾𝑢 + 𝛾𝑙) ) 

Else jump to Step (3) 
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(3) Set 𝛾 = 
1

2
(𝛾𝑢 + 𝛾𝑙)   and test if  ‖𝐺̂∞‖ ≤ 𝛾 using  

λ𝑖(𝑯) 

(4) If   λ𝑖(𝑯) jℝ, then set 𝛾𝑙 = 𝛾, else set  𝛾𝑢 = 𝛾 

and go to Step (2) 

The 𝐻∞ norm to be determined is the resulting 𝛾. 

Genetic based optimizer solves the damper 

parameters then. Note that the controlled output 

defined in Eq. (2.5) can cover the displacements 

and velocities of the adjacent buildings. For 

instance, once the regulated output is chosen as 

the relative displacement and velocities of the 

levels of both buildings, matrix Cw can be 

selected as 

 

 

I ;

0

w m

w m

C C

D D

 

 
 

(4.2) 

where I is a  (2𝑛 + 2𝑚) × (2𝑛 + 2𝑚) identity 

matrix, 0 and 0 denote as  (2𝑛 + 2𝑚) × 1  vector 

and   (2𝑛 + 2𝑚) × (𝑚)  matrix containing zeros, 

respectively. The scripts of n and m denote total 

DOF of both buildings. The optimization 

problem is to obtain the optimum bounds of the 

dampers that minimize 𝐻∞ in GA used. 

4.2 LQR  Optimization 

The clipped-optimal control method is to solve 

an optimal control problem and to calculate the 

optimum force. For this purpose, LQR and 

𝐻2/𝐿𝑄𝐺 strategies are common in optimal control 

problems. Firstly, a LQR algorithm with full state 

feedback is employed in this study. For 

designing a LQR controller, the aim is to 

minimize the quadratic performance index 

𝐽 =
1

2
∫ [𝑥𝑇𝑸𝑥 + 𝐹𝑚𝑟

𝑇 𝑹𝐹𝑚𝑟]𝑑𝑡
∞

0
 subject to state Eq. 

(2.5) [23]. Here, both 𝑸 positive semi-definite 

state and 𝑹  the positive control input weighting 

matrices are for the vector of regulated 

responses, 𝑥 in Eq. (2.5) and of control forces,  𝐹𝑚𝑟 

respectively. Optimal control force vector can be 

written as [24-25] 

1T
df B PX X   R K

 (4.3) 

where P is the solution of the algebraic Riccati 

equation as shown in Eq. (4.4). 

1Q R 0T T T
w wPA A P C C PB B P   

 (4.4) 

The control input is a vector, i.e.   𝑓𝑑 =

[𝑓𝑑1 … 𝑓𝑑𝑖     𝑓𝑑𝑚]𝑇 and = [𝑅] .  𝑲 is the full state 

feedback gain matrix of the stable regulator 

problem. However, the number of sensors should 

be limited for economical reasons, the need of the 

output feedback, where not all states are 

available, is more pronounced [20]. 

4.3 LQG Optimization 

Many positions in realistic systems are not 

simply computable. The controller in Eq. (4.3) is 

not implemental without the full state 

measurement [23,26]. Hence, in this study the 

results are compared with the corresponding 

LQR controller. A state estimate is shown as 𝑋̂ 

that f𝑑 = −𝐊𝑋̂ stands optimal based on the 

capacities [23]. An infinite performance directory 

is selected as 𝐽 = lim𝜏→∞
1

𝜏
𝐸[∫ [𝑦𝑚

𝑇 𝐐𝑦𝑚 +
𝜏

0

𝐹𝑚𝑟
𝑇 𝐑𝐹𝑚𝑟]𝑑𝑡]. Both Q and R weighting matrices 

are for the vector of measured responses, 𝑦𝑚   in 

Eq. (2.5) and of control forces, 𝐹𝑚𝑟 respectively.  

For design purposes, independent Gaussian 

white noise processes with  𝑆𝑥̈𝑔𝑥̈𝑔
𝑆𝑣𝑖𝑣𝑖

= 𝛾𝑔 = 50⁄  

is used statistically inhere as the measurement 

noise is distributed identically. Here, 

𝑆𝑣𝑖𝑣𝑖
 and 𝑆𝑥̈𝑔𝑥̈𝑔

 are the measurement noise and the 

auto spectral density function of ground 

acceleration, respectively. The nominal controller 

is represented as [27] 

T

diag[ K M] ;

r K



 

Q

R =  
(4.5) 

 

   

 

;g m g m g m mr

T

g m

X A L C X L y B L D F

L C S

    


 

(4.6) 

The solution of the algebraic Ricatti equation is 

given in Eq. (4.8) denoting as S . 𝑋̂ denotes the 

optimal estimate of the state space vector, X. 

Based on selected displacement and velocity 

measurements, to estimate the states a Kalman 

filter is used. To gain an approximately desired 

control force, 𝑓𝑑 a force feedback loop is 

appended for inducing the MR device. A linear 

optimal controller 𝐾𝑐(𝑠) is designed that delivers 

the desired control force 𝑓𝑑,  according to the 

measured responses 𝑦𝑚, and the measured 

force, 𝐹𝑚𝑟   as given in Eq. (4.8). The Laplace 

transform denotes as 𝐿(. ).  Despite the controller 

𝐾𝑐(𝑠)   can be received from a range of synthesis 

methods, the  𝐻2/𝐿𝑄𝐺 strategies are synthesized 

herein because of their successful engineering 

control applications [26,28]. Note that the damper 

is driven by the applied command input voltage, 
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v. The states i.e.  (𝑥, 𝑦, 𝑧𝑑 , 𝑢) are obtained via 

integration of Eqs. (2.5), (3.2) and (3.4) with 

MATLAB module ode45 based on the 4th/5th -

order Runge-Kutta method. Then, available 

damper force,  𝐹𝑚𝑟 = [𝑓𝑚𝑟
1 … 𝑓𝑚𝑟

𝑖      … 𝑓𝑚𝑟
𝑚 ]𝑇 

and the desired force 𝑓𝑑  are obtained via Eqs. 

(3.1) and (4.3), respectively. 

0 T T T
m m gSA AS SC C S EE   

 (4.7) 

 1L K s L
m

d c
mr

y
f

F


    

      
      

(4.8) 

4.4 CVL control 

The schematic for implementations of LQR–CVL 

and LQG–CVL are illustrated in Figure 3. 

Capsizing the damper dynamics to provide 

command voltage of a desired force is unfeasible 

from Eqs. (3.2), (3.3) and (3.4). The first method is 

based on LQR–CVL and the second method is 

based on 𝐻2/𝐿𝑄𝐺 − 𝐶𝑉𝐿 . Hence, two methods 

are approached in order to provide the voltage 

(v) as explained below. The applied voltage is 

established after computation of the optimal 

control force by a predefined control algorithm 

according to feedback data and measurement of 

the damper force at each time in order to 

approach the MR damper control force to the 

desired optimal force.  

Figure 4 shows a block diagram of the clipped 

optimal semi-active control system. The feedback 

for the controller is based on displacement 

measurements. The input voltage, v, to the 

damper is obtained using the CVL as described 

below. If these two forces are equal then the 

chosen voltage is stable. If the absolute total of 

MR damper force is below from the total of the 

considered optimal control force and both of 

them have the same sign, the chosen voltage 

should be improved to its desired highest value. 

Else, the input voltage is set to zero.  

 

Figure 3: Semi-active control block diagram of 

LQR–CVL and LQG–CVL [9] 

The following equation summarizes clipped-

optimal method. 

  maxH d mr mrv V f F F 
 (4.9) 

where 𝑉𝑚𝑎𝑥  shows the maximum applied voltage 

that is related with the capacity of magnetic field 

in MR damper and 𝐇{. } is the Heaviside 

function. The voltage applied to the MR damper 

should be 𝑉𝑚𝑎𝑥 when 𝐇{. } is greater than zero. 

Otherwise, the command voltage is set to zero.

 

Figure 4: Block diagram of semi-active control mechanism using 𝐻2/𝐿𝑄𝐺 controller [9-10] 
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5 Numeric Computing 

A numerical example for adjacent buildings is 

computed on i7-2630QM @2.9 GHz computer 

running MATLAB R2011b. The MATLAB 

numeric calculating setting is combined into the 

SIMULINK block to put on either LQR or 

𝐻2/𝐿𝑄𝐺 controller.  

5.1 Numerical Parameters 

A system of MR dampers between different sizes 

buildings is considered to obtain the optimal 

semi-active control strategies. Building A is a 20-

storey shear building given in Bharti et al. [17] 

and Ok et al. [18]. A 10-storey building discussed 

in Pourzeynali et al. [29] is taken as Building B. 

The adjacent buildings are subjected to four 

earthquake ground motions El-Centro 1940, Kobe 

1995 scaled to 0.8 g and 0.3 g, Sakarya 1999 and 

Loma Prieta 1989. The structural parameters are 

given for adjacent buildings in Table 2. 

5.2 Results of System 

Figure 5 shows the time response histories for the 

top floor displacement of each building based on 

the considered four control strategies under the 

four different earthquakes and compared to 

uncontrolled case. In time variation responses, 

the Kobe 1995 earthquake scaled to 0.3 g is used 

in order to compare explicitly with other 

earthquakes considered in this study. As shown 

in Figure 5 (a), passive-on and semi-active based 

on both the LQR and LQG norms result in good 

agreement compared to passive-off under El-

Centro 1940 and Sakarya 1999 earthquakes while 

all control strategies have the same trend in Kobe 

1995 and Loma Prieta 1989 ground motions. 

It is observed from Figure 5 (b), that all control 

strategies reduce the upper level displacement of 

Building B with all the considered earthquakes. 

In terms of reduction of displacement responses, 

the performance of the control strategies in the 

lower building (Building B) is better than the 

higher building (Building A). Figure 6 indicates 

the time-histories of the upper level acceleration 

of Building A and Building B. The results in 

Figure 6 (a) indicate that for all control strategies 

the overall trend is similar to the uncontrolled 

case in Building A. 

 

Figure 5: Response of top floor disp. of a) 

Building A b) Building B 

Figure 6 (b) shows that semiactive controller 

based on LQG norm is effective in response 

mitigations for the lower building. The 

acceleration response reduction of Building B is 

higher under semiactive compared to passive-on 

strategy, except that under the 1999 Sakarya 

earthquake semiactive has the same trends with 

passive-off and on strategies.  

Error! Reference source not found.: The structural 

parameters of the related example [9] 

No 

Building A Building B 

𝒎𝒊 
𝒌𝒊(𝟏𝟎𝟔) 
𝒌𝑵/𝒎 

𝒄𝒊(𝟏𝟎𝟑) 
𝒌𝑵 𝒔𝒆𝒄
/𝒎 

𝒎𝒊 
𝒌𝒊(𝟏𝟎𝟓) 
𝒌𝑵/𝒎 

𝒄𝒊(𝟏𝟎𝟑) 
𝒌𝑵 𝒔𝒆𝒄
/𝒎 

1 800 1.4 4.375 215 4.68 1.676 

2 800 1.4 4.375 201 4.76 1.648 

3 800 1.4 4.375 201 4.68 1.585 

4 800 1.4 4.375 200 4.5 1.585 

5 800 1.4 4.375 201 4.5 1.539 

6 800 1.4 4.375 201 4.5 1.539 

7 800 1.4 4.375 201 4.5 1.539 

8 800 1.4 4.375 203 4.37 1.539 

9 800 1.4 4.375 203 4.37 1.099 

10 800 1.4 4.375 176 3.12 1.146 

11 800 1.4 4.375 - - - 

12 800 1.4 4.375 - - - 

13 800 1.4 4.375 - - - 

14 800 1.4 4.375 - - - 

15 800 1.4 4.375 - - - 

16 800 1.4 4.375 - - - 

17 800 1.4 4.375 - - - 

18 800 1.4 4.375 - - - 

19 800 1.4 4.375 - - - 

20 800 1.4 4.375 - - - 
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Figure 6: Time response of top floor acc. a) Building A 

b) Building B 

Although the response history of the top floor 

acceleration in the higher building is similar in 

passive-off and passive-on strategies, a 

comparative performance of the four strategies in 

Building B can be slightly observed in terms of 

acceleration responses. The response histories of 

the normalized base shear of both buildings are 

investigated in Figure 7.  

The base shear is normalized with the 

corresponding building weight. Therefore, the 

normalized base shear response of Building A is 

explicitly smaller than the normalized base shear 

response of Building B. Further, Figure 7 (a) 

indicates that semiactive controllers are in good 

agreement in the mitigation of the base shear. All 

controllers are showing better performance 

compared to the uncontrolled case in Kobe 1995 

and El-Centro 1940 earthquakes. Although the 

MR dampers work as passive devices with the 

maximum damper command voltage (6V) under 

passive-on strategy, the response histories in 

terms of the normalized base shear in Figure 7 (a) 

are almost matching with the uncontrolled case.  

It is observed from Figure 7 (b), increase in base 

shear response is noted for Building B under 

passive-on strategy for Sakarya 1999 earthquake 

while all control strategies exhibit better control 

performance for the other three earthquakes. 

Another comparative performance of the four 

control strategies is conducted in terms of the 

maximum displacement acceleration and storey 

shear force based on the storey levels of both 

buildings. Figure 8 shows the peak floor 

displacement of Building A and Building B. 

 

Figure 7: History of base shear of a) Building A  

b) Building B 

The displacement response mitigation for the 

higher floors of Building B is higher under 

semiactive associated in passive control strategies 

and the uncontrolled case.  Figure 9 shows the 

peak floor acceleration based on storey levels. It 

is observed from Figure 9 (a), that the control 

strategies are not showing better results 

compared to the uncontrolled case based 

acceleration reduction for the higher building 

(Building A). In higher floors, all control 

strategies subjected to an increase in acceleration 

response during Kobe 1995 earthquake. On the 

other hand, all control strategies in acceleration 

response reduction for Building B are effective as 

depicted through Figure 9 (b). 
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Figure 8: Peak floor disp. of a) Building A  

b) Building B 

Semiactive controller based on LQR is showing 

better mitigation than semiactive based on   

𝐻2/𝐿𝑄𝐺 for Building B. The acceleration 

reduction of the shorter building (Building B) is 

higher than the taller building (Building A). 

 

Figure 9: Peak floor acc. of a) Building A b) 

Building B 

Further, it is interesting that passive-on strategy 

in Figure 9 (b) is showing better response in 

terms of mitigation of the peak floor acceleration 

than semiactive and passive-off strategies. Figure 

10 shows the four control strategies in terms of 

storey shear for Building A and Building B. The 

overall optimum control performance is 

observed for semiactive controllers for the used 

earthquakes, especially in Sakarya 1999 for 

Building A and in Kobe 1995 for Building B.  

Passive-on strategy for Building A in Kobe 1995 

and Building B in Sakarya 1999 is not effective to 

reduce the storey shear. For Building A, Kobe 

1995 and Loma Prieta 1989 earthquakes show 

increase in storey shear with increasing storey 

levels. This is owing to the sway of Building A 

that is tersely limited by Building B as it’s 

subjected to storey shear above the tenth floor. 

Hence, this limitation results in an increase in 

displacement response of Building A under 

passive-on strategy in Kobe 1995 and Loma 

Prieta 1989 earthquakes as depicted in Figure 8 

(a). In Figure 10 (b) reduction in response for 

Building B is observed under all considered 

earthquakes, except to Sakarya 1999 ground 

motion. 

 

Figure 10: Peak storey shear of a) Building A b) 

Building B 

Passive-on and semiactive controllers showed a 

better control of response as shown in Figure 10 

(b). Hysteresis behaviour of MR damper placed 

at the 10th storey level between the buildings 

under four control strategies, namely, passive-

off, passive-on, semiactive-LQR and semiactive- 

𝐻2/𝐿𝑄𝐺 for the four different earthquakes is 

shown in Figure 11 and Figure 12.  

 

Figure 11: The Performance of MR damper in a) 

1940 El-Centro earthquake b) 1995 Kobe 

earthquake scaled to 0.8g 

There is a substantial energy damping in terms of 

displacement and velocity responses of MR 

damper in semi-active based on LQR and LQG 
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norms compared to passive-on (V𝑚𝑎𝑥 = 6𝑉) and 

the one called passive-off.  

 

Figure 12: The Behaviour of MR damper under a) 

1999 Sakarya earthquake b) 1989 Loma Prieta 

earthquake 

This study also investigated the effect of damper 

position and command voltage required for MR 

damper. In order to show the effectiveness of MR 

dampers for inter-connecting the 10th floors of 

two buildings having different characteristics, the 

numerical model is used for the two damper 

locations and for three parameters of command 

voltage (3V, 6V and 9V). The command voltages 

of MR dampers at each of the ten floors between 

the buildings are determined by the two 

proposed methods (LQR and LQG 

optimizations). The numerical example shows 

the case that five dampers placed into each floor. 

Applied input voltages are the same for all 50 

dampers in total. The 4th order Runge Kutta 

method is applied for the purpose of obtaining 

nonlinear random vibration analyses, while 

changing the input voltage from 0 to 10 V, which 

is associated to the capability of the MR dampers 

for absorbing.  

Figure 13 shows the maximum root-mean-square 

(r.m.s.) values of inter-storey drifts of the coupled 

systems by varying the uniform input voltage of 

MR damper under El-Centro 1940 and Kobe 1995 

earthquakes.  

 

Figure 13: Control performance of MR dampers 

with uniform input voltages under the 1995 Kobe 

earthquake scaled to 0.8g [9-10] 

In Kobe 1995 earthquake, the optimal obtained 

voltage is 5.6 V when the 50-MR damper system 

located uniformly, while the optimal input 

voltage is 3.1 V in El-Centro 1940 earthquake. 

Altering the input voltage can directly lead to 

change the damping capacity, lacking costly 

replacements or adjustments. In other words, 

varying the input voltages of the dampers is 

achievable to obtain an optimum 

implementation.  

Hence, the results of the peak top floor 

displacement, acceleration and normalized base 

shear of the adjacent buildings using the 

optimum uniform voltage (OUV) is evaluated 

with the other control strategies used in this 

study. In Table 3 the overall displacement 

response reduction with passive-on strategy is as 

much with semiactive controllers except for 

passive-off for Building B in El-Centro 1940 

earthquake.  

Further, the results from Table 3 show that there 

is not necessary to provide high command 

voltage for MR dampers and important 

displacement control is conceivable with less 

voltage in Building B. Using the optimum 

uniform voltage (OUV), the significant reduction 

for both buildings is observed under El-Centro 

1940 earthquake although these proposed 

methods are not effectives in both buildings 

under Kobe 1995 earthquake. In Table 4, at the 

top floor drift inter-storey responses the 

percentage reductions for Building A under 
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passive-on strategy as compared to the 

uncontrolled case are 8.0 under both the 

earthquakes. For Building B, the corresponding 

response reductions are 43.9 and 27.9 for El-

Centro 1940 and Kobe 1995 earthquakes, 

respectively.  

However, peripheral increase in response is 

gotten under semiactive controllers (9V) for 

Building B under El-Centro 1940 earthquake. 

Table 5 shows that the percentage reductions in 

peak normalized base shear under passive-on 

strategy (6V) for both buildings are: 20 and 29.8 

and under semiactive based on   the reductions 

are 20 and 44 with El-Centro 1940.  

Error! Reference source not found.: Peak top floor displacement under different control strategies 

 C
as

e 

UNC Off 
Passive-on LQR

 
𝐻2 𝐿𝑄𝐺⁄  

OUV 
3 V 6 V 9V 3 V 6 V 9V 3 V 6 V 9V 

E
lC

en
tr

o
19

40
 A 26.6 22.9 20.1 19.0 19.8 21.8 21.2 20.7 21.6 20.9 20.4 20.2 

B 17.1 8.1 8.6 10.4 11.5 8.4 8.6 8.7 8.6 9.1 9.6 8.8 

K
o

b
e

19
95

 A 61.3 59.4 57.4 58.0 59.2 56.0 55.2 54.8 57.4 56.7 56.3 58.0 

B 48.0 35.0 25.6 30.6 32.9 29.6 27.5 26.0 30.5 27.7 25.5 30.7 

Note: the disp. indicated is in × 10 mm. UNC: Uncontrolled 

Table 1: Peak top floor drift inter-storey under different control strategies 

 C
as

e 

UNC Off 
Passive-on LQR

 
𝐻2 𝐿𝑄𝐺⁄  

OUV 
3 V 6 V 9V 3 V 6 V 9V 3 V 6 V 9V 

E
lC

en
tr

o
19

40
 A 0.25 0.24 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.23 

B 0.41 0.26 0.23 0.28 0.31 0.29 0.37 0.43 0.33 0.41 0.51 0.32 

K
o

b
e 

19
95

 A 0.88 0.83 0.81 0.84 0.87 0.75 0.74 0.75 0.81 0.82 0.83 0.84 

B 1.54 1.19 1.11 0.98 1.07 0.84 0.99 1.21 0.84 0.88 1.02 1.35 

Note: Peak top floor drift inter-story indicated is in × 10 mm. UNC: Uncontrolled 

 

Error! Reference source not found.: Peak normalized base shear under different control strategies 

 C
as

e 

UNC Off 
Passive-on LQR

 
𝐻2 𝐿𝑄𝐺⁄  

OUV 
3 V 6 V 9V 3 V 6 V 9V 3 V 6 V 9V 

E
lC

en
tr

o
19

40
 A 0.20 0.19 0.17 0.16 0.16 0.18 0.17 0.17 0.17 0.16 0.16 0.17 

B 0.57 0.28 0.35 0.40 0.40 0.29 0.30 0.31 0.29 0.32 035 0.35 

K
o

b
e 

19
95

 A 0.40 0.40 0.41 0.42 0.43 0.39 0.39 0.38 0.38 0.37 0.37 0.42 

B 1.56 1.10 0.71 0.90 1.00 0.88 0.80 0.76 0.94 0.83 0.74 0.88 

6 Conclusions 

An optimal design of the nonlinear hysteretic 

dampers is proposed in order to increase the seismic 

performance for both buildings. The stochastic 

responses of adjacent buildings linked with nonlinear 

dampers are received in an efficient manner with the 

help of the stochastic linearization method as the 

optimal design process can avoid numerous nonlinear 

time-history analyses. Consequently, the numerical 

example of 10- and 20-storey buildings coupled with 

MR dampers demonstrate that providing high 

command voltage is not necessary based on 

effectiveness of MR dampers. Moreover, the proposed 

optimal design method can steadily accomplish 

boosted seismic performance with productivity in 

economic side. 
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Appendix I- Notations 

A  = system matrix in state space equation 

cA  = hysteresis loop parameters 

a  = constant value 

ja  = each random number (j= 1, 2, .. popsize) 

between 0 and 1 

a0 b0a a,
 

= proportional coefficients of Building A 

and Building B, respectively 

B  = system matrix in state space equation 

a0 b0b b,  = proportional coefficients of Building A 

and Building B, respectively 

C  = damping matrix 

pC  = constant value (1 or 2) 

wC
 

= regulation matrix 

1C  = damping matrix of Building A 

2C  = damping matrix of Building B 

dc  = damping of the damper 

0c  = hysteresis loop parameters of MR damper 

0ac  = hysteresis loop parameters of MR damper 

0bc  = hysteresis loop parameters of MR damper 

1c  = hysteresis loop parameters of MR damper 

1ac  = hysteresis loop parameters of MR damper 

1bc  = hysteresis loop parameters of MR damper 

D  = zero matrix in Hamiltonian 

wD
 

= regulation matrix 

dmax  = the peak uncontrolled floor drift 

E  = system matrix in state space equation 

F  = fitness function 

df  = desired force matrix at the damper 

dif  = desired force at the thi  damper 

mrf  = force matrix at the damper 

Ĝ  = transfer function 

Ĝ  = H  norm of Ĝ  

pG  = individual in the population 

pi
rjg  = one variable in 

pG  

2H  = control algorithm 

H  = control algorithm 

H  = Hamiltonian 

 H  = Heaviside function in Matlab 

jh  = bit string no. (j+1) starting from right 

si  
= index 

I  = identity vector 

I , I  =    n m and 2n 2m   identity matrices, 

respectively 

J  = objective function 

J  = performance index 

sj  = index 

1K  = stiffness matrix of Building A 

2K  = stiffness matrix of Building B 

dk  = stiffness of the damper 

0k  = hysteresis loop parameters of MR damper 

1k  = hysteresis loop parameters of MR damper 

iL  = lower bound value of design variable 

ml  = length of sub-chromosome 

M  = total mass matrix 

1M  = mass matrix of Building A 

2M  = mass matrix of Building B 

m  = number of floors in Building B 

i jm m,  = mass    i 1 2 n j 1 2 m, , .., , , ..,         

am  = number of measurements 

dN  = total number of dampers at all floors 

n  = number of floors in Building A 

an  = number of actuators 

nbits  = number of bits 

dn
 

= hysteresis loop parameters of MR damper 

rn  = random number 

P  = Riccati matrix, matrix of Lyapunov 

equation 

iP  = significant digit 

1P  = control force location matrix of Building 

A 

2P  = control force location matrix of Building B 

cp  = crossover rate 

mp  = mutation rate 

Q  = state weighting matrix 

jq  = probability of crossover 

R  =unit matrix having a random coefficient 

R  = scalar control force weighting matrix 

R  = control force weighting matrix 

ir  = real number of a design variable 

x xg g i i
S Sv v,  = spectral density function of acceleration 

and measurement noise 

s  = difference between the number floors of 

both buildings 

s  = Laplace variable 

t  = time 

it  = integer mapping of a binary string 

iU  = upper bound value of design variable 

u u,  = control voltage and output of a first-order 

filter 

Vmax  = maximum voltage 



 
 
 
 
CBÜ Fen Bil. Dergi., Cilt 13, Sayı 1, 2017,  1-13 s                                                              CBU J. of Sci., Volume 13, Issue 1, 2017, p 1-13 

13 
 

v  = input voltages of the first order filter 

v  = measurement noise vector 

gX  = acceleration vector of the related 

earthquake 

xmax  = maximum displacement of the 

uncontrolled system 

i ix x,  = displacement and velocity of the 
thi floor 

level, respectively 

0x  = initial displacement of the damper 

my  = vector of measured outputs 

i iy y,  = internal pseudo-displacement 

di diz z,  = evolutionary variable 

a b, ,    = hysteresis loop parameters of MR damper 

c  = weighting coefficient (1 or 2) 

  = hysteresis loop parameters of MR damper 

u l, ,    =a random number, upper bound and 

lower bound of a positive number 

ai aj

bi bj

,

,

 

 
 

= structural modal frequencies of modes i 

and j of both buildings 

ai aj

bi bj

,

,

 

 
 

= structural damping ratios for modes i and 

j of both buildings 

  =constant to scale the fitness function 

  = system matrix in state space equation 

0  = zero matrix 

  

  

  

  

  

  

 
 

  

  

  

  

  

  

  

 


