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The partial Bell polynomials Bn,k for n ≥ k ≥ 0 were de�ned in [2, De�nition 11.2] and [3, p. 134,
Theorem A] by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1,
ℓi∈{0}∪N,∑n−k+1
i=1 iℓi=n,∑n−k+1
i=1 ℓi=k

n!∏n−k+1
i=1 ℓi!

n−k+1∏
i=1

(
xi
i!

)ℓi

.

One can also call the quantities Bn,k the Bell polynomials of the second kind.
The so-called ordinary partial Bell polynomial B◦

n,k(x1, x2, . . . , xn−k+1) are de�ned in [10] (see also [6])
by the relation

B◦
n,k(x1, x2, . . . , xn−k+1) =

k!

n!
Bn,k(1!x1, 2!x2, . . . , (n− k + 1)!xn−k+1) (1)

or, equivalently,

Bn,k(x1, x2, . . . , xn−k+1) =
n!

k!
B◦

n,k

(
x1
1!

,
x2
2!

, . . . ,
xn−k+1

(n− k + 1)!

)
. (2)

On 10 February 2022, Frank Oertel (f.oertel@email.de) asked the following problem in an e-mail to Qi.

Let n, k ∈ N such that n ≥ k. What is the (value of the) following ordinary partial Bell polynomial
B◦

n,k(x1, x2, . . . , xn−k+1)? where

xi =
[(2i− 1)!!]2

[(2i)!!]2(i+ 1)
, i = 1, 2, . . . , n− k + 1.

In other words, what is the value of

B◦
n,k

(
1

8
,
3

64
,

25

1024
, . . . ,

[(2(n− k) + 1)!!]2

[(2(n− k + 1))!!]2(n− k + 2)

)
? (3)

Essentially, by the relation (1) or (2), Oertel's problem is equivalent to compute the speci�c values

Bn,k

(
1

8
,
3

32
,
75

512
, . . . ,

(n− k + 1)!

n− k + 2

[
(2n− 2k + 1)!!

(2n− 2k + 2)!!

]2)
, n ≥ k ∈ N. (4)

In this paper, we will consider the above problem and provide several solutions to it.

2. Recursive formulas for speci�c values of partial Bell polynomials

In this section, we will derive recursive formulas for speci�c values expressed in (3) and (4).

Theorem 1. For k, n ∈ N such that n ≥ k, we have

Bn,k

(
1

8
,
3

32
,
75

512
, . . . ,

(n− k + 1)!

n− k + 2

[
(2n− 2k + 1)!!

(2n− 2k + 2)!!

]2)
= (−1)k

n!

k!

k∑
m=1

(−1)m
(
k

m

)
bm,n (5)

and

B◦
n,k

(
1

8
,
3

64
,

25

1024
, . . . ,

[(2(n− k) + 1)!!]2

[(2(n− k + 1))!!]2(n− k + 2)

)
= (−1)k

k∑
m=1

(−1)m
(
k

m

)
bm,n, (6)

where bm,0 = 1 and

bm,n =
1

n

n−1∑
q=0

[
(2(n− q)− 1)!!

(2(n− q))!!

]2 (n− q)m− q

n− q + 1
bm,q (7)

for m,n ∈ N.
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Proof. From (1), it follows that

B◦
n,k

(
1

8
,
3

64
,

25

1024
, . . . ,

[(2(n− k) + 1)!!]2

[(2(n− k + 1))!!]2(n− k + 2)

)
=

k!

n!
Bn,k

(
1

8
,
3

32
,
75

512
, . . . ,

(n− k + 1)!

n− k + 2

[
(2n− 2k + 1)!!

(2n− 2k + 2)!!

]2)
(8)

for n ≥ k ≥ 0.
Employing the formula

Bn,k

(
x2
2
,
x3
3
, . . . ,

xn−k+2

n− k + 2

)
=

n!

(n+ k)!
Bn+k,k(0, x2, x3, . . . , xn+1)

in [3, p. 136], we acquire

Bn,k

(
1

8
,
3

32
,
75

512
, . . . ,

(n− k + 1)!

n− k + 2

[
(2n− 2k + 1)!!

(2n− 2k + 2)!!

]2)
=

n!

(n+ k)!
Bn+k,k

(
0,

1

4
,
9

32
, . . . , n!

[
(2n− 1)!!

(2n)!!

]2)
. (9)

Making use of the formula

1

k!

( ∞∑
m=1

xm
tm

m!

)k

=

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!

for k ≥ 0 in [3, p. 133] yields

∞∑
n=0

Bn+k,k

(
0,

1

4
,
9

32
, . . . , n!

[
(2n− 1)!!

(2n)!!

]2) tn+k

(n+ k)!
=

1

k!

( ∞∑
m=2

[
(2m− 3)!!

(2m− 2)!!

]2 tm
m

)k

which can be simpli�ed as

∞∑
n=0

n!

(n+ k)!
Bn+k,k

(
0,

1

4
,
9

32
, . . . , n!

[
(2n− 1)!!

(2n)!!

]2) tn

n!
=

1

k!

( ∞∑
m=1

[
(2m− 1)!!

(2m)!!

]2 tm

m+ 1

)k

.

This implies that

Bn+k,k

(
0,

1

4
,
9

32
, . . . , n!

[
(2n− 1)!!

(2n)!!

]2)
=

(
n+ k

n

)
lim
t→0

dn

d tn

( ∞∑
m=1

[
(2m− 1)!!

(2m)!!

]2 tm

m+ 1

)k

which is equivalent to

Bℓ,k

(
0,

1

4
,
9

32
, . . . , (ℓ− k)!

[
(2ℓ− 2k − 1)!!

(2ℓ− 2k)!!

]2)
=

(
ℓ

k

)
lim
t→0

dℓ−k

d tℓ−k

( ∞∑
m=1

[
(2m− 1)!!

(2m)!!

]2 tm

m+ 1

)k

(10)

for ℓ ≥ k ≥ 0.
For α, β ∈ C and γ ∈ C \ {0,−1,−2, . . . }, Gauss' hypergeometric function 2F1(α, β; γ; z) can be de�ned

by the series

2F1(α, β; γ; z) =

∞∑
n=0

(α)n(β)n
(γ)n

zn

n!
. (11)



W.-S. Du, D. Lim, F. Qi, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 528�537. 531

The series in (11) absolutely and uniformly converges on the open unit disc |z| < 1. If ℜ(α + β − γ) < 0,
the series in (11) absolutely converges over the unit circle |z| = 1. For details and more information, please
refer to [9, pp. 64�66, Section 3.7] and [19, Chapter 5].

By the de�nition (11), we acquire that

∞∑
m=0

[
(2m− 1)!!

(2m)!!

]2 tm

m+ 1
= 2F1

(
1

2
,
1

2
; 2; t

)
, |t| ≤ 1.

Then we have( ∞∑
m=1

[
(2m− 1)!!

(2m)!!

]2 tm

m+ 1

)k

= (−1)k +
k∑

m=1

(−1)k−m

(
k

m

)[
2F1

(
1

2
,
1

2
; 2; t

)]m
, |t| ≤ 1.

In [4, p. 18], it is given that ( ∞∑
k=0

akx
k

)n

=
∞∑
k=0

ckx
k,

where

c0 = an0 , cm =
1

ma0

m∑
k=1

(kn−m+ k)akcm−k

for m,n ≥ 1. Then, for m ≥ 1, we have[
2F1

(
1

2
,
1

2
; 2; t

)]m
=

∞∑
j=0

bm,jt
j , (12)

where bm,0 = 1 and

bm,j =
1

j

j∑
q=1

[
(2q − 1)!!

(2q)!!

]2 qm− j + q

q + 1
bm,j−q =

1

j

j−1∑
q=0

[
(2(j − q)− 1)!!

(2(j − q))!!

]2 (j − q)m− q

j − q + 1
bm,q

for m, j ≥ 1. Therefore, when ℓ > k ≥ 1, we arrive at

lim
t→0

dℓ−k

d tℓ−k

( ∞∑
m=1

[
(2m− 1)!!

(2m)!!

]2 tm

m+ 1

)k

= lim
t→0

dℓ−k

d tℓ−k

(
k∑

m=1

(−1)k−m

(
k

m

)[
2F1

(
1

2
,
1

2
; 2; t

)]m)

= lim
t→0

dℓ−k

d tℓ−k

[
k∑

m=1

(−1)k−m

(
k

m

) ∞∑
j=0

bm,jt
j

]

= lim
t→0

dℓ−k

d tℓ−k

∞∑
j=0

[
k∑

m=1

(−1)k−m

(
k

m

)
bm,j

]
tj

= lim
t→0

∞∑
j=ℓ−k

[
k∑

m=1

(−1)k−m

(
k

m

)
bm,j

]
⟨j⟩ℓ−kt

j−ℓ+k

= ⟨ℓ− k⟩ℓ−k

k∑
m=1

(−1)k−m

(
k

m

)
bm,ℓ−k
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= (ℓ− k)!

k∑
m=1

(−1)k−m

(
k

m

)
bm,ℓ−k,

where

⟨z⟩k =
k−1∏
ℓ=0

(z − ℓ) =

{
z(z − 1) · · · (z − k + 1), k ≥ 1

1, k = 0

is the falling factorial of z ∈ C. Substituting this limit into (10) and simplifying lead to

Bℓ,k

(
0,

1

4
,
9

32
, . . . , (ℓ− k)!

[
(2ℓ− 2k − 1)!!

(2ℓ− 2k)!!

]2)
=

ℓ!

k!

k∑
m=1

(−1)k−m

(
k

m

)
bm,ℓ−k (13)

for ℓ > k ≥ 1. Making use of (13) in (9) reveals (5) for n, k ≥ 1. Substituting (5) into (8) yields (6) for
n, k ≥ 1. The proof of Theorem 1 is complete.

3. Closed-form formulas for speci�c values of partial Bell polynomials

From the recursive relation (7), we acquire the following six speci�c values

bm,1 =
m

8
, bm,2 =

m(m+ 5)

128
, bm,3 =

m(m2 + 15m+ 59)

3072
,

bm,4 =
m(m3 + 30m2 + 311m+ 1128)

98304
,

bm,5 =
m(m4 + 50m3 + 965m2 + 8590m+ 30084)

3932160
,

and

bm,6 =
m(m5 + 75m4 + 2305m3 + 36495m2 + 299914m+ 1033350)

188743680
.

These speci�c values hint us that the quantity bm,n for m ∈ N and n ≥ 0 should be a polynomial of m with
degree n.

Theorem 2. Let

bm,n =

n∑
ℓ=1

αn,ℓm
ℓ (14)

for m,n ∈ N. Then

bm,n =
1

23nn!
mn +

5

23n+1(n− 2)!
mn−1 +

1

23n+3

75n3 − 214n2 + 117n+ 22

3(n− 1)!
mn−2 +

n−3∑
ℓ=1

αn,ℓm
ℓ.

Proof. Substituting the sum (14) into (7) and simplifying give

bm,n+1 =
n+1∑
ℓ=1

αn+1,ℓm
ℓ

=

[
(2n+ 1)!!

(2n+ 2)!!

]2 m

n+ 2
+

1

n+ 1

n∑
q=1

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2 (n− q + 1)m− q

n− q + 2

q∑
ℓ=1

αq,ℓm
ℓ

=

[
(2n+ 1)!!

(2n+ 2)!!

]2 m

n+ 2
+

1

n+ 1

n∑
ℓ=1

(
n∑

q=ℓ

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2 (n− q + 1)m− q

n− q + 2
αq,ℓ

)
mℓ
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=

[
(2n+ 1)!!

(2n+ 2)!!

]2 m

n+ 2
− 1

n+ 1

n∑
ℓ=1

(
n∑

q=ℓ

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2 q

n− q + 2
αq,ℓ

])
mℓ

+
1

n+ 1

n∑
ℓ=1

(
n∑

q=ℓ

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2n− q + 1

n− q + 2
αq,ℓ

)
mℓ+1

=

[
(2n+ 1)!!

(2n+ 2)!!

]2 m

n+ 2
− 1

n+ 1

(
n∑

q=1

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2 q

n− q + 2
αq,1

])
m

− 1

n+ 1

n∑
ℓ=2

(
n∑

q=ℓ

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2 q

n− q + 2
αq,ℓ

])
mℓ

+
1

n+ 1

n+1∑
ℓ=2

(
n∑

q=ℓ−1

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2n− q + 1

n− q + 2
αq,ℓ−1

)
mℓ

=

(
1

n+ 2

[
(2n+ 1)!!

(2n+ 2)!!

]2
− 1

n+ 1

n∑
q=1

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2 q

n− q + 2
αq,1

)
m

+
1

n+ 1

n∑
ℓ=2

(
n∑

q=ℓ−1

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2n− q + 1

n− q + 2
αq,ℓ−1

−
n∑

q=ℓ

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2 q

n− q + 2
αq,ℓ

)
mℓ +

αn,n

8(n+ 1)
mn+1.

Hence, we acquire

αn+1,1 =
1

n+ 2

[
(2n+ 1)!!

(2n+ 2)!!

]2
− 1

n+ 1

n∑
q=1

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2 q

n− q + 2
αq,1,

αn+1,ℓ =
1

n+ 1

(
n∑

q=ℓ−1

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2n− q + 1

n− q + 2
αq,ℓ−1 −

n∑
q=ℓ

[
(2(n− q) + 1)!!

(2(n− q) + 2)!!

]2 q

n− q + 2
αq,ℓ

)

for 2 ≤ ℓ ≤ n, and

αn+1,n+1 =
αn,n

8(n+ 1)
. (15)

Consecutively recursing (15) gives

αn,n =
1

8n

1

8(n− 1)

1

8(n− 2)
· · · α1,1

8× 2
=

1

23nn!
, n ≥ 1. (16)

Making use of the explicit formula (16) leads to

αn+1,n =
1

n+ 1

(
1

8
αn,n−1 +

3

32
αn−1,n−1 −

n

8
αn,n

)
=

1

n+ 1

[
1

8
αn,n−1 +

3

32

1

8n−1(n− 1)!
− n

8

1

8nn!

]
=

1

8(n+ 1)

[
αn,n−1 +

5

8n(n− 1)!

]
.

Consequently, we conclude

αn,n−1 =
5

23n+1(n− 2)!
, n ≥ 2. (17)
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Employing (16) and (17) results in

αn+1,n−1 =
1

8(n+ 1)

[
αn,n−2 +

3

4
αn−1,n−2 +

75

128
αn−2,n−2 − nαn,n−1 −

3(n− 1)

8
αn−1,n−1

]
=

1

8(n+ 1)

[
αn,n−2 +

25n+ 9

23n+1(n− 2)!

]
,

from which we can derive

αn,n−2 =
1

23n+3

75n3 − 214n2 + 117n+ 22

3(n− 1)!
, n ≥ 3.

The proof of Theorem 2 is complete.

4. Several remarks and two open problems

In this section, we list several remarks on our main results and pose two open problems.

4.1. Several remarks

Remark 1. The speci�c values of partial Bell polynomials have been investigated in the papers [5, 8, 12, 15]
and many related references cited therein.

Remark 2. The �rst few values of αn,ℓ de�ned in (14) are

α1,1 =
1

8
;

α2,1 =
5

128
, α2,2 =

1

128
;

α3,1 =
59

3072
, α3,2 =

5

1024
, α3,3 =

1

3072
;

α4,1 =
47

4096
, α4,2 =

311

98304
, α4,3 =

5

16384
, α4,4 =

1

98304
;

α5,1 =
2507

327680
, α5,2 =

859

393216
, α5,3 =

193

786432
, α5,4 =

5

393216
, α5,5 =

1

3932160
.

4.2. The �rst open problem

In [19, p. 109], the following special cases of Gauss' hypergeometric function 2F1(α, β; γ; z) are listed:

2F1(a, b; b; z) =
1

(1− z)a
, 2F1(1, 1; 2; z) = − ln(1− z)

z
,

2F1

(
1

2
, 1;

3

2
; z2
)

=
1

2z
ln

1 + z

1− z
, 2F1

(
1

2
, 1;

3

2
;−z2

)
=

arctan z

z
,

2F1

(
1

2
,
1

2
;
3

2
; z2
)

=
arcsin z

z
, 2F1

(
1

2
,
1

2
;
3

2
;−z2

)
=

ln
(
z +

√
1 + z2

)
z

.

Lemma 2.6 in the paper [18] reads that, for 0 ̸= |t| < 1 and n = 1, 2, . . . ,

2F1

(
1− n

2
,
2− n

2
; 1− n;

1

t2

)
=

t

2n
√
t2 − 1

[(
1 +

√
t2 − 1

t

)n

−
(
1−

√
t2 − 1

t

)n]
.

Corollary 4.1 in the paper [17] states that, for n = 0, 1, 2, . . . ,

2F1

(
n+

1

2
, n+ 1;n+

3

2
;−1

)
=

(2n+ 1)!!

(2n)!!

π

4
+

2n+ 1

22n

n∑
k=1

(−1)k
(
2n− k

n

)
2k/2

k
sin

3kπ

4
.
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In the paper [1], see also [14, Section 6], the following formula was discussed and obtained:

2F1

(
1, 2;

1

2
;
z

4

)
=

2(z + 8)

(4− z)2
+

24
√
z

(4− z)5/2
arcsin

√
z

2
, |z| < 4.

Motivated by the proof of Theorem 1 and the above examples, we now pose a problem: can one �nd an
elementary function f(t) such that

2F1

(
1

2
,
1

2
; 2; t

)
= f(t), |t| ≤ 1? (18)

This problem was �rst announced at https://mathoverflow.net/q/423800. Currently, this problem is
still open. However, Professor Emeritus Gerald A. Edgar (Ohio State University, https://stackexchange.
com/users/503194/gerald-edgar) answered to this problem at https://mathoverflow.net/a/423802 on
1 June 2022 as follows.

Maple does it in terms of complete elliptic integrals K and E as

2F1

(
1

2
,
1

2
; 2; t

)
=

4

π

(t− 1)K
(√

t
)
+ E

(√
t
)

t
. (19)

But that does not show it is elementary. In fact, I suspect it is not elementary.

Recall the known formulas

K
(√

t
)
=

π

2
2F1

(
1

2
,
1

2
; 1; t

)
and

E
(√

t
)
=

π

2
2F1

(
−1

2
,
1

2
; 1; t

)
.

By themselves, they are not elementary. The equation (19) should follow from these two and a
contiguous formula

c 2F1(a− 1, b; c;x) + c(x− 1) 2F1(a, b; c;x) + (b− c)x 2F1(a, b; c+ 1;x) = 0

for the hypergeometrics.

We believe that Edgar's suspect, that is, the function f(t) in the equation (18) is not elementary, should
be true.

4.3. The second open problem

Can one establish a general and closed-form formula for the sequence αn,ℓ generated in (14).
If this problem were solved, then we would obtain a general and closed-form formula for coe�cients bm,j

in the series expansion (12) of powers of Gauss' hypergeometric function 2F1

(
1
2 ,

1
2 ; 2; t

)
. Then it would be

very interesting and signi�cant in mathematics. However, basing on Edgar's suspect mentioned above, we
suspect that there is no general and closed-form expression for the sequence αn,ℓ. For more information on
series expansions of powers of functions, please refer to the papers [5, 6, 7, 11, 13, 16] and many references
cited therein.

Remark 3. On 7 October 2022, Frank Oertel (f.oertel@email.de) commented on the problem (18) in an
e-mail to the third author as follows.

https://mathoverflow.net/q/423800
https://stackexchange.com/users/503194/gerald-edgar
https://stackexchange.com/users/503194/gerald-edgar
https://mathoverflow.net/a/423802
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Regarding your problem (18) (which also gives me a headache...), please observe that at least the
following fact holds:

1

π

∫ 2π

0
arcsin(x cos t) cos t d t = x 2F1

(
1

2
,
1

2
, 2;x2

)
for all x ∈ [−1, 1], implied by the Maclaurin series representation of the function arcsin and the
well-known fact that∫ 2π

0
cos2(n+1) t d t =

2
√
π

(n+ 1)!
Γ

(
n+

3

2

)
=

2
√
π

Γ(n+ 2)

(
n+

1

2

)
Γ

(
n+

1

2

)
for all n ∈ {0} ∪ N.
(Cf. also related tricky proofs in https://zbmath.org/?q=an%3A0646.46019.)
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