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Abstract. In this paper, we present the notion of complex interval matrix. Further, we discuss the algebraic
structure of the set of all (m×n) complex interval matrices by using tools of quasilinear functional analysis. Finally,
we put a norm on the space of the complex interval matrices and we calculate the norm of a complex interval
matrices.
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1. Introduction

It is well known that interval analysis is a tool to gauge a mathematical problem for ranges of values of its parameters.
For this reason there has been increasing interest in interval analysis, [1, 2, 4, 8, 10]. An interval x is the compact-
convex subset of real numbers and x is denoted by x = [x, x], where x and x are the left and right endpoints of x,
respectively [10]. Further, if x = x then we say that x is a degenerate interval and it can be shown by {x} or [x, x]. The
set of all real intervals is denoted by IR.

In many application areas, the concept of matrix has a major role such as mathematics, physics, social sciences
and statics. Many real world problems may contain uncertainties due to environmental factors. Therefore, traditional
classical matrices are useless and we need interval matrices. With this motivation, many authors have done a lot of
research on interval matrices such as Ganesan [6], Hansen [7] and Rohn [11], etc.

In our previous studies, we introduced the concept of complex interval in order to make a healthier examination in
the areas where interval analysis was used. Hence, in [9] we defined the notion of complex interval as

u =
[
ur, ur

]
+ i

[
us, us

]
,

where
[
ur, ur

]
and

[
us, us

]
are real intervals and i =

√
−1 is the complex unit.

[
ur, ur

]
and

[
us, us

]
are called real and

imaginary part of u, respectively. Further,
[
ur, ur

]
and

[
us, us

]
are called real and imaginary part of x, respectively.

Unfortunately, both IR and IC have an algebraic structure which is not linear space which is called as a ”quasilinear
space” by Aseev in 1986 [3]. This work presents an approach for analysis of set-valued functions.

In this paper, we present the notion of complex interval matrix by using interval analysis and quasilinear functional
analysis. We show that the set of all complex interval matrices is a quasilinear space. Further, we can calculate the
norm of a complex interval matrix thanks to the norm that we put on the quasilinear space of all complex interval
matrices.
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2. Quasilinear Spaces of Complex Intervals

The aim of this section is to present basic notations and results. Let us start the definition of quasilinear space in [3]:
A set X is called a quasilinear space on field K if a partial order relation ”�”, an algebraic sum operation, and an

operation of multiplication by real or complex numbers are defined in it in such a way that the following conditions
hold for any elements x, y, z, v ∈ X and any α, β ∈ K:

x � x,

x � z if x � y and y � z,
x = y if x � y and y � x,

x + y = y + x,
x + (y + z) = (x + y) + z,

there exists an element (zero) θ ∈ X such that x + θ = x,
α(βx) = (αβ)x,

α(x + y) = αx + αy,
1x = x,
0x = θ,

(α + β)x � αx + βx,
x + z � y + v if x � y and z � v,

αx � αy if x � y.
The most popular examples are Ω(E) and ΩC(E) which are defined as the sets of all non-empty closed bounded and
non-empty convex closed bounded subsets of any normed linear space E, respectively. Both are a quasilinear space
with the inclusion relation“⊆”, the algebraic sum operation

A + B = {a + b : a ∈ A, b ∈ B},

where the closure is taken on the norm topology of E.and the real-scalar multiplication

λA = {λa : a ∈ A} .

Especially,. IR is a quasilinear space with the Minkowski sum and scalar multiplication operations are defined by

x + y =
[
x, x

]
+

[
y, y

]
= [x + y, x + y]

and

λx =


[
λx, λx

][
λx, λx

] ,
,

λ ≥ 0
λ < 0,

x, y ∈ IR and λ ∈ R, respectively.
The Minkowski sum and scalar multiplication on IC are defined by

u + v =
[
ur, ur

]
+ i

[
us, us

]
+

[
vr, vr

]
+ i

[
vs, vs

]
=

[
ur + vr, ur + vr

]
+ i

[
us + vs, us + vs

]
=

{
a + ib : a ∈

[
ur + vr, ur + vr

]
, b ∈

[
us + vs, us + vs

]}
and

λu = λ
[
ur, ur

]
+ i

(
λ
[
vs, vs

])
=

{
λa + iλb : a ∈

[
ur, ur

]
, b ∈

[
vs, vs

]}
on IC, where i =

√
−1 and λ ∈ C. Further, the relation

u � v iff
[
ur, ur

]
⊆

[
vr, vr

]
and

[
us, us

]
⊆

[
vs, vs

]
is a partial order relation on IC. Thus, IC is a quasilinear space, [9].
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If X is a quasilinear space and Y ⊆ X, then Y is called a subspace of X whenever Y is a quasilinear space with the
same partial order and the restriction to Y of the operations on X. Y is subspace of a quasilinear space X if and only if
for every x, y ∈ Y and α, β ∈ K, αx +βy ∈ Y . Proof of this theorem is quite similar to its classical linear space analogue.
Let Y be a subspace of a quasilinear space X and suppose each element x in Y has an inverse in Y. Then, the partial
order on Y is determined by the equality. In this case Y is a linear subspace of X, [13].

An element x in a quasilinear space X is said to be symmetric if −x = x and Xsym denotes the set of all symmetric
elements. Also, Xr stands for the set of all regular elements of X while Xs stands for the sets of all singular elements and
zero in X. Further, it can be easily shown that Xr, Xsym and Xs are subspaces of X. They are called regular, symmetric
and singular subspaces of X, respectively. Furthermore, it isn’t hard to prove that summation of a regular element
with a singular element is a singular element and the regular subspace of X is a linear space while the singular one is
nonlinear at all. Further, IC is a closed subspace of Ω(C), [5].

A real-valued function ‖.‖ on the quasilinear space X is called a norm if the following conditions hold:

‖x‖ > 0 if x , 0,

‖x + y‖ ≤ ‖x‖ + ‖y‖ ,
‖αx‖ = |α| ‖x‖ ,

if x � y, then ‖x‖ ≤ ‖y‖ ,

if for any ε > 0 there exists an element xε ∈ X such that
x � y + xε and ‖xε‖ ≤ ε then x � y,

where x, y, xε are arbitrary element in X and α is any scalar. A quasilinear space X with a norm defined on it, is called
normed quasilinear space, [3].

For a normed linear space E, a norm on Ω(E) is defined by

‖A‖Ω = sup
a∈E
‖a‖E .

Hence, ΩC(E) and Ω(E) are normed quasilinear spaces. A norm on IR is defined by

‖x‖ =
∥∥∥∥[x, x]∥∥∥∥ = sup

t∈[x,x]
|t| .

Moreover, IC is a normed quasilinear space with the norm

‖X‖IC = sup {|z| : z ∈ X}

= sup{|a + ib| : a ∈
[
xr, xr

]
, b ∈

[
xs, xs

]
},

for X =
[
xr, xr

]
+ i

[
xs, xs

]
, [12].

3. Main Results

A complex interval matrix Â is a matrix whose elements are complex intervals. A (m × n) complex interval
matrix Â is written as

Â =



Â11 Â12 . . . Â1n

Â21 Â22 . . . Â2n

. . .

. . .

. . .

Âm1 Âm2 . . . Âmn


m×n

= (Âi j)m×n

such that
Âi j = [Ar

i j, A
r
i j] + i[As

i j, A
s
i j],

where [Ar
i j, A

r
i j] and [As

i j, A
s
i j] are real and imaginary part of the component Âi j, respectively. The set of all (m × n)

complex interval matrix is denoted by Im×n
C . For example,

Â =

(
Â11 Â12

Â21 Â22

)
=

(
[1, 2] + i[0, 1] [−1, 3]
{2} + i[−1, 1] [2, 3] + i{5}

)
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is a (2 × 2) complex interval matrix.
If Â = (Âi j)m×n is complex interval matrix with Âi j = [Ar

i j, A
r
i j] + i[As

i j, A
s
i j] and B = (bi j)m×n is a complex matrix

with bi j = br
i j + ibs

i j for 1 ≤ i ≤ m, 1 ≤ j ≤ n such that br
i j ∈ [Ar

i j, A
r
i j] and bs

i j ∈ [As
i j, A

s
i j], then we say that B ∈ Â.

We define arithmetic operations a complex interval matrices as follows:
(i):

Â + B̂ = (Âi j)m×n + (B̂i j)m×n = (Âi j + B̂i j)m×n, (3.1)
(ii):

λÂ = λ(Âi j)m×n = (λÂi j)m×n, λ ∈ R, (3.2)
(iii):

Â.B̂ = (Âik)m×n.(B̂k j)n×p = (Ĉi j)m×p

such that

Ĉi j =

n∑
k=1

Âik B̂k j,

where Âik B̂k j is the product of two complex intervals.
Let us give an example for (iii):
Suppose that

Â =

(
[−1, 0] + i[1, 2] {3} + i[−1, 2]

[0, 1] + i{5} [−2,−1] + i[−1, 1]

)
2×2

and

B̂ =

(
[1, 2] + i[0, 1]
{−1} + i[0, 2]

)
2×1

.

Then,

Â11B̂11 = ([−1, 0] + i[1, 2])([1, 2] + i[0, 1])
= [−1, 0][1, 2] − [1, 2][0, 1] + i([1, 2][1, 2] + [−1, 0][1, 2])
= [−2, 0] − [0, 2] + i([1, 4] + [−2, 0]) = [−4, 0] + i[−1, 4],

Â12B̂21 = ({3} + i[−1, 2])({−1} + i[0, 2])
= {3}{−1} − [−1, 2][0, 2] + i({3}[0, 2] + [−1, 2]{−1})
= {−3} − [−2, 4] + i([0, 6] + [−2, 1]) = [−5, 1] + i[−2, 7],

Â11B̂11 + Â12B̂21 = ([−4, 0] + i[−1, 4]) + ([−5, 1] + i[−2, 7])
= [−9, 1] + i[−3, 11],

Â12B̂11 = ([0, 1] + i{5})([1, 2] + i[0, 1])
= [0, 1][1, 2] − {5}[0, 1] + i({5}[1, 2] + [0, 1][0, 1])
= [0, 2] − [0, 5] + i([5, 10] + [0, 1]) = [−5, 2] + i[5, 11],

Â22B̂21 = ([−2,−1] + i[−1, 1])({−1} + i[0, 2])
= [−2,−1]{−1} − [−1, 1][0, 2] + i([−2,−1][0, 2] + {−1}[−1, 1])
= [1, 2] − [−2, 2] + i([−4,−2] + [−1, 1]) = [−1, 4] + i[−5,−1],

Â12B̂11 + Â22B̂21 = ([−5, 2] + i[5, 11]) + ([−1, 4] + i[−5,−1])
= [−6, 6] + i[0, 10].

Hence; we obtain that

Â.B̂ =

(
[−9, 1] + i[−3, 11]
[−6, 6] + i[0, 10]

)
2×1

.

It is obvious that the product of two complex interval matrices is again a complex interval matrix.
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The space Im×n
C is not a linear space, since some complex interval matrices have not an additive inverse; e.g.; let

Â =

(
[1, 2] + i[−1, 0] [−1, 1] + i{2}
{3} + i[0, 2] [−2,−1] + i[1, 2]

)
. (3.3)

Then,

Â + (−1)Â =

(
[1, 2] + i[−1, 0] [−1, 1] + i{2}
{3} + i[0, 2] [−2,−1] + i[1, 2]

)
+

(
[−2,−1] + i[0, 1] [−1, 1] + i{−2}
{−3} + i[−2, 0] [1, 2] + i[−2,−1]

)
=

(
[−1, 1] + i[−1, 1] [−2, 2]

i[−2, 2] [−1, 1] + i[−1, 1]

)
,

(
{0} {0}
{0} {0}

)
,

where θ =

(
{0} {0}
{0} {0}

)
�

(
0 0
0 0

)
is unit element of the algebraic sum operation.

Now, let us the relation ”�” such that

Â = (Âi j)m×n � B̂ = (B̂i j)m×n iff Âi j � B̂i j for each 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where the relation ”�” is the partial order relation on IC. For example, let

Â =

(
[0, 1] + i[−1, 2] {3} + i[2, 3]
[1, 2] + i{−2} [−1, 3] + i[0, 7]

)
and

B̂ =

(
[−1, 1] + i[−2, 3] [1, 4] + i[−1, 5]
[−2, 3] + i{−2} [−2, 4] + i[0, 9]

)
.

It can easily be seen that Â11 � B̂11, Â12 � B̂12, Â21 � B̂21, Â22 � B̂22. Therefore, Â � B̂.

Theorem 3.1. Im×n
C is a quasilinear space with the operations given by (3.1) and (3.2) and the partial order relation

”�”.

Proof. Verification of the axioms (1-10) is easy. For Â = (Âi j)m×n ∈ I
m×n
C and α, β ∈ R we write

(α + β)Â = ((α + β)Âi j) � (αÂi j + βÂi j) = (αÂi j) + (βÂi j) = αÂ + βÂ

since Âi j ∈ IC for each 1 ≤ i ≤ m, 1 ≤ j ≤ n and IC is a quasilinear space. Further, if Â � B̂ and Ĉ � D̂ then Âi j � B̂i j

and Ĉi j � D̂i j for each 1 ≤ i ≤ m, 1 ≤ j ≤ n. Since IC is a quasilinear space, we say that Âi j � Ĉi j and B̂i j � D̂i j for
each 1 ≤ i ≤ m, 1 ≤ j ≤ n. This implies that Â � Ĉ and B̂ � D̂. Now, suppose that Â � B̂. Then, Âi j � B̂i j for each
1 ≤ i ≤ m, 1 ≤ j ≤ n. Further, we write that αÂi j � αB̂i j for each 1 ≤ i ≤ m, 1 ≤ j ≤ n and for any α ∈ R. Therefore,
αÂ � αB̂. �

Now, we will put a norm on the quasilinear space Im×n
C

.

Theorem 3.2. Im×n
C is a normed quasilinear space with the norm∥∥∥Â

∥∥∥ = max
i

∑
j

∥∥∥Âi j

∥∥∥
IC
,

where Â = (Âi j)m×n and 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proof. (1) Suppose that Â , θ. Then we write that Âi j , θ for at least the fixed i and j. This means that
∥∥∥Âi j

∥∥∥
IC
, 0

and so
∥∥∥Â

∥∥∥ = max
i

∑
j

∥∥∥Âi j

∥∥∥
IC
, 0.
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(2) ∥∥∥Â + B̂
∥∥∥ = max

i

∑
j

∥∥∥Âi j + B̂i j

∥∥∥
IC

≤ max
i

∑
j

(
∥∥∥Âi j

∥∥∥
IC

+
∥∥∥B̂i j

∥∥∥
IC

)

= max
i

∑
j

∥∥∥Âi j

∥∥∥
IC

+ max
i

∑
j

∥∥∥B̂i j

∥∥∥
IC

=
∥∥∥Â

∥∥∥ +
∥∥∥B̂

∥∥∥ .
(3) ∥∥∥αÂ

∥∥∥ = max
i

∑
j

∥∥∥αÂi j

∥∥∥
IC

= max
i

∑
j

|α|
∥∥∥Âi j

∥∥∥
IC

= |α|max
i

∑
j

∥∥∥Âi j

∥∥∥
IC

= |α|
∥∥∥Â

∥∥∥ .
(4) Assume that, Â � B̂. Then, Âi j � B̂i j for each 1 ≤ i ≤ m, 1 ≤ j ≤ n. By the fourth condition of norm on IC we

have that
∥∥∥Âi j

∥∥∥
IC
≤

∥∥∥B̂i j

∥∥∥
IC

. This implies that∑
j

∥∥∥Âi j

∥∥∥
IC
≤

∑
j

∥∥∥B̂i j

∥∥∥
IC
.

Hence, we have that
max

i

∑
j

∥∥∥Âi j

∥∥∥
IC
≤ max

i

∑
j

∥∥∥B̂i j

∥∥∥
IC

and so ∥∥∥Â
∥∥∥ ≤ ∥∥∥B̂

∥∥∥ .
(5) Let ε > 0 be arbitrary and suppose that there exists an element Âε ∈ Im×n

C such that Â � B̂ + Âε and
∥∥∥Âε

∥∥∥ ≤ ε.

Then, we write that Âi j � B̂i j + Âε
i j and

∥∥∥∥Âε
i j

∥∥∥∥ ≤ ε for each 1 ≤ i ≤ m, 1 ≤ j ≤ n. By the fifth condition of norm

on IC we say that Âi j � B̂i j for each 1 ≤ i ≤ m, 1 ≤ j ≤ n. This means that Â � B̂.
�

Example 3.3. Let us calculate the norm of the complex interval matrix Â given in (3.3):∥∥∥Â
∥∥∥ = max

1≤i≤2

∑
1≤ j≤2

∥∥∥Âi j

∥∥∥
IC

= max{‖[1, 2] + i[−1, 0]‖IC + ‖[−1, 1] + i{2}‖IC ,
‖{3} + i[0, 2]‖IC + ‖[−2,−1] + i[1, 2]‖IC }

= max{
√

5 +
√

5,
√

13 + 2
√

2}

=
√

13 + 2
√

2.
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