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Abstract
For a finite positive Borel measure µ on the unit circle, let D(µ) be the associated harmoni-
cally weighted Dirichlet space. A shift invariant subspace M recognizes strong approximate
spectral cosynthesis if there exists a sequence of shift invariant subspaces Mk, with finite
codimension, such that the orthogonal projections onto Mk converge in the strong operator
topology to the orthogonal projection onto M. If µ is a finite sum of atoms, then we show
that shift invariant subspaces of D(µ) admit strong approximate spectral cosynthesis.
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1. Introduction
Let H2 be the usual Hardy space and dA(reit) = 1

π rdrdt be the normalized area measure
on the unit disc D. Let µ be a finite positive Borel measure on the unit circle T. The
harmonically weighted Dirichlet space D(µ) is the set of all functions f ∈ H2 such that

Dµ(f) = 1
π

∫
D

|f ′(z)|2Pµ(z)dA(z) < ∞,

where Pµ is the Poisson integral of the measure µ:

Pµ(z) =
∫
T

1 − |z|2

|eit − z|2
dµ(t).

It is well known that the space D(µ) is a Hilbert space with respect to the norm ||.||µ
given by ||f ||2µ = ||f ||2H2 + Dµ(f). Moreover, these spaces are reproducing kernel Hilbert
spaces, that is, for each z ∈ D, there exists a function kµ

z ∈ D(µ), called the reproducing
kernel, such that for every f ∈ D(µ), f(z) = 〈f, kµ

z 〉µ. If µ is the normalized Lebesgue
measure m, then D(m) is the classical Dirichlet space D, and if µ ≡ 0, then we define
D(0) = H2.

The shift operator S on D(µ), that is multiplication by z, is a bounded linear operator.
A (closed) subspace M of D(µ) is called invariant if S maps M into itself. The collection
of all invariant subspaces is denoted by Lat(S,D(µ)). For f ∈ D(µ) the invariant subspace
generated by f , denoted by [f ]D(µ), is [f ]D(µ) = closD(µ){pf : p a polynomial}. This is the
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smallest closed invariant subspace containing f . If [f ]D(µ) = D(µ), then f is called cyclic
for D(µ).

The precise knowledge of invariant subspaces and cyclic functions for the Hardy space
H2 is known by Beurling‘s theorem [1]. In fact, if M ∈ Lat(S, H2) is nontrivial, then
M = θH2, where θ is an inner function, that is, θ is a bounded holomorphic function on
the unit disc such that |θ(eit)| = 1 a.e. on T; and outer functions are cyclic. However, we
do not have complete characterization of Lat(S,D(µ)), and do not know which functions
are cyclic in D(µ). These problems are still open. For the study of invariant subspaces
and cyclic functions, see e.g. [3, 7–10,17–22].

Approximate spectral synthesis of a subspace, which was suggested by Nikolskii, is a
process of reconstructing it not only by the root vectors that are contained in it but also
the limit process of a sequence of subspaces (see [16, 24]). To be more precise, let X be
a Banach space of analytic functions on the unit disk D. Suppose X is invariant with
respect to the shift operator S. A subspace M of X, which is invariant with respect to
the shift operator S, is said to admit strong approximate spectral cosynthesis if there
exists a sequence Mn of invariant subspaces such that dim(X/Mn) < ∞, M = limMn

and M⊥ = limM⊥
n , where limMn := {x ∈ X : ∃ xn ∈ Mn with xn → x} (see Definition

4 of [24]). If X is a Hilbert space, then we can restate the above definition in light of
Lemma 2 of [24] (also see Lemma 4.2 of [14]) as follows: an invariant subspace M ⊆ X
is said to admit strong approximate spectral cosynthesis if there exists a sequence Mn of
invariant subspaces, with dim(X/Mn) < ∞, such that the orthogonal projections Pn onto
Mn converge in the strong operator topology (SOT) to the orthogonal projection P onto
M.

If µ =
∑n

j=1 cjδζj
with cj > 0 and ζj ∈ T, where δζj

is the Dirac measure at ζj , D.
Guillot gave the complete characterization of the Lat(S,D(µ)) in [12]. In this case, using
D. Guillot’s characterization, our aim in this paper is to study the approximate spectral
cosynthesis problem for the harmonically weighted Dirichlet space D(µ). We have the
following theorem.

Theorem 1.1. Let µ =
n∑

j=1
cjδζj

with cj > 0 and ζj ∈ T, and D(µ) be the associated

harmonically weighted Dirichlet space. Suppose that M ∈ Lat(S,D(µ)) is nontrivial. Then
M admits strong approximate spectral cosynthesis.

For the Hardy space H2 the corresponding problem has a solution as a consequence
of Beurling’s theorem and Caratheodory-Schur theorem (see [25]). For certain weighted
Bergman spaces, spectral synthesis problem was considered by S.M. Shimorin in [24]. He
showed that invariant subspaces of index 1 admit strong approximate spectral cosynthesis.
In [25], the author has a similar result for the weighted Dirichlet spaces and a partial result
for the classical Dirichlet space.

As an application, in the final remark we will explain that Theorem 1.1 answers a certain
case of a question posed by J. B. Conway, and D. Hadwin (see [5]).

The plan will be as follows. In the next section, we will give a background on the
harmonically weighted Dirichlet spaces D(µ). In the last section we will prove Theorem
1.1 as Theorem 3.3.

2. The harmonically weighted Dirichlet spaces
Given an analytic function f on the open unit disc D and ζ ∈ T, we denote by f(ζ) the

radial limit limr→1− f(rζ), whenever it exists. It is well known that if f ∈ H2, then the
radial limit f(ζ) exists almost everywhere on the unit circle T.

Given a finite positive Borel measure µ on the unit circle T, the harmonically weighted
Dirichlet space D(µ) can alternatively be defined as the set of all analytic functions f ∈ H2
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such that
Dµ(f) =

∫
T
Dζ(f)dµ(ζ) < ∞,

where Dζ(f) is the local Dirichlet integral of f at ζ ∈ T given by

Dζ(f) :=
∫
T

|f(eit) − f(ζ)|2

|eit − ζ|2
dt

2π
.

Let M ∈ Lat(S,D(µ)) and f ∈ D(µ). Denote by ZT(f) the set of points in T where the
radial limit of f is zero, that is,

ZT(f) = {ζ ∈ T : lim
r→1−

f(rζ) = 0},

and
ZT(M) =

∩
f∈M

ZT(f).

Another notion that plays an important role is capacity. To define it we consider the
harmonic Dirichlet space Dh(µ), associated with µ,

Dh(µ) := {f ∈ L2(T) : Dµ(f) < ∞}.

The space Dh(µ) is a Hilbert space and the norm on it is ||f ||2µ := ||f ||2L2 + Dµ(f). For
any subset E ⊂ T, the capacity cµ of E is defined by

cµ(E) := inf{||f ||2µ : f ∈ Dh(µ) and |f | ≥ 1 a.e. on a neighborhood of E}.

For every Borel subset F ⊂ T, we have cµ(F ) = sup{cµ(K) : K ⊂ F is compact} (see
Corollary 3.3 of [12]). If µ = m, the Lebesgue measure on T, it is well known that the cµ

capacity and logarithmic capacity are equivalent. See [11] for more details. A property
holds cµ-quasi-everywhere, denoted by cµ − q.e., if it holds everywhere except on a set of
zero cµ-capacity.

If E ⊆ T is a Borel set, define DE(µ) as follows;
DE(µ) := {f ∈ D(µ) : f = 0 cµ − q.e. on E}.

Note that it was shown in [12] (see Proposition 5.2) that DE(µ) is closed in D(µ). Clearly
it is invariant, so DE(µ) ∈ Lat(S,D(µ)).

Richter and Sundberg in [20] gave the following characterization of invariant subspaces
of D(µ).

Theorem 2.1. (see [20] Theorem 5.3) Let M ∈ Lat(S,D(µ)) and let θ be the greatest
common inner divisor of functions in M. Then, there is an outer function f ∈ D(µ) such
that

M = [θf ]D(µ) = θ[f ]D(µ) ∩ D = [f ]D(µ) ∩ θH2.

In fact, f can be chosen so that f and θf are multipliers of D(µ).

When the associated measure is a finite sum of atoms, using the above result of Richter
and Sundberg, D. Guillot showed that

[f ]D(µ) = {f ∈ D(µ) : f = 0 cµ − q.e. on ZT(f)},

where f ∈ D(µ) is an outer function (see Theorem 5.9 of [12]). Using these results, D.
Guillot’s characterization of invariant subspaces can be given in the following theorem.

Theorem 2.2. (See [12]) Let µ =
n∑

j=1
cjδζj

with cj > 0 and ζj ∈ T. Let M ∈ Lat(S,D(µ))

and let θ be the greatest common inner divisor of functions in M. Then
M = θH2 ∩ DE(µ),

where E = {ζ ∈ suppµ : cµ({ζ}) > 0 and ζ ∈ ZT(M)}.
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In [6] El-Fallah, Elmadani, and Kellay extended D. Guillot’s characterization of in-
variant subspaces to harmonically weighted Dirichlet spaces D(µ) where the associated
measure µ has countable support (see Theorem 2 of [6]). The following theorem is well
known.

Theorem 2.3. (See [3]) Let H be a reproducing kernel Hilbert space of analytic functions
on a region Ω ⊆ C and let {fn} ⊆ H. Then the following are equivalent:

(1) fn → f weakly
(2) ||fn|| ≤ M and fn(z) → f(z) for all z ∈ Ω
(3) ||fn|| ≤ M and fn → f locally uniformly.

3. Proof of Theorem 1.1

For the rest of the paper we will take µ to be finite sum of atoms, i.e., µ =
n∑

j=1
cjδζj

with cj > 0 and ζj ∈ T. We begin with the following propositions which will be used in
the sequel.

Proposition 3.1. Let B be a finite Blaschke product with the zero set {αi}k
i=1, and F ∈

D(µ) be an outer function such that F (ζj) = 0 for j = 1, ..., n. Then BF ∈ D(µ).

Proof. By the Richter-Sundberg formula (see Theorem 3.1 of [19]) the local Dirichlet
integral Dζ(BF ) of BF is

Dζ(BF ) =
k∑

i=1

1 − |αi|2

|ζ − αi|2
|F (ζ)|2 + Dζ(F ).

Hence

Dµ(BF ) =
∫
T

k∑
i=1

1 − |αi|2

|ζ − αi|2
|F (ζ)|2 dµ(ζ) + Dµ(F )

=
k∑

i=1

n∑
j=1

cj
1 − |αi|2

|ζj − αi|2
|F (ζj)|2 + Dµ(F ) < ∞.

□

Proposition 3.2. For 1 ≤ j ≤ n, let Fj(z) = z − ζj and F (z) =
n∏

j=1
Fj(z). Then for each

j ∈ {1, ..., n}, Fj is an outer function with Fj ∈ D(µ).
Further, F (z) is an outer function with F ∈ D(µ).

Proof. It is well known that Fj and F are outer functions (see [15] page 27). Since
polynomials are dense in D(µ) (see Corollary 3.8 of [18]), obviously we have Fj and F are
in D(µ). □

Now we are ready to prove our main result.

Theorem 3.3. Let µ =
n∑

j=1
cjδζj

with cj > 0 and ζj ∈ T, and D(µ) be the associated

harmonically weighted Dirichlet space. Suppose that M ∈ Lat(S,D(µ)) is nontrivial. Then
M admits strong approximate spectral cosynthesis.

Proof. If M ∈ Lat(S,D(µ)) is nontrivial, then by Theorem 2.2

M = θH2 ∩ DE(µ),

where θ is the greatest common inner divisor of the inner parts of the nonzero functions
in M.
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Without loss of generality let E = {ζ1, ..., ζn}. Notice that, in this case since F (z) =
n∏

j=1
(z − ζj) ∈ D(µ) is an outer function by Proposition 3.2, we have DE(µ) = [F ]D(µ) by

Theorem 5.9 of [12]. Hence M = θH2 ∩ DE(µ) = [θF ]D(µ) by Theorem 2.1, where θF is
extremal for M, that is, θF ∈ M 	 zM, ||θF ||µ = 1 (see Theorem 3.2 of [20]). Using the
Caratheodory-Schur theorem (see, e.g.,Theorem 5.5.1 of [23]), we can get a sequence of
finite Blaschke products Bk such that Bk → θ locally uniformly in the unit disc. Denote
the zeros of the Blaschke product Bk by {αki

}tk
i=1. Then by Proposition 3.1, BkF ∈ D(µ).

Now set
Mk = [BkF ]D(µ) =BkH2 ∩ DE(µ) = {f ∈ D(µ) : f ∈ BkH2 and f |E = 0}

={f ∈ D(µ) : f(αki
) = 0, i = 1, ..., tk, and f |E = 0}.

Let Pk and P be the orthogonal projections onto Mk and M, respectively. To finish the
proof, we need to show that Pk → P in SOT, and Mk has finite codimension.

If BkF (z) → θF (z) for all z ∈ D, then Pk → P in SOT follows from Corollary 4.5 of [14],
since BkF is extremal function for Mk and θF is extremal function for M. That Bk → θ
locally uniformly on D implies that Bk(z) → θ(z) for all z ∈ D. But since F ∈ D(µ) this
implies that BkF (z) → θF (z) for all z ∈ D.

It is left to show that dimM⊥
k < ∞. Since the cµ({ζi}) > 0 for each i = 1, ..., n, the

evaluation functional f 7→ f(ζi) is bounded on D(µ), so there exists a reproducing kernel
kµ

ζi
∈ D(µ) for each i = 1, ..., n (see [12], or Lemma 3.2 of [6]). Then by a similar argument

of Lemma 3.4 of [25], one can show that Mk has finite co-dimension by showing that

M⊥
k =

∨
{kµ

ζi
}n

i=1 ∪ {kµ
αki

}tk
i=1,

where the symbol
∨

denotes the closed linear span, kµ
ζi

and kµ
αki

are the reproducing kernels
at ζi and αki

, respectively. □
If θ ≡ 1 in Theorem 2.1, then M = DE(µ). Hence one can take Mk = DE(µ). The

easy way to prove Theorem 3.3 for DE(µ) is the observation that we have reproducing
kernels kµ

ζ for ζ ∈ T. But one can do more. In fact, next we show that DE(µ) admits
strong approximate spectral cosynthesis by a sequence of zero-based invariant subspaces
for some zero set in the unit disc. We can prove this by an argument that is similar to
Theorem 3.6 of [25]. For the sake of completeness, we provide the details here.

Without loss of generality let E = {ζ1, ..., ζn}. For r < 1 define rE := {rζ1, ..., rζn},
and set I(rE) = {f ∈ D(µ) : f(rζj) = 0, ∀j = 1, ..., n}. Then it is clear that I(rE) ∈
Lat(S,D(µ)). Note that this kind of invariant subspaces are called zero-based subspaces,
and we reserve this notation for them. By choosing an increasing sequence rk < 1 with
∞∑

k=1
(1 − nrk) < ∞, let the Blaschke product B(z) be given by

B(z) =
∞∏

j=1

z̄j

|zj |
zj − z

1 − z̄jz
,

where {zj}∞
j=1 =

∞∪
k=1

rkE = {r1ζ1, ..., r1ζn, r2ζ1, ..., r2ζn, ...}. Set f0(z) := B(z)F (z), where

F (z) =
n∏

j=1
(z − ζj) is the outer function defined in Proposition 3.2.

Proposition 3.4. With the above notation, we have f0 ∈ D(µ) and f0 ∈
∞∩

k=1
I(rkE).

Proof. Proof of f0 ∈ D(µ) is similar to the Proposition 3.1, and by construction it is clear
that f0 ∈

∞∩
k=1

I(rkE). □
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Theorem 3.5. Let DE(µ) ∈ Lat(S,D(µ)) be nontrivial. Then DE(µ) admits strong ap-
proximate spectral cosynthesis by a sequence of zero based invariant subspaces that has a
finite zero set in the unit disc.

Proof. We assume that E = {ζ1, ..., ζn}. Note that in this case E = ZT(M).
For each j ∈ {1, ..., n}, let Fj(z) = z−ζj and F (z) =

n∏
j=1

Fj(z). Then by Proposition 3.2,

Fj and F are outer functions with Fj , F ∈ D(µ). Then by Theorem 5.9 of [12] DE(µ) =
[F ]D(µ).

Let rk < 1 be an increasing sequence such that
∞∑

k=1
(1−nrk) < ∞, and by reindexing let

{zj}∞
j=1 =

∞∪
k=1

rkE = {r1ζ1, ..., r1ζn, r2ζ1, ..., r2ζn, ...} and consider the Blaschke product

B(z) with zeroes {zj}∞
j=1. Let f0(z) := B(z)F (z). Then by Proposition 3.4, f0 ∈ D(µ)

and f0 ∈
∞∩

k=1
I(rkE), where I(rkE) is the zero-based invariant subspace on rkE. Next, we

claim that

DE(µ) =
∞∨

t=1

∞∩
k=t

I(rkE).

For each t, let f ∈
∞∩

k=t
I(rkE). Then f(rkζj) = 0 for all j = 1, ..., n and k ≥ t. As k → ∞,

rk → 1, we have the radial limits f(ζj) = 0 for all j = 1, ..., n. This implies f ∈ DE(µ).
Hence

∞∨
t=1

∞∩
k=t

I(rkE) ⊆ DE(µ). To show the reverse inclusion, since DE(µ) = [F ]D(µ), it

is enough to show that F ∈
∞∨

t=1

∞∩
k=t

I(rkE).

Let It :=
∞∩

k=t
I(rkE). Observe that if f ∈ It, then f(z) = 0 for all z ∈

∞∪
k=t

rkE =: Zt.

Also note that It ⊆ It+1. Let Bt(z) be the Blaschke product with the zero set Zt, and
let ft(z) := Bt(z)F (z). Then by a similar argument to that in Proposition 3.4 one can
show that ft ∈ D(µ) and trivially ft ∈ It. Since Bt(z) → 1 pointwise as t → ∞, and
||ft||D(µ) ≤ C for some constant C, we have ft → F weakly by Theorem 2.3. Hence

F ∈
∞∨

t=1

∞∩
k=t

I(rkE) since weak and norm closure are equivalent. Therefore DE(µ) =
∞∨

t=1
It,

which implies that DE(µ)⊥ =
∞∩

t=1
I⊥

t , and It ⊆ It+1 implies that I⊥
t ⊇ I⊥

t+1. Let P and Pt

be the orthogonal projections onto DE(µ) and It, respectively. Then by Problem 120 of
[13] I − Pt → I − P in SOT, and hence Pt → P in SOT. To finish the proof we need to
construct the sequence of invariant subspaces Mm with finite codimension such that the
corresponding projections converge to P in SOT.

Recall that Zt =
∞∪

k=t
rkE. For each t, let Am,t = {w1, ..., wm} ⊆ Zt be such that

Am,t ⊆ Am+1,t and
∞∪

m=1
Am,t = Zt. Let Mm = I(Am,t) be the zero-based invariant

subspace on Am,t. Then it is clear that Mm ⊇ Mm+1 and It =
∞∩

m=1
Mm. Let Pm,t be the

orthogonal projection onto Mm. Then for each t, Pm,t → Pt in SOT as m → ∞. The SOT
is metrizable on bounded subsets of all bounded linear opetators (see Proposition 1.3 in
Chapter 9 of [4]), so we can get a subsequence Pmt,t such that Pmt,t → P in SOT. It is
left to show that Mm = I(Am,t) has finite codimension. This can be done as in Theorem
3.3. □
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4. Final remark
Let T be a bounded linear operator on a separable infinite dimensional Hilbert space H.

An invariant subspace M of T is called stable if whenever {Tn} is a sequence of bounded
linear operators on H such that ||Tn − T || → 0, there is a sequence of invariant subspaces
Mn of Tn such that Pn → P in the strong operator topology (SOT), where Pn and P
are orthogonal projections onto Mn and M, respectively. If the projections converge in
the norm, then M is called a norm-stable invariant subspace. Following the notation
in [5], let Lats(T,H) and Latns(T,H) denote the collection of stable and norm-stable
invariant subspaces of T , respectively. Conway and Hadwin asked the following question:
Is Lats(T,H) the closure in the strong operator topology of Latns(T,H) for any operator
T? They showed that this question has affirmative answer when T is normal operator or
the unweighted unilateral shift of finite multiplicity. A general result of Borichev et al. [2]
implies that if T is any weighted unilateral shift operator, then an invariant subspace is
norm-stable if and only if its co-dimension is finite. Let Latfc(S,D(µ)) denotes the finite
co-dimensional invariant subspaces. Then our main result Theorem 1.1 implies that the
strong closure of Latfc(S,D(µ)) is Lat(S,D(µ)). On the other hand, Latfc(S,D(µ)) ⊂
Latns(S,D(µ)) ⊂ Lats(S,D(µ)); for the first inclusion see [2] and the second one is trivial.
Then we have a positive answer to the above mentioned question of Conway and Hadwin.

Acknowledgment. I would like to thank the anonymous referee for his/her valuable
remarks and suggetions.
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